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Energy Considerations in Systems
s.r.eaer & \\jth Varying Stiffness

K. Grosh

If the stiffness of an elastic system changes with time, a conventional Newtonian statement

S. Oh of the equations of motion will generally lead to solutions that violate the fundamental

mechanics principle that the work done by the external forces be equal to the increase in

Department of Mechanical Engineering, total energy of the system. Timoshenko’s discussion of the problem of a vehicle driven
University of Michigan, across an elastic bridge is generalized to show that energy conservation can be restored

Ann Arbor, MI 48109-2125 only if the local deformation of the components is taken into account in determining the

direction of the contact force. This result has important consequences for the interaction

of elastic systems in general, including, for example, the dynamic behavior of meshing

gears.[DOI: 10.1115/1.1574060
1 Introduction In this example, the inconsistency will be resolved if the prob-

If a mechanical system contains no energy sources or dissi;l)%lrp is reformulated in the context of thermodynamics and the

tive mechanismsésuch as friction or plasticiyy the work done by apparent energy deficit will be associated with an exchange be-
; : ween thermal and mechanical energy. However, similar problems

the external forces must be equal to the increase in total poten{la : | hanical probl h he stiff h ;
energy of the system. This principle is one of the pillars of mé o¢ 1N purely mechanical probiems, w ere the stifiness change is
chanics. but a areni counter examples can be produced if e to kinematic effects. These effects are generally not explicitly
' PP P P Btharked in the literature. For example, the change in meshing

system contains components whose stiffness changes with tim . . . ; >
This inconsistency is a clear indication that the problem is in sorr?(ieﬁn.ess of involute gears is sometimes approximated by repre
nting the meshing stiffness by a sinusoidal funct{dd, The

sense ill-posed. In the present paper, we shall demonstrate that} seulting equation of motion then takes the form of the Mathieu

energy conservation principle will be satisfied in such cases Onngﬁuation, which has domains of instability in which an initial

if the local deformation of the components is taken into account 'perturbation from the steady periodic state will grow exponen-

deterr_nlmng the dlre_ctlo_n Of the contact fqrce. . tially with time. Clearly this implies that the total energy increases
An important application in which the stiffness of a mechanlce\llyith time. However, the mean power at input and output are equal

component varies with time concerns the meshing of two gears. In . h L
. X h 4 and. opposite, so the system as modeled violates the principle of
this case, the meshing stiffness changes as the contact point mov%%servation of energy.

over the gear teeth and at the point where an additional pair @
teeth comes into contact or leaves contact. Other examples mcthje A Cantilever Beam Problem
a vehicle moving over an elastic bridge or a loaded system n " . i ' ) . )
which the elastic modulus of the material changes as a function ofA simple example with a kinematically varying stiffness in-
temperature. volves the cantilever beam of Fig(d), loaded by a transverse

To introduce the subject, consider the simple case of a lind@rce F at a distance from the support. Elementary calculations
spring of stiffnessk loaded by a forcer. The extension of the show that the displacement under the force and the strain energy

spring,u, and the strain energy stored, are given by are
3 2,3
E F2 _ Fx ) _ F<x
i YT (1) “w3Er YT eEn @

; . . respectively, wheré&l is the flexural rigidity of the beam. If the
respectively. If we now slowly change the stiffness of the spring > o
by an amountsk (for example, by changing the temperature an plnlt of applltcat.llcl)n r?f the [;)rce now moves fraxto x+ o, the
hence the elastic modulus of the materidhe forceF will do ISplacement will change by

work au Fx26x

o u Pk M TE ©

OW=Fdu=F - ok=——7", @) allowing the forces to do work
but the strain energy will increase by F2x2éx
W= T (6)
U F2sk
U= K ok=— K2 (3)  However, the corresponding change in strain energy in the beam
is only
so the system appears to violate the principle of conservation of U F2x2 5%
energy under a change of stiffness. U= — ox=—=— (7
ax
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Fig. 2 General elastic structure loaded by a normal contact
force

(b) F2X25X

_ _ SW,=F 8Up=———
Fig. 1 (a) The cantilever beam loaded by a normal force,  (b) 2El

the same beam loaded through a frictionless roller

(13)

is communicated to the beam and results in the increase of strain
energysu.

Notice that if the direction of motion is reversed, the quantity
) ) ) o OW, will be negative, showing that an external source of energy is
general the bridge will be left in a state of vibration and hence W'Haquired in phase 1 to move the force over the “frozen” beam.
be in a higher energy state than it was before the transit. Wherepy course, in a real physical application, the wa@W/, cannot
does the extra energy come from? simply be lost to or generated from a fictitious energy source and

Timoshenko resolved the problem by noting that the instantgny practical realization of the problem will bring us back into the
neous motion of the vehicle is not horizontal because of the dgsaim of contact mechanics.

flected shape of the bridge. It follows that the brakes or the engine
must be engaged to ensure a constant transit speed and this ingro-
duces addit?or?al energy terms. This argument F<):an be applied™to A More General Case
our cantilever beam problem by introducing the modified system Figure 2 shows a more general elastic structure loaded by a
of Fig. 1(b), in which the force is transmitted to the beam throughormal forceF at a point on the boundary characterized by a
a roller. If the roller is frictionless, it can be retained in equilibcurvilinear coordinate. We assume that strains and rotations are
rium only by the application of a tangential force small, but the elastic behavior is not necessarily linear. We also
assume that the force produces a bounded displacement at its

Fr=Ftano, ®) point of application. This restriction will be removed for the linear
where case in Section 4.
) We define the normal displacement at a general point on the
X =
tang= S ) boundaryx= ¢ as

u=u(F,x,§), (14)

is the slope of the beam at the point of application of the force. ilrfu which case the local rotation of the deformed surface is

the roller in Fig. 1b) moves a distancéx to the right, an amount

of work au
F252 5x 0(§)ZT§(F'X'§)' (15)
OWr=F1ox=—g; (10 \we also define the functions
will be done against the forcé; and the inclusion of this term f(F,x)=u(F,x,x); g(F,x)=6(F,x,x), (16)

completes the energy balance which are the normal displacement and rotation at the point of

SU=S6W— 5Ws. (11) application of the force.

. . The strain energy in the structure can be found by appl¥ing
Lee [3] showed that the same conclusion could be achieveg,qa)ly, keeping its location fixed. It is therefore given by
without recourse to arguments from contact mechanics. We adapt

the notion of Lee(who uses a convected time derivalie the F ou(F,x,x) Flof

quasi-static case under consideration here. We decompose the mo- ~ Y(F.X)= J T FdF= j ﬁ) FdF. a7
tion of the force into two processes. In the first phase, the beam is 0

“frozen” in its deformed state while the force moves froxto  If, following Timoshenko’s scenario, the force is applied through
x+ 6x. During this phase, the force moves a distande, a frictionless roller, we shall require a restraining force

= ox tand and hence does work,

Fr=FO(F,x,x)=Fg(F,x). (18)
2,2
SW,=Fsu;=F dx tanf= M (12) If the roller is now allowed to move a distané, the forceF
2El will do an increment of work
but none of this work is communicated to the beam. In the second of
phase, the beam is allowed to relax to its new equilibrium posi- SW=F a—xﬁx, (29)
tion. The additional displacement of the forceds,= du— su,
and the work done during this phase but Fr will have work done against it equal to

466 / Vol. 70, JULY 2003 Transactions of the ASME



SWg=Frdx=Fg(F,x)x. (20) Now consider the case where the force is distributed in the vicin-

. ity of x, with intensity
Thus, the net work done on the structure will be

of p(x+r)=Ff(r), (29)
SW— MR:(F——FQ)&(- (21) where the distribution functiori(r) is nonzero only in—c<r
2 <c and is normalized so that
Equating this to the increase in strain energy in the structure, we c
obtain f f(r)ydr=1. (30)
- of Fl o2f _ co .
—=F——Fg= FdF, (22) The displacement due to this distribution can now be written by
2SS dF X superposition as
from Eq. (4). Differentiating with respect t&, we then obtain c
u(é)=F U(x+r,&)f(r)dr (32)
c o*f e &f . af c Jg 23) —c
gFox " oFax ax 9T GF and the local slope is
and hence Jau fc Ju ¢ 32
0(&)=—=F | —=(X+r, r)dr.
o 0 (§)=5g=F |_Zg+r.of() (32)
~ 9 FF=0. (24) . .
X JF The stored strain energy is
which defines a relationship between the displacement and the 1 (xtc
slope of the structure which must be satisfied if energy is to be U= Ef u(é)p()dé
X—C

conserved during the process.

Alternative Proof. An alternative proof of this result can be
obtained by invoking the incremental form of Maxwell’s recipro-
cal theorem|[7], for small perturbations about the reference state o ) ) )
Where the forcd: is app“ed atX’ producing displacemem and ertlng §:X+ S. If the dIStrIbuted force IS now dISplaced a d|S'

EF2 (c [c
:7f fﬁ(x+r,x+s)f(r)f(s)drds, (33)

rotation 6. tancedx, the increment in strain energy will be
Moving F by a distancedx is equivalent to adding an infini- N
tesimal momentM =F dx atx. The response of the structure can U= rv X
be linearized for small perturbations about the reference state, X
leading to the relation E2sx (¢ (° [du . En] e (Sdrd
u a0 g 5) =2 ) ) \ax T g/ (xrrxa9tni(sydrds.
oM 9F  OF° (34)

Following Lee’s argument above, we consider the displacementthe additional work done by the normally directed distributed
due to the motion of the force fromto x+ ox as the sum of two force during this motion is

parts. Freezing the beam in its deformed shape, we IfamMe e 5

= 0(F,x,x) 6x after which relaxation to the new equilibrium po- _ ou

sition gives an additional displacemeéiti, associated with the OW=dx - &)+ ax(g) p(£)d¢
momentF 6x. The total displacement of the force along its line of

action is therefore ) ¢ (e[du du
=F°ox —+ —|(x+r,x+s)f(r)f(s)drds,
Ju a9 o clax ¢
0(F,Xx,x) ox+ mF&x—g(F,x)&x+ EF&’ (26) (35)
but this displacement is also given by which is exactly twice the increment of strain energy. The remain-
ing work is required to overcome the implied tangential restrain-
ﬁ S ing force F¢, which is the resultant of tractions equal and oppo-
ax ! si_te to the component gf parallel to thedeformedsurface and is
giving given by
X+cC
of ag FT=J 0(£)p(£)dé
& =g+ F E (27) X—cC
as before.

c fc U
=sz f a—(x+r,x+s)f(r)f(s)drds. (36)
4 Distributed Forces o

In problems of linear elasticity, the displacement field due to a Py Py
concentrated force is singular at the point of application of the = . _ =
force and hence the functiofisg of the previous section are not U(x.&)=u(&.x); &g(x+r,x+s) 28 (xtsx+r) (37)
well defined. However, the concentrated force solution can still %d hence
used as a Green’s function to define the effect of a distributed
force by superposition. Consider the case where Fig. 2 represents
a two-dimensional linear elastic body and suppose that a concen-
trated normal forcé at x produces a normal displacemenat &,
where

Notice that from Maxwell’'s reciprocal theorem we have

c o g4
J:CJ7C0_§(X+r’x+5)f(r)f(s)drds

u(E)=FTi(x.6) 28) :ﬁc ﬁca—JS(x+r,x+s)f(r)f(s)drds, (38)
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Fig. 4 A flexible involute gear meshing with a rigid rack

Fig. 3 Simple gear system using the cantilever beam of Fig. 1 input of energy to the system at the point where the number of
teeth in contactand hence the total contact stiffnpsscreases
and a sudden removal of energy whend&creasesThe only
on interchanging the dummy variablesr. Using this result in external forces acting on the system that do work are the input and
Egs.(34), (35, we see that the system satisfies the principle @utput torques, so we must conclude that there will be a signifi-
conservation of energyf and only if we include the contribution cant change in the instantaneous torque ratio of the gears during

of the tangential forcé . these transitions, associated with the change in the line of action
o ) ) of the contact forces due to gear tooth deformation. The reader is
5 Implications in Contact Mechanics invited to conduct a ‘thought experiment’ in which the output

These results show that in systems with kinematically varyiﬁéﬁéeadion torque is held constant and the input shaft is rotated at

stiffness, the direction of the contact forces or tractions must k&tremely slow speed. A significant spike will be needed in the
chosen to be normal to thteformedcontact surface in a Newton- 'NPut torque to force an extra tooth into contact. By contrast, when
ian statement of the problem if energy conservation is to be pra10oth Ie?\{es ﬁpntact, Ithe input thaft VK'” terr:d to s[;]rlngf?he_ad.
served. This contradicts the conventional wisdom in contact me-10 €xplain this resuilt, notice first that the tooth deflection
chanics, where the direction of the contact forces is referred to thaUSes a relative rigid-body motion of the gears, so at the point
undeformed configuration of the contacting bodies. where an additional tooth would theoretically come into contact as
For dynamic systems involving moving contacts such as tferesult of involute action, the new unloaded tooth would actually
meshing of two gears, failure to include this effect will generalh?‘_9 in a position implying interpenetration. This is illustrated in
lead to equations of motion that are incorrect because their sofld- 4 for @ deformable gear meshing with a rigid rack. As a result,
tion violates the fundamental principle that the work done by tH&8€ contact of the new tooth will actually start before the theoreti-

external forces equal the change in total potential energy of tfélly correct point and it will involve contact of the noninvolute
system. q 9 P 9y corner of the rackPoint A in Fig. 4) with the flank of the tooth.

Figure 3 shows a simple illustrative example in which a “gear’The line of action of the transmitted force will deviate consider-

comprising a flexible beanD,A rotates clockwise at constant@Ply from the theoretical pressure line during this engagement
speed() about a cente®, that is fixed in space. The rod drives gheriod as a consequence of local tooth deformation. The analysis
rigid pin B mounted on a rigid disk which rotates about cente?! this problem would be geometrically complex, but the results

0,. If O;, O, are not coincident, the effective lengihB of the of Sections 3 and 4 show that the use of the true direction of the
beam will vary with angular position, leading to a kinematicall ontact force would lead to the same result as the simpler energy-

varying stiffness. ased analysis. . .
The beam support can be brought to rest by superposing faThe tooth engagement period represents only a small proportion

counterclockwise rigid-body rotatioft on the whole system. The ©f the tooth period and an acceptable idealization in many cases is
Q assume it is instantaneous, leading to discontinuijieaps in

effect however is merely to cause the pBto slide quasi- stiffness. However, this implies the occurrence of discontinuities

sinusoidally along the beam. The results of Section 2 therefdfe Strain energy and energy conservation requires corresponding
show that the corredenergy conservingequations of motion for diScontinuities in kinetic energy and hence in rotational speed.
this system will be obtained only if the local slope of the deflectel® implications of these discontinuities for the dynamics of in-
beam is taken into account in determining the direction of thélute gear sets will be discussed in a separate pgper,
transmitted force and hence the torque transmitted by the disk

0,B.

5.1 Involute Gears. Similar considerations apply to the In thi h h that tional stat t of
more complex system of the meshing of two involute gears. Oncﬁa n tis tpaper }Ne t?"efs own ta a (??hmé?n |on? S"a ement o
again, there will generally be a variation of effective stifiness dsc, auations of motion for a system with kinematically varying
ffness will generally lead to a solution that violates the funda-

the contact point moves along the surfaces of the two meshi . e
P 9 fgntal mechanics principle that the work done by the external
d

6 Conclusions

teeth. However, most gear systems will have a noninteger cont
ratio, implying that the number of teeth in contact changes duriég A W i hasize t ¢ v that h i f
the meshing cycle, resulting in a major change in contact stiffnes¥> M- YV cannot émphasize too strongly that such equations o
on are therefore incorrect.

The present energy arguments show that there must be a sudﬁ'@lﬁ' ; . . .
0 obtain a correct statement of the governing differential equa-

—_ . ) ) . tions, it is necessary to allow for the local deformation of the
Notice that for an elastic body, the tangential fofeg will also induce a local . L. . X

tangential deformation, but the associated work term is of second order relativqumpOnents .m determm'.ng the d”'eCtlon.Of t_he contact f(?rces or

those considered above. tractions. This result, which is a generalization of the “Timosh-

ces be equal to the change in total potential energy of the

468 / Vol. 70, JULY 2003 Transactions of the ASME



enko paradox,” applies even in small strain problems where thd3! kﬂeethE-lg-, 19356 "C2>32a “Paradox” in Beam Vibration Theory,” Q. J. Appl.
: ; ath., 10, pp. -292.
prob_lem s_tatement is conventionally referred to the undeformeq4] Maunder. L., 1960, “On the Work of a Force Crossing a Beam.” Q. J. Appl.
configuration. Math., 17, pp. 437—439.
[5] Adams, G. G., 1995, “Critical Speeds and the Response of a Tensioned Beam
on an Elastic Foundation to Repetitive Moving Loads,” Int. J. Mech. Sai.,
pp. 773-781.
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On the Strain Saturation
Conditions for Polycrystalline
Ferroelastic Materials

C. M. Landis A phenomenological constitutive law is developed for the deformation of polycrystalline
Mem. ASME ferroelastic materials. The model is framed within a thermodynamic setting common to
g-mail: landis@rice.edu internal variable plasticity. The two significant inputs to this model are a switching (yield)
Department of Mechanical Engineering and surface, and a hardening potential. To maintain simplicity, the shape of the switching
Materials Science, MS 321, surface is assumed to be spherical in a modified deviatoric stress space. In order to
Rice University, P.0. Box 1892, ascertain the functional form of the hardening potential, micromechanical self-consistent
Houston, TX 77251 simulations of multiple single crystals, with tetragonal crystal structure, embedded in an

effective polycrystalline matrix, are performed for differing loading paths in remanent
(plastic) strain space. As a result of the asymmetry in the tension versus compression
behavior of these materials, it is shown that pure shear loading does not result in pure
shear straining. This feature of the material behavior is demonstrated with the self-
consistent simulations and predicted by the phenomenological constitutive law. Ulti-
mately, the phenomenological theory is able to capture the complex constitutive behavior
of ferroelastic materials predicted by the micromechanical model.

[DOI: 10.1115/1.1600472

1 Introduction Generally, the mechanism for switching is the motion of domain

V\éalls/twin boundaries. Switching will proceed until all of the vari-

Phts are aligned in the direction, leaving the crystal with a strain

; . of e.x=€0, &yy=—€0/2 ande,,= —&o/2. Now, if we apply a

ihsat\é?rz r:)(;]r;clutt)):]ct (C)%Setflstsrggtcutfer:'smﬁ zgnlﬁf;tbghtggrs; ;rg%tf %‘?ﬁnpressive stress in thedirection, the stress will be able to do
9 ! ‘B8sitive work if the variants oriented in thedirection switch to

rhombic exist in technologically useful ferroelectrics with cheml-Either they or z directions. Furthermore, the amount of work done

Many smart materials, including ferroelectrics and sha
memory alloys(below the martensite finish temperatuidy),

cal compositions near a mor_phot_roplc phase bound_ar_y. AS|g_n| either of these switches is identical. In general, the exact
cant feature of these materials is that they exhibit |rrever5|b\§!

def tion th h itchi hani tot itching sequence will depend on the geometry of the domain
elormation through a switching mechanism, €.g., a teragongy,s- nowever, if the crystal is large enough it is reasonable
variant oriented in the direction can switch its orientation to the

directi In sh I beld. thi tching i to expect that the final state of the crystal will have half of
y direction. In shape memory alloys beldWy this SWItching IS s yariants aligned in thg direction and half in the. Therefore,

te_rmed twinning ar_1d detwinni_ng or twin reorientati_on. In all casgn compression the averaged strain state of the crystal,js
, ; . o loaded along any of ité100 directions the maximum irreversible

An interesting feature of ferroelastic deformation is that therg qile strain i, and the maximum compressive strain-s /2
exists an asymmetry in the uniaxial tension and uniaxial compress justrated in Fig. (b). '
sion behaviof1-3]. In general, larger irreversible strains can be 1hjg ghservation has led some researchers to propose a satura-
attained in tension than in compressidfor the common case tjon condition for ferroelastiqolycrystalsbased on a minimum
when thec-axis of the unit cell is longer and the-axes. Con-  rincipal remanent strain criteridi—6]; namely, that the mini-
sider a single crystal of tetragonal material. Assume that this cry$;,m, principal remanent strain in the material can never be less
tal consis_ts of equal _quantities_of three tetragonal variants_ asfan —e4/2. This criterion leads to a tension-compression asym-
lustrated in Fig. fa), i.e. one third of the crystal has theaxis metry ratio of 2:1 for the polycrystal loaded in any direction.
aligned in thex direction, one third in theg/, and one third in the \ore sophisticated models that treat the polycrystal as an aggre-
z. Within the crystal the variant types are divided into domaingate of single crystals have found this asymmetry ratio to be about
with each domain separated by a domain wall or twin boundaiy37:1[7-9]. Such a model will be used in this work to investi-
(the terminology used depends on the material in considelatiogate the entire range of strain saturation conditions. For example,
If we assume that the strain state of a variant withdtsxis \hat is the maximum value of pure shear remanent strain that can
aligned in thex, y, and z directions are given as,,=zo, be achieved? After the presentation of the micromechanical simu-
—&0l2,~ &¢l2, 8yy= —&0l2.80,~ £0/2 ande,,= —&¢/2,~&¢/2£0  |ations a phenomenological model for ferroelasticity will be de-
reSpeCtiVely, then the initial volume aVeraged strain of the enti@|oped and Compared to predictions from the micromechanical
crystal vanishes. Now, apply a tensile stress inxhéirection. model.

This stress will do positive work if the variants aligned in the
andz directions switch their orientations towards thelirection. 2 Micromechanical Computations

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF . The mlcromeChanl.Cal mOdel for the p0|ycrySta”me. behavior
MECHANICAL ENGINEERSTor publication in the ASME GURNAL oF APPLIEDME-  IMplemented here is identical to the model presented in [Réf.
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 29without the effects of electric field. Furthermore, this model is
2002; final revision, Dec. 10, 2002. Associate Editor: H. Gao. Discussion on “ﬁhalogous to the Hill-Hutchinson modgl1-15 for polycrystal

paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departmen ) ; _
Mechanical and Environmental Engineering University of California—Santa Barba};iésuc'ty' The fundamental components to this model are a tan

Santa Barbara, CA 93106-5070, and will be accepted until four months after fident CQnStitUtive law for th('_:‘ single CryStaI_S and a self-consistent
publication of the paper itself in the ASMEDURNAL OF APPLIED MECHANICS. averaging method to predict the properties of the polycrystal.
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Fig. 1 (a) The three possible orientations of tetragonal variants within a single crystal. Different variants
within a single crystal will be separated by a domain wall or twin boundary. (b) The uniaxial stress-strain
response of a model single crystal loaded along any of the (100) directions. Notice the asymmetry in

tension versus compression.

Each single crystal has a unique orientation and is treated as a 1

spherical inclusion embedded in an infinite matrix. The tangent ‘I’s°:§Cisjfd(SﬁC—S{j’Sﬁ(Sﬁf—SL]“) with

properties of the matrix are taken to be a self-consistent average

of the incremental behavior of all of the single crystals. Hence, a wse

stress or strain history can be applied to the polycrystal and the cfjil :(sisjil)—l and aﬁC:ﬁ:cﬁﬁl(sﬁf—stC). (2.3)
model can be used to determine the corresponding strain or stress Jei]

history. ote that the elastic compliance of the crystal, and hence the

The single crystal consitutive law is analogous to Continuurulastic stiffness, are allowed to change as the volume concentra-
slip plasticity models with the added effect of strain saturation. Iy ns of the var’iants changes. The d%ssi ation rate in the sinale
order to derive the single crystal constitutive law it is assumety L ges. pat > Sing
that the stress within the single crystal is uniform and both tl'((/éyStaI Is given as the work rate due to applied stresses minus the

r

total strain and the remanent strain are the volume averages o gf energy rate. By applying the previously stated assumptions

the entire crystal. Note that by assuming the stress within t@gg t?g s?hpc?v(/?\ptrcI)aLee Legendre transformation, the dissipation rate
single crystal is uniform, we are neglecting elastic interactior’€"

between domains in the crystal. As illustrated in Fi¢p)lthree

. I h . 1
tetragonal variants can exist in each single crystal. Hence, the WP =g 30— W= o7 % 50+ 5 STk T3 Tk
strain, remanent strain, and elastic compliance of the single crystal
are 3 1
— | sc_r(l) . —dl SC__SC
3 3 3 =& c| ojje;’+ 5 Sijl 7} T | - (2.4)
SC__ 1. r,sc_ 1.r(l) sC __ 1(1) =
&) —lZl Ceij s & —Izl Cej’, and sijk|—|21 C'Sijui »

@2.1) Note that six different switching transformations are possible, i.e.,
) each of the three variants can switch to the other two. Further-
wherec' represents the volume concentration of thie variant. more, if a transformation is occurring, then the volume concentra-
Then, the remanent strains of each of the variants are given byions of the variants being switched to and from increase and
decrease, respectively, at exactly the same rates. By applyin
8{1(1):80(3@1511_ 5ij)/2‘8{1(2):80(350512_ 5ij)/2, these facts, it I{i)s then%ossible to );ewrite the dissipatior)ll raFt)g )e/mdg
and define the transformation driving forceSy®, as

sl(D=50(3030)3~ 8))/2, (2.2)

where the 1, 2, and 3 coordinate directions are parallel t¢1tbe
crystal directions,s;; is the Kronecker delta, and, has the

6
. 1
“D_ SCA T sc_sc
W _21 £ o3 Asij(a)-i- EAsﬁk'Uij oR
=

same meaning as that for the discussion in the Introduction, and 5 1

can be given in terms of the lattice parameters egs-2(c =2, f*G*, where G*=0} e[+ EAsf}k,af‘j"aﬁf.
—a)/(c+2a). With these definitions of the remanent strains for a=1

the individual variants, the remanent strain of the entire crystal (2.5)

will be zero if there are equal volume concentrations of each of

the variants. Here, @ numbers the six possible transformation systems and the

In order to determine how the volume concentrations of th& represents the difference in the following quantity between the
variants can change with applied loading, we will first considéfariant being transformed to and that being transformed from. For
the free energy of the crystal. Under isothermal conditions, tigample, taker=1 to represent the transformation from variant 1
Helmholtz free energy of the single crystdl=¢, is equal to the to variant 2. ThenAe[(“~D=3e(8,8,,— 6151)/2 (note that

stored elastic energy of the crystal and is given as this is a pure shear straim s, *=s{\;?—s{\q" and the volume
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concentration rates a@' == — f(e=1) gndc(=2)=f(e=1) Note ratio ». Then, a dimensional analysis of the governing equations
that in generat{j,; ¥ ands{j,;* will be different due to differences implies th?;t the predléztlons Ofl.th% model /for thlf n(ljrndwallzed
in the orientations of the axis of each variant. stressegr;; /7o Versus the normalized straiag /o will only de
It is assumed that if a quantity of a given variant exists, i.epe.n(.j on the dimensionless paramefets /7, andv. The goal of
this investigation is to map out the saturation conditions for rem-

g;%fttmznolghlgr?\?vzsgﬁ ;r?t;nf:rjnn;]eer;ﬁgesﬁtighs\mﬁgh\{gn%r:t\:\?et%nent strain states between axisymmetric extension and axisym-
: ! 9 etric contraction. To do this the following remanent strain in-

variants is assumed to occur only if such a transformation res I§riants are introduced:
in a characteristic rate of nonnegative dissipation. Specifically, a '
transformation system is potentially active if ( 2

e__ rar
‘]2_ §e”e”

12

4 1/3
§eirj ejrkerki) . (2.8)

) and J5=
G*=3715e9—f*=0 (2.6)
Here €]; is the remanent strain deviatag; =s{; — &jj&/3. Of

course, since the deformation processes of the single crystals are
Ge< 37080H'f0‘:0_ (2.7) volume conserving, recall that the transformation strains are pure

shears and thereforg, = 0; we havee]; =¢{; and the introduction

If we neglect changes in the elastic properties, then the physieglie remanent strain deviator appears to be unnecessary. How-

interpretation of Eq(2.6) is as follows; when the resolved sheal, o\ ‘the theory presented in the next section will require deriva-

stress on a transformation system reaches the critical resol\f s of these invariants, and the derivatives will be affected by

shear stressgy, then transformation is allowed to occur on thajys gistinction. With the definition of these two invariants, a full
system. Note that if the volume fraction of a given variant vary,

; . - ar?ge of remanent strain saturation states can be probed by allow-
ishes, then the transformation systems that reduce the quantity

) P B . ) .
that variant cannot be activated. This feature enables the modﬂqogot rzeurfélosﬁé‘];r/fé tlo (\;?(rig frrr?rrr?etrilc(?)((Itzgirgr?w(\:/v?ggr?gitézr;
account for strain saturation at the single crystal level. In t P 4

absence of hardening of the transformation systems, sgere- any volume conserving remanent strain in the principal directions,
, . e .
mains fixed during switching, the single crystal constitutive laf€n the remanent strain tensor aifdJ; can be written as

and the transformation system is inactive if

requires the following inputs: the elastic properties of a single s 0 0
tetragonal variant, the critical resolved shear stress to induce
transformationry, and the lattice parameters of a tetragonal vari- g'=| 0 be 0 and
ant that determine,,. 0 0 —(1+b)e'
From Egs.(2.)—(2.7) it is a mathematical exercise to deter-
mine the transformation rate$?, in terms of the applied strain J;  —v3(b+ b?)1/3 : -
rates, and then forms for the single crystal tangent moduli follow. 3 4 15b7 b sgn(e’), (2.9)

This procedure will not be given here, but it is presented clearly in

Ref. [10]. The resulting uniaxial stress-strain response of thghereb can be any arbitrary constant. In other words, every mul-
single crystal loaded in any one of tE00 directions is given in tiaxjal volume conserving remanent strain state can be described
Fig. 1(b). Note however, that the single crystal response is anisgy the ratio of these two invariants, and this ratio will always lie
tropic, and loading along other directions will yield different be; a range— 1<J$/JS<1.

haviors. For example, uniaxial stress applied in any of(ttid) Next, consider the problem of finding the saturation conditions
directions does not create a driving force on any of the ransfqg; 5 . re shear remanent strain. At first, one might attempt to find
mation systems, and hencBL1) loading will result in a perfectly s condition by applying a pure shear stress or pure shear total

linear elastic response of the crystal. strain to the model polycrystalline material. However, as will be

Using the single crystal constitutive law described above, &,yn "such a procedure will not produce a pure shemanent
self-consistent model is applied to compute the overall strésgzqin state. Due to the material's ability to deform more in tension
strain behavior for a polycrystal. For conceptual simplicity th

. - - o
polycrystal is viewed as an infinite collection of randomly ori-%nan. In compression, the. re}tlo dE/J; wil approaph 1asan
ied pure shear stress is increased. Therefore, it is necessary to

ented single crystals subjected to homogenous states of stressga[m#se a more sophisticated scheme for probing the range of
strain. The Cartesian components of the macroscopic stress ﬁ P P 9 9

strain increments of the polycrystal are taken to be the volun'?e%]g' Within the self-consistent model, the tangent moduli of the
averages of the Cartesian components of the corresponding stR@¥crystal,ci,, , are computed at each increment in the loading
and strain increments in the single crystals. Each individual singksocess. This knowledge of the instantaneous tangent moduli al-
crystal region is modeled as a spherical inclusion embedded inlaws for the adjustment of the loading path in applied stress space,
infinite effective mediunmatrix. The tangent stiffness of the ef-such that the ratid3/J5 remains constant during the entire load
fective medium is taken to be that of the polycrystal. Since neigkxcursion. More specifically, by manipulating the relationships
boring grains are not modeled explicitly, the constraint interac- . . . .
tions between grains are not determined directly in this model. i = Cijia (81~ &10) = Cija €11 (2.10)
Instead, each grain is constrained by the effective medium matiiKe appropriate stress or strain increments that are required
and in this sense the mod_el accounts for grain-to-grain constraips . ~ict-in a constant ratio of%/3¢ during loading can be
in an averaged sense. Ultimately, the stress and strain state in e(?é‘{%rmined
single grain will depend on the applied loading history and the ’
orientation of the crystal. For more details of both the single crys-
tal constitutive law and the self-consistent averaging method tﬁe
reader is referred to Reff10—15. or
Note that in Eqs(2.1)—(2.5) the quantitiesr®, &i°, ande{;*°
were used to represent stress, strain, and remanent strain in a 3 172 1
single crystal Throughout the remainder of this papet;, &;;, UeZ(ESijSij) . where s;=oj;— 0. (211)
andej; will be used to represent stress, strain, and remanent strain
in a polycrystal. To isolate the behavior of the polycrystal satur&ach plot on Fig. 2 represent a different loading path that was
tion, the elastic properties of a single tetragonal variant were takrescribed in such a way that the ratio of the remanent strain
to be isotropic in this study, with shear modulusand Poisson’s invariants,J5/J5, remained constant throughout the loading. The

Figure 2 plots a set of results for the normalized effective stress,
/7y, versus the normalized effective remanent straﬁﬂao,

the dimensionless material ratios @feq/79=2.36 andv
=0.22. Note that the effective stress is defined as
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Fig. 2 Self-consistent computations of the deformation behav-
ior of the ferroelastic material for different proportional rema-
nent straining paths. The stresses are normalized by the criti-
cal resolved shear stress required to cause switching and the
effective remanent strains are normalized by the tensile satura-
tion strain of a single crystal. Note that J§/J5=—1,0,1 repre-
sents axisymmetric contraction, pure shear remanent strain,
and axisymmetric extension, respectively. The inset is an ex-
panded view of the region cut off from the larger plots. Note the
lack of tension-compression asymmetry for small strains, but
the significant asymmetry of the saturation strains.

160 -

1404 Compression Test
J5/us=-1

Fig. 3 Self-consistent computations of the uniaxial compres-
sion deformation behavior of the ferroelastic material for differ-

ent levels of the dimensionless ratio pmegl7o. Note that the
saturation strain for each test is the same but the shape of the
stress-strain curve differs.

with the ¢ axis longer than tha axis and transformation allowed
at a critical resolved shear stress on the transformation system.
Lastly, Fig. 4 plots the saturation strain values for the model
polycrystalline material versus the remanent strain ra§as.
This result is the key component from these micromechanical
simulations that will be applied to the phenomenological theory

inset contains an expanded view of the region excluded from thg ferroelastic switching presented in the next section. Figure 4

main graph. Note that a material with a switchifygeld) surface

illustrates the entire range of multiaxial remanent strain states that

described solely by the stress invariantand a hardening behav- are possible in the model material. Specifically, the region below
ior dependent only on the remanent strain invarinivould have the curve represents strain states that are achievable, and the re-

curves on this graph that are independent of the 128id5. At

gion above the curve consists of unattainable remanent strains.

small remanent strains;{j<0.1530, the saturation behavior of Agal_n, the_ observations that the low remanent _straln region is
the single crystals has not fully developed and has little effect éflatively independent of3/J;, and the saturation levels of
these stress-strain curves. In fact, the differences in the curves

appearing on the inset figure arise primarily due to the fact that the

switching surface for the model material follows a Tresca criterion

[15]. As the remanent strain continues to increase, the saturati
behavior of the single crystals begins to have an effect on tk
polycrystal, with the stress having to increase dramatically in o %
der to cause further remanent straining. Ultimately, for each loa
path J5 approaches some limiting value. The saturation valug
range from 0.4, for axisymmetric contraction to 0.55 for
axisymmetric extension. These values are in agreement with otf
models with similar transformation system switching criteria, bu

less sophisticated polycrystalline averaging technidide).

In order to illustrate the effects of the dimensionless rati
neoly; Fig. 3 plots the normalized effective stress versus thi
normalized effective remanent strain in a uniaxial compressid
test for three values oftey/7y. Note that the curvature in the

transition from J,-like deformation to saturation is larger as 0441

pegl g decreases for these normalizations. Also note that t

ultimate saturation level of remanent strain is the same for ea| e 7e
level of ueq/79. The saturation strains are ultimately a functior a4 J3/%5
of the underlying crystal structure geometry; hence it is to b . 05 0 0.5 1

expected that the saturation levels of remanent strain are indept
dent of the elastic properties of the material. In general, for an
given untextured polycrystal, the saturation strain will depen
only on the crystal structure of the variants, the switching criterio)
for the transformation systems, and the remanent strain invarig

sat
_2_J 0.56 -

AXxisymmetric Extension/

0.52 1

048 | Pure Shear Remanent Strain

Axisymmetric Contraction

g. 4 The effective saturation strain level as a function of the
manent strain invariant ratio  J§/J5. Note that J§/J5=—1,0,1
represents axisymmetric contraction, pure shear remanent
in, and axisymmetric extension respectively. This figure il-

ratio Jg/\]g. Hence, the results for the saturation strain level to b@strates the anisotropic nature of the material in response to
presented in Fig. 4 are universally valid for tetragonal materiaisnsion versus compression.
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remanent strain are dependent #j1J5 will be used to devise a within the surface. Stress states outside of the switching surface
phenomenological constitutive law for these materials in the nexte forbidden. If the material abides by the postulate of maximum
section. plastic dissipation, such tha(; — &i’j)é{j =0 for any stress state

o} on or within the switching surface and the stress state

. . ij
3 Phenomenological Model for a Polycrystalline Mate- causes the remanent strain incremlq’qﬂ; then the switching sur-

rial face must be convex and the flow law for the remanent strain rate

The phenomenological model follows the general formulatiol§ associative. In other words, convexity implies that the Hessian
developed for ferroelectric materials developed in R&f. Here azd)/a&ijafrk. is positive definite, and the associative flow rule
we will focus only on purely ferroelastic behavior. Hence thigmplies that the remanent strain increment must be normal to the
model applies to unpoled ferroelectric materials loaded only iBitching surface such that

applied stress and not by electric field. The model also applies to I
twin reorientation in shape memory alloys below the martensite gl =\ — 3.8
v . =0 . &jj . (3.8)
finish temperature. The model will be cast within an isothermal, 0

rate independent, small deformation framework. The primary as-Here, \ is a positive scalar multiplier that must be determined
sumption of the model is that the internal state of the material cgiym the consistency condition. In addition to the convexity and
be entirely characterized by the remanent, i.e., irreversible, str;ﬁigrmamy constraints, the second law, E8.7), implies that the
state of the materiadj; . Hence, we introduce the Helmholtz freeswitching surface must enclose the origind) space.

energy per unit volume of the polycrystalline materidl, as Along with the following definitions
W =Us(g; ,sirj)-i-\lfr(eir]—). 3.1) 1 &zqurs
. . Uik =5 27> 1 9pqTrs» (3.9)
Here, W* represents the stored elastic energy per unit volume, 2 Jejjdey
are the components of the total strain, altirepresents a contri- prA
bution to the free energy associated only with the internal state of Hiw=——+, (3.10)
the material. The following development of the phenomenological T defjoey
theory will demonstrate thab" gives rise to “back stresses.” It is oD 9D 95
generally acceptel6—1§ that the physical mechanism for back =t —— — o, (3.11)
stresses is the existence of residual stresses in the material due to Va6 96w ey
inhomogeneous remanent/plastic strain from grain to grain, i.e., -~ o~
“locked-in” energy [18]. Therefore, the physical interpretation of 7ij = Cijki ekl » (3.12)
V' is that it accounts for the stored energy due to the internal E10) b 9P 9P
residual stresses in the material. D= —=—(Hiju=Uiju) 75—~ o Jo (3.13)
Note that the elastic properties of the material can depend on 7ij T 0ij 9Tij
the remanent strain state. For example, an initially unpoled ferro- D=D+7Gi%, (3.14)

electric will be elastically isotropic since the crystal variants with ) . .
tetragonal elastic properties are randomly oriented. However,3fd the consistency conditich=0, we can solve for the multi-
this material is strained in tension in tiedirection, most of the Plier A as

variants will align in thex direction and the elastic properties will 1 1
now be transversely isotropic about thelirection. Then, assum- A= E”sijirij :577”-'8” (3.15)
ing linear elastic behavior about a fixed remanent strain state, the
stored free energy can be written as and then write the incremental constitutive equations as
S 1 r r h l"‘" i -
Wo=5 Cij(eij — &) (e~ e1a)- (3.2) &ij=| Sij T 5 EijEk | Ok (3.16)

Here ¢ are the components of the elastic stiffness tensor that
can depend on the remanent strain componefrjlts

The second law of thermodynamics implies that the dissipation o= ( Ciik — i7fi'7fk|) . (3.17)
rate A must be non-negative, i.e., ! S PR
A=gib—W=0 (3.3) The definitions outlined in Eq$3.9—(3.14) serve two purposes.
ijeij =4 .

First, these definitions allow for a compact notation, and second,
A Legendre transformation along with the following definitions: the new variables allow for a simple realization of the symmetry

of the tangent moduli.
1 dspqrs 9

UIJ:E_ﬁSr (quo'rs, (34)
1]
Lo 4 Fitting the Model to the Material
Tij = per (3.5) The material specific variables that need to be specified for this
& model include the dependence of the elastic properties on the
Gij=0j; —aﬁ-‘+aj , (3.6) remanent strain, the switching surfa®eand the remanent poten-

tial W', For the sake of simplicity, we will assume that the elastic
properties are isotropic and independent of the remanent strain
A=&ij'8irj>0- (3.7) from here on. As suchg;; and Uy vanish. This assumption is
) ~in agreement with the self-consistent calculations since the indi-
Note that thes;;, are the components of the elastic compliancgiqual crystallites were assumed to be elastically isotropic. How-
tensor, where the elastic compliance is the inverse of the elasdiger, real materials can exhibit significant anisotropy in their
stiffness, i.e.sjju = (Cija) - elastic properties and this assumption may need modification.
Now, assume that a switching surfa®dd; ,s{j):o exists in Again, the emphasis of this work is to investigate the saturation
aj; space such that switching can occur if the stafeis on the behavior of these materials so this simplification is of secondary
surface and the material response is elastic if the sigtdies importance.

are used to show that E(3.3) can be written as
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Due to the fact that the remanent strains arise due to the reori- T=J5f(3Y39). (4.4)

entation of the crystal variants it is reasonable to assume that theh h in level ch edsh hes th
remanent strain is volume conserving, i.ey=0. Then the When the remanent strain level characterizedsbyeaches the

switching surface must be a function of invariants of the devi&pmprgssile saturation level,, th? remanent ;trair! will b_e safu-
toric stressd; = & — & 74/3. In general, the switching surface' ated, i.e.e<e.. Note that the micromechanical simulations de-

can change both size and shape with continued remanent stral -'b?d in Sec. 2 found _thatc:0.40_350. Then Egs(4.2) and_ .
ing. However, again for the sake of simplicity, we will assume th .3)_|mp_|y that the effective saturation Ie_veI of remanent strain in
simple J, form for the switching surface, such that ension ise;=1.367%.=0.552@, and if the remanentstrain

state is pure shear, then the saturation levekds1.119%,.
A 2 =0.451%. Hence, when devising a functional form fé", the
o= 5 SijSij 05=0. (4.1)  pack stresses must become larges approaches . .

) o o ) The second significant observation from the self-consistent
As noted in Sec. 2, the initial switching surface predicted by th@ymputations is that, discounting the Tresca nature of the initial
self-consistent model follows the Tresca criterion. Furthermorsyitching surface, for small remanent strain levels the stress ver-
the switching surface will in general evolve into even more comsys remanent strain behavior can be described solely by the strain
plex shapes than the Tresca hexafb®,15. However, it will be i, ariantJe, ie.. it is independent af§. This can be restated as:
shown that th'$ addltlona_l complexity need not be_ added to the is only a function ofJ§ ase approaches zero. Furthermore, it
phenomenological model in order to capture the salient features, of e ) -
the deformation behavior of ferroelastic materials, and that tifg 'ésonable to conclude that' is a function ofe ase ap-
switching surface form of Eq4.1) is adequate. proe_lchezc. Hence, as part of this curve fitting procedure, a new

Finally, we must specify the form of the hardening potentiﬁtra'n“ke variable is introduced,

W', Of course, this potential must depend on the invariants of the e* =(1-w)J5+we, (4.5)

remanent strain. Furthermore, to formally cause the back streSﬁ . L . _
B o P : . wherew is a weighting function that must be zero when 0 and
aj; to be purely deviatoric, we will writél" in terms of invariants

3 ] ; ) ; -2 one where=¢.. A simple method for generating steplike weight
of the remanent strain deviatog; = ej; — 8e4/3. Beyond this ¢ . tions is to takew’ (s) = AsP(1—5)". For this studyp=3, q
consideration, determinin’" becomes a curve fitting exercise.—=5 gnd the functional form fow is

However, this curve fitting must be done intelligently and should

be informed by experimental observation and micromechanical W(z)=50 1 E 4_ E 5+§ i_ °
models. 4\ e, € 3\e;
Recall that the remanent strain saturation behavior has a signifi- o o o
- e ; 10/e\" 5(e\® 1/%\°
cant dependence aif . A first step to determiningl'" is to de- _ _(_) " _(_) _ _(_) (4.6)
termine a reasonable fit to the saturation behavior. The saturation 7 \ec 8\lec 9le.) | '

behavior depicted in Fig. 4 can be accurately determined in the
following way. First, define a functiori of the remanent strain
dw’ 1 m
= —F ] —1|.
1-e*/e,

invariant ratioJ§/J5 as
3 e
J
+ 0.01( =
RE y
de* 0

J3 J3
—|=-—0.0965% —
Jg) E<J
35 J5)\ 3 J5\© 5\ 4 Note that this function and hence the back stress components ap-
fl = |=-0.107 —0.02 —0.028 —

Finally, we take¥' to be a function of*, i.e., ¥"'=W¥"(g*).
The functional form for the derivative o¥" with respect tos*
can be fitted to either a uniaxial tension or compression test. For

6 this study the functional form was taken as

e

+0.8935 for (J—’j) <0,
2

f

(4.7)

3

e
2
3 E 3 proach infinity ase* — &, . . . .
From Eq. (4.7) the required inputs to the phenomenological
s model can be obtained. Note that the “primed” variables denote
+0.8935 for | | =0. (4.3) first or second derivatives with respect to the argument of the
J3 f :
unction.
Note that this fit forf has first, second, fourth and fifth derivatives AW’ ge*
equal to zero af§/J5=0. The importance of these conditions on aﬁ=d—* — (4.8)
f at J/J5=0 will be discussed shortly. Also note that this is a e dejj
function for materials with tetragonal crystal structure only. Fiand

nally, one divided by this function is able to fit the normalized U 9e* ge*  dWT gPe*

results of Fig. 4with J5 normalized by instead ofs) to within Hx="=72 -7 -7+t 3% -7-+ (4.9
0.04% accuracy fod§/J5<0 and 0.15% ford§/J5>0. de®® deij dey  de™ ey ey
Now, define a strainlike variable as with
|
0w e w w39 4.10
—=(1-w wH+we=w'J3) —, .
asirj ( )3\]; ( € 2) 198{1- ( )
Fe* 1 1(55+55 255) 4 ] 2 [eljde ey de
- = —W)| — S, . L — 5 ———e. 6 ——W'| = — P
delaey LW\ 338 Skt i 30|~ g3e®i®) T W'\ 32 Gor 38 et
+(wt+w'es—w'J3) e +(2w' +w'e—w"J5) e 8 (4.11)
WHWe—W'J3) ——F+ (2w +W'e—w —, .
€ 2 198:’1 (98rk| € 2 [98{1 (78L|
de 2 33 \e; 4 f [ 1
EZE _J_gf J—S‘FEW eikekj—z\]z 5” s (4.12)
1
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and

e 4(Jg)sf” 2 1(f Jgf' 8(J5)4f' (8,8, + 8,00 = 2 ¢ Jg’f' + (8 €L+ O el
delol 199 (393 R 3 9 (85 (6 6j1 + 33 k) 338 : (Sijex+ okigij)
41 8 1 4337, 4 1 3, 16(J3)%,, 8 J5
X[§J§J§f " +eirierk{§u§>5 Tl TGSkt ductnen) g e " g 35y

+(5ike) + Syt Sigjt Sjell) + (€] BimemI T Eimem k) f”

2 1 8
3 (397 9 (3933

16 1 32 1 f,}

"

9 3539 9 (H°

+ €[ m€Mm;BknehI (4.13)

Note that Eq(4.13 is the symmetric form of a similar expressionthe pure shear stress test is not equal taJé$=0 test of Fig. 2.

appearing i(n Ref[6]. -tl)-he' apparenlt C?T1ple>§ity |°f these expresgqr o material with al, switching surface and, hardening po-
sions is unfortunate, but is a result of the simple assumption that .. e_ iald iden.
the internal state of the material can be described using only q%ht'al’ the pure shear stress affdJ; =0 tests would yield iden

remanent strain as an internal variable. The utility of these expres&al results. Note that the phenomenological theory predicts the

- . ; turation strain levels accurately. This is to be expected for the
sions will be demonstrated when the theory is compared to tﬁgpsion, compression, and in fact any of the proportional remanent

more detailed mlcromechanlca! model used n Sec..2. Note tf) ain path tests since the functional fit to the saturation behavior
the back stresses and hardening moduli depend directly on eEqs.(4.2) and(4.3) has been used. However, the agreement of
expressions in Eqs(4.12> and (.4'13)' In_ o_rder for _the ba_ck. the model to the proportional stressing tests is a true prediction of
stresses and hardening moduli to be finite, certain restrlctlophse phenomenological theory. No parameters of the model have
must be placed Of.' and its derlvatl_ve§ al3/;=0. Thes_e condi- been adjusted in order to fit these micromechanical model tests.
tions can be obtained by expandifignto a power series about g rthermore, notice that even the computation with the constant
zero and requiring fhe EXpressions in E@e12 and(4.13 to be  gyress invariant ratio of-0.8 (significant compressive stréss
finite. Specifically,fo="fo=1fy"=f5=0, wherefg represents the yields remanent strains that are more tensile than the remanent
nth derivative off with respect toJ3/J3 at J5/J5=0. These re- strain controlled test witl$/J5=0.8. Note, of course, that the
strictions must be true for arfydefining a strainlike variable that tensile remanent strain is not aligned with the compressive stress
is used in the hardening potential. For example, Laffiisas- direction, but rather the direction with the largest stress deviator

sumed that saturation occurs when the minimum principal remgomponent. The phenomenological model is able to capture this
nent strain reaches a critical value. The minimum principal remyehavior to reasonable accuracy.

anent strain can be written as

1 0) v3i (6
ECO § ?Slng

en=J5 , with #=arcco§(J5/J5)3].

25 . O'e/%9sijsjkski/ =-1 08 01

Note that the function in square brackets satisfigs fj=f{’
=fy=0, and furthermord,fy',fy' #0. H 167
The ultimate test of this phenomenological theory is to compaj] 204 O
it to experimental measurements on real materials. However, m=0.6
pecially for ferroelastic ceramics, it is difficult to investigate the
strain saturation behavior due to the large stresses required. 1 5] Oy =2.27,
ceramic material tends to fracture at large stresses. Furthermd
) : O,
as noted in Sec. 2, the stress paths required to generate tests o,

those presented in Fig. 2 are not simple, and require more inf
mation than is possible to obtain in a single experiment. Heng
the next best test of the theory is to compare it to the predictio
of a more detailed micromechanical model. Figure 5 is just such
comparison.

On Fig. 5 the bold lines represent the predictions of the se
consistent model and the thin lines are the predictions of the pf
nomenological theory for different proportional stress path loa 0 y y y d
ings of the material. The parameters for the phenomenologi 04 06 08 I e ! 12 14
theory were chosen to fit the uniaxial tension and compressi 2
data. On this graph are results for a uniaxial tension, uniaxial
compression, and two other proportional stressing paths, includifig. 5 A comparison of the phenomenological theory to the
a pure shear stress test. The type of proportional loading pat@4-consistent calculations for different proportional stressing
characterized by the stress invariant raﬁ@/%@wz with paths. The stresses and strains are now normalized by the pa-
—1, 0, and 1 corresponding to axisymmetric compression, leaéneters of the phenomenological model. Note that the ratio

- . . - - 3095,5,,5a2=—1,0,1 represents axisymmetric compres-
shear stressing, and axisymmetric tension respectively. Otfg%{m pure shear stressing, and axisymmetric tension, respec-

computations for stress invariant ratios-60.5 and 0.5 were also ey " Notice that even the stress path with significant com-
performed, but not included on Fig. 5 in order to avoid cluttgfression results in an ultimate remanent strain state with
around the pure shear results. The comparison of the phenomedignificant extension. Of course, the tensile strain is not
logical theory to these results was favorable as well. Notice thaitgned with the compressive stress in this situation.

Self-Consistent

Phenomenological

54
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5 Discussion iors is in no way connected to specified proportional stressing
(paths. For example, the loading path traversed to determine the

In this work constitutive models for polycrystalline ferroelasti . : it et/ =0 i hear load
materials with an underlying tetragonal crystal structure have beg{iain saturation condition w &§/J3=0 isnota pure shear load-

investigated and developed. In Sec. 2 the self-consistent model¥ Path. In fact, the load path required to keep the remanent strain

Huber et al.[10] was implemented to investigate the remaner@io €qual to zero is not even constant. Initially, the loading path
pure shear stressing. Recall that pure shear is an extension in

strain saturation behavior of these materials. It was found that tifePure S" . oo
e direction and an equal contraction in an orthogonal direction.

saturation strain for axisymmetric extension was greater than t th terial is able t tend iIv than it
saturation strain for axisymmetric contraction by a factor of 1.3 INCe the material IS abie to extend more easily than it can con-

act, in order to maintain pure shear remanent strain the compres-
ve load in the contraction direction must be greater than the than
e tensile load in the extension direction as the strain approaches
42 and(4.3 d te fit for the derivati saturation. In fact, as saturation is approached with the remanent
gf.t%:rs]at(ur.a)tigvrfrfuergppc;:ena;z(??nalgi;erje ittor the dervaliodyain ratio remaining constant_éﬁ/JS:O, the applied stress ap-
In Sec. 3 a phenomenological constitutive framework for feproaches a uniaxial compression. Therefore, comparing the phe-
nomenological model to the micromechanical model for different

roelastic materials was proposed. The theory assumes that the | : - . ) .
ternal state of the material can be characterized completely by %r(%) aﬁgggalpﬁgﬁfglggiga;hiolfnga\ﬂfnt%sft t%feth;hggg%%rggggﬁg[

. . o
remanent strain. In_ other words, the remanent strain compone gory to the self-consistent calculations, and the agreement is
are the internal variables that determine the elastic properties, te good

switching surface, and the nonl_lnear hardenlng of the materi ‘Again, it is emphasized that the self-consistent computations
The theory allows for the elastic properties of the material erformed in Sec. 2 and the results of that model are valid for
gﬂ:ﬂggs V;/r']tha rt?qrgﬁnce,gtngﬁ:?cgﬂat'ggﬁsg?gmaf;sohlfgf V\]/ci?;lintht Yaterials with tetragonal crystal structure only. In order to inves-

g y y *%. ate other crystal structures, like orthorhombic or rhombohedral,

Qeflnltlon of _the SW'tC.h.'ng surface space. Convexity O.f the swﬂctgnd the possibility of combinations of these with tetragonal do-
ing surface in a modified stress space and an associated flow rMI ins, the single crystal constitutive law used in the self-

Furthermore the entire range of remanent strain saturation sta
between axisymmetric extension and contraction were charac
ized using the remanent strain invariant rafi¥yJ5. Equations

Equations(3.1§ and (3.17) represent the general form for thes rain saturation curve like the one presented in Fig. 4 for tetrag-

incremental constitutive relations from the phenomenologlcg al materials. Furthermore, simpler micromechanical models that

thesoézﬁon 4 of the paper is devoted to determinin functiond not account for grain to grain interactions can be used to obtain
pap 9 is strain saturation curve. Then, the only significant change to

forms for the switching surface and hardening potential. For thig. ,onomenological theory would be to the functional forrh of
micromechanical calculations of Sec. 2, the crystallites were a5

. . . . efined in Eqs(4.2) and(4.3).
sumed to be elastically isotropic. Hence, the functional form o "1 of this work was to understand the strain saturation
EQE eil?st;)c e(;‘gg:: :)CI?cn;Snldni:c]ji p:r?ggr:?g??g;?;agnTgt?:ian%emalBg_havior of ferroelastic materials and incorporate this information
tain some sim Iigit the swi?chin surface was taken.to beai'HtO a phenomenological constitutive theory. The phenomenologi-
sphere in the r?]odhéi/;ed deviatoric gtress space. It was noted t% model is useful for structural stress analyses on systems con-
pnhere - pace. . ing ferroelastic materials. Such calculations will most likely
the initial switching surface for the self-consistent material aCtlb-e performed within a finite element framework. Hence, it is im-
ally follows a Tresca criterion. Furthermore, the previous StUd'('b%rtant that the constitutive response can be integrated rapidly.

g;aHlétC(?flrtlﬁgns[vlvﬁ]cr?irr]ld sHuur?:éee;\?(l){\}g]s ?na\;enir,:?m?arhx; thv?,i This consideration of computational speed rules out the more de-
remgnent deformationg However, these features were not)i/nve Ii_Ied self-consistent model, since any one cu@side from the
’ ! isymmetric caseson Figs. 2, 3, or 5 requires a few days to

?oarte?)sc;rib?g?ﬁ?ur:seaé?lz Igutthzlasrepggegctselijc?o miz‘ljéf'gglt'oi:scéﬁel%_ mpute, whereas the corresponding phenomenological theory re-
tal |Fr)n rovements in the’ redictionspof the mgdel y I?quires a few seconds. Finally, while the phenomenological theory
P P ) has been shown to be in good agreement with the more detailed

BT .
_ The remanent potential” was the last component requiring amjcromechanical model, the ultimate test of this new constitutive
fit for the phenomenological model. The primary role of the remy, | he against careful multiaxial loading experiments.

anent potential in the phenomenological theory is to account for

the complicated dependence of the saturation strain on the rema-

nent strain. Hence the first requirement ¥ is to define a strain- Acknowledgment
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Relationship Among Coefficient
Matrices in Symmetric Galerkin
Boundary Element Method for
. vy, | TWo-Dimensional Scalar
e e e, | Problems

Nanyang Avenue, Singapore 639798
Tel: (65) 6790 5284(“”“ (65) 67921650 Based on the assumption that solutions from different methods should be the same, the
e-mail: cgyyu@ntu.edu.sg relationship among weakly singular, strongly singular and hypersingular matrices asso-

ciated with symmetric Galerkin boundary element method (SGBEM) is derived in this
paper. Hypersingularity is avoided through matrix manipulations so that only weakly and
strongly singularities need to be solved. Compared with the advantages brought about by
symmetry, the additional computation caused by matrix manipulations is not so important
in many cases, especially for time-domain problems or when one wants to couple BEM
with other symmetric schemes. Simplicity is the advantage of the current method over the
traditional SGBEM. Both steady-state and time-domain potential problems have been
studied, and two numerical examples are included to show the effectiveness and accuracy
of the present formulation.DOI: 10.1115/1.15984783

1 Introduction In fact, formulations for SGBEM and AGBEM are not indepen-
dent. If the numerical error is negligible, their solutions should be
: ) . same, while the rigid body movement is considered as a special
and the asymmetric Galerkin BEWAGBEM) have some certain olution here. Based on this assumption, the relationship among

unpleasant features. The most pertinent is the lack of symme hé three kinds of coefficient matrices appearing in SGBEM is
for some coefficient matrices, which will make it less efficient t(éiv

. . ven in this paper, from which the hypersingular integral can be
(c}oulpli_ BSEAM\(’?QB%F/;:( symlmt_etrlc SCh}fmteS' The ;ybmrggtr oided through matrix manipulations. As only weak and strong
alerkin ormutation was Trst proposed by Sir- singularities need to be solved, such an indirect method makes

tori [1] for linear elastic analysis. The main problem encounter BEM much easier than it was before. The indirect SGBEM
is that one has to calculate the three kinds of coefficient matric?érmulation is derived directly from the AGBEM one-: there is no
which may respectively contain weakly singular, strongly sing '

. . YHoubt that they vyield exactly the same result. However, the
lar, and hypersingular integral2]. Although numerous papers ssgew formulation is symmetric which makes it more efficient

have been published to deal with the hypersingular integrals, th%ecouple BEM with other symmetric numerical methods.

are still many spaces that need more research works. Carini et alpq reationship is given for both steady-state and time domain
[3] classified the existing strategies, proposed by different r foblems[13,14 in this paper. Compared with the traditional

searchers for solving the hypersingular integration, into three pri GBEM, the use of the indirect method may need more computer

ciple groups: regularization, finite part, and direct approach. Thg,e ~especially for steady-state problems. But for time-domain
regularization procedure analytically converts the strongly S'“gé'roblems, such a cost increment is not significant. For both

The traditional collocation boundary element metit@BEM)

lar and hypersingular integrals into, at most, weakly singular idyeady-state and time-domain problems, the indirect method pro-
tegrals which can then be calculated directly by numerical metfjes an alternative for those who want an easier method to con-
ods [4—6]. The finite-part approach is based on the numericgh ¢ directly an existing AGBEM code to a SGBEM one. Two

method for the finite part of the principal value of the singulaf,merical examples are included to illustrate the effectiveness and
integral[7]. The difference of this approach from the direct intéaccuracy of the present method.

gration approach is that the final integration is performed numeri-

cally [8,9]. The direct treatment of singular integrals in BEM is to

part the source and field points temporarily to allow an analytical

evaluation of the singular integral, and then derive the limit as the

source and field points come togeth#0d—12. All of these meth- 5 Relationship among the Three Kinds of Coefficient
ods have been proved to be efficient but need a complex pro Atrices

dure; therefore a simple method is necessary as an alternative,
which can be easily used to convert an existing AGBEM code t02 1  Steady-State  Potential  Problems. The  two-

a SGBEM one. dimensional2D) steady-state problem can be described as a typi-
- cal Laplace problem. Consider the potentiat any point¢ in the
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF domain Q bounded byF having unit outward normah° at the

MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- b d intx Ei Th bl be d ibed i
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Apr. 23, oundary poin (See 19. J‘ € problem can be described In

2002; final revision, Dec. 17, 2002. Associate Editor: T. E. Tezduyar. Discussion &oundary integration form as

the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Depart-

ment of Mechanical and Environmental Engineering University of California—San _
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Fig. 1 Definition of some symbols
1 £ in the internal domain(,
where c(¢)=1{ 1/2 & on the smooth boundary,
0 ¢ in the outer domain()’.

u(X) andp(X)=du/adn are the potential and flux at the boundary

point X respectivelyu* (X, &)= —Inr is the fundamental solution,

Iu* (X, ¢) %)

oan

(r%n

r

p*(X,8)=

is the normal derivative ai* (X, &), andr is the distance between
points X and ¢
The space derivative of Eql) in the direction ofm becomes

“J,

Ip*(X,6)
- J'FTU(X)dF(X)

du(é)

Jam

au* (X, )

2mc(€) om

p(X)dI'(X)

)

If £is on the boundary anah is the outward normal, the above

equation becomes

[ (X9
ZWC(S)D(E)—Lﬂ—mp(X)dF(X)
J )
- [ a0, @
T
Consider a set of discrete point;,j=1,2,...J, on the

boundaryl’. u(X) andp(X) are approximately expressed by func-
tions 7;(X) as follows:

J

u(X):Z1 7(X)y;

" : )

|o<X>=21 7(X)p;
=
where the same spatial interpolation function is usedifandp,
uj=u(X;), andp;=p(X;).
Substituting Eq(4) into Egs.(1) and(3) leads to
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J

J
2wc(§)u<5)=]§1 Gf“(f)p,-—;l GPU&), 5)
and
J J
2me(§)p(§)= 2, GIM(p~ 2 Gf(Eu (6)
where
GY(é)= fru*<x,§>n,~(X>dr<X). (7)
GPY(é)= er*<x,§>n,-(xmr<><>, ®)
GYP(&)= f ; 9 7,(X)dI(X), )
[ (%8
GPP(&)= LT 7,(X)dT'(X). (10)

As r approaches to zero, hypersingularity appearé%fﬁ(g)
which requires the spatial interpolation functign(X) to bect«
around the poing. In order to remove this requlrement the Galer-
kin method is applied to Eq$5) and (6). The AGBEM formula-
tions, corresponding to the boundary nafie can be written as

J J J
_ uu o pu
121 CGijUj—JZ1 Gaijb; 121 Gaiju; »

(11)
J J J
21 CGijpj:_jE nglp1+j21 Gefiu; » 12)
where
G“e‘#ﬁfrfFU*(X,f)m(X)dF(X)ni(&)dF(f), (13)
GET,—Zfrfrp*(xé)m(X)dF(X)m(S)dF(g), (14)
B Ip* (X, &)
_UFT 7,(X)dL(X) 7;(£)d'(£)
d | au*(X,§&)
_frfra_m ——— | ;(X)dl(X) 7 (§)dI'(§),
(15)
Ceijzﬁfrﬂi(f)ﬂj(f)dr(f), (16)

in which c(¢) is set equal to 0.5 fo¢ lying on the boundary. The
subscript ‘G” denotes the variables associated with the Galerkin
method.

It should be noted that Eq13) contains only weakly singular
integrals which can be evaluated either through standard numeri-
cal procedure or through analytical methidds]. Figure 2 shows
two special cases using linear elements. In ¢agevhen integra-
tion in Eqg.(14) runs along the same elemdsee Fig. 28)) with
respect to the two spatial variable§,and &,

u*(X,é) _ au* (X, )

0.0y —
an ar (r-n%)=0.

N J
p*(X,6)=
In case(b), when integration in Eq(14) runs along two adjacent

elements(see Fig. 20)), it leads to strongly singular integral as
the distance betweeX and £ tends to zero. Such a strongly sin-
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u(X,t) 2

j=1

¢"(t) 75 (XU

1

zﬁMZ

J ) (21)
=2 2 (O (X)p]
j=1 m=1

(@) £ and X are in the same element (D) & and X are in two adjacent elements where u][’ﬂ:u(xj ltm) and p;n: p(xJ ‘tm)‘ and d)m’ ym’ nm are

interpolation functions.
Similar to Eq.(1), the boundary integral equation can be written
as[15,16

Fig. 2 Two special cases for linear elements

gular integral can be evaluated through analytical procedure given 4mC(§)u(é, t)—f f u* (X, t;:€,7)p(X, 1)d7dl'(X)
in the Appendix forGg! Gij Or by the regularization methofb].
However, when the higher-order interpolation function is used, the th
analytical procedure should be used for both of these two cases so - f f p* (X,t;&, nu(X,7)d7dI'(X).
as to increase the accuracy. rJo
The hypersingular integral in E¢L5), which needs a complex (22)
procedure to deal with, is evaluated here by an indirect method:

writing Egs. (11) and (12) in matrix form as The space derivative of Eq22) in the direction of outward

normalm can be written as

{[CeI+[GRIHu} =[G&'Np} @7 U (XL )
and 4WC(§)D(§,t)=frfo TP(X,T)deF(X)
puqT — pp N — pPp — pp + * &
{[Cel+[GET Hpt=[G&"{u"} =[G&"1({u} +{c})=[Gg ]{(ul}é) _f ft Ju (;(r;:,é, )U(X,T)deF(X),
where{u} and{u’} are the displacements correspondingd p, (23)

calculated from Eqs(17) and (18), respectively. It has been well

recognized that Eqg17) and (18) will yield the correct result wWhere

which should be unique except the rigid body movement. There-

fore the only difference betweefu} and {u’} is the constant u* (X, &) = 2c

displacemen{c} corresponds t¢p}=0 and[G&]{c}=0. ’ Je2(t—1)2—r?
From Eqgs.(17) and (18) one can get

[GEH{u}=([Ccl+[GTNIGE"T H([Cel+[GRD{u}

Hlc(t—7)—r]

is the fundamental solution,

au* (X, €, au* (X8,
(19) p*(X,t;§,r)= ((?n §T)= (ar fT)(
which is true for any{u} and correspondingp}. Therefore the
relationship amond G2°], [GR'], and [Gg'] for steady-state Hlc(t—7)—r]
problems can be written as is the Heaviside function, andlis the wave velocity.

Applying the Galerkin method to Eq$22) and (23) with re-
spect to the boundary nodg, it results in

0n%),

[GE]=([Ccl+[GETNIGET H([Cel+[GED.  (20)

where a§ Cs] and[G¢"] are symmetric matrice$ GE"] is also

symmetric. J dmc(é)u(é,t) 7 (€)dI'(é)
From Eq.(17), one can see that if no element coincides with I

another one, onlyp}=0 can satisfy the solution for zero or con-

stant{u} which makes the left part of E417) equal zero. Other- f f f

wise, if {p}#0, {u} cannot be zero or constant, ps Ju/dn (no

internal source or initial boundary condition is considered here

N
Thereford G&'] is invertible if no element coincides with another _f f ft p* (X,t; &, 1) u(X, )d7d(X) 7;(£)dT ()
one. Equation(20) is the formulation to calculattGg&"] through rJrJo
matrix manipulations. As matricd<s], [G&"], and[GR"] have (24)
all appeared in the AGBEM formulation, no hypersmgularlty
needs to be considered, the indirect method is much easier céid
pared with the traditional SGBEM. With Ed20), an existing
AGBEM computer code can be easily modified to a SGBEM oni Amc(E)p(&) 7 (AT (&)

For the case when only BEM is used, symmetric formulatio
can be established through Eq47) and (18): Equation(17) is -
applied to all those sections of the boundary where displacement _ Ut (X,1;€,7) X P drdT(X dr
components are prescribell{), while Eq.(18) is applied to the B P(X,1)ddl(X) 7(£)dT'(£)
sections where traction components are prescrittgd. (For the

case of BEM/FEM coupling procedure, both E¢s7) and (18) tap* (Xt €,7)
should be used on the interface. ). o UX,n)drdl(X) 7(£)dT(£).

(X,t;:€,7)p(X, 7)d7dI'(X) 7 (£)dT'(£)

2.2 Time-Domain Potential Problems. Consider a set of (25)
discrete quantities at timg,, n=1,2, ... N. u(X,t) andp(X,t)
can be approximated through interpolationq s, 16| The discrete form,
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Table 1 Time integrated kernels

Case 0,8 FIM(X,8) DI (X, 8) D"(X.£)
1 A1A; —A1A—AsA; A, AA,
A, T
2 A1Az+AgA7 —A1A— AsAy 1A(A,)? AA,
A T
3 —AsALTALA T AsAg AsAs—AA— AsAy A, ( 2cAt Ay [ 2cAt
A, A1A4+A2A3) - E(AlwAzAg)
4 0 0 0 0

J

N J J
2 Copijuj + 2 z Ggpiju"'= E 2 GEpip", (26) Gepij = jfrf[ u* (X, t, §r) drm(X)dF(X)
=1j-1 m-1

j=1 m=1 j=1
tnta
><77i(§)df(§)+fjf u*(X,tn;€,7)
rJrJt,

J N N J
2, Cooip]+ 2 X GREIP= 2, 2 GEFIL]. @27)
- =1 = =1 = tmss—
x0T (0 7(£)dT (&)
where
— 2 mn,
—mfrfr[ﬁ (X,8)
at- [ | [ wxtsemyiaamnooaroo -
FEX,E)]drn (AT (X m(£AT(),  (33)
X 7i(§)dI'(€), (28)
GeBi fff PTGt &y drm (GO0 GRi- fff p* (Xt £e7) - drpy(X)AT(X)
X n(£)dT(£), (29)
><ni<§)dr<§>+frfrﬁ P (X,tai6,7)
Gppm'n:_fff Ip* (X,tn;£,7) )
o Jededo o om X 2 (AT () 7 (H)AT ()

X ¢M(r)d77;(X)dI’(X) 7;(£)dI'(§)

ffft J au* (x tn,§ 7) CAJ f[D”‘”(X §)+D”‘”X§)] (X)
rJr

dI'(X) 7 (€)dT (&), 34
X g"(1)d7y;(X)dT(X) 7(£)dI(£),  (30) X dI'(X) 7;(£)dT(£) (34)

CGD”=27TJ' 7i(€) 7;(§)dI'(£)=2Cgj; , (31) where expressions for the kernel®™(X,£), DE"(X,8),
r F"(X,£), and FF"(X,£) depend on the position of the wave
front described in the fundamental solution. They are character-
in which the second subscriptD” denotes time-domain prob- ized by the retarded timg=t,—r/c, with respect to the time
lems, to distinguish it from those quantities in previous steadjaterval considered. Four possible situations are considered as
state problems. follows:
Linear time interpolation function is used for bathand p:

case 1t =t,, tn_1<t,<t.,

T_Atr:fl it 1 <<t case 21, <ty 1<t <t
case 3t,=<t,,
Y(1)=¢™(1)={ tme1 "7 . (32
—Ar if ty=<7<tpi, case 4t,<tp_;.

0 otherwise The expressions corresponding to cases 1-4, obtained by the

analytical method, are shown in Table 1. In order to shorten the
Substitution of Eq(32) into Egs.(28) and(29) leads to[16] final expressions, the following notations are used:
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y au* (X, t,.&,7)  du* (X t,.€7)
- p*(X.tn;rf,T): on = o (rO.nO)zol
] 7 =
: =
— . -
b ] D i C:: :%'
3 = In case(b), when integration in Eq(34) runs along two adjacent
szob x elements(see Fig. 20)), it leads to strongly singular integral as
= - o the distance betweeK and ¢ tends to zero andn=n. Such a
(a)Geometry definition and boundary conditions (b) Boundary discretization

strongly singular integral can be evaluated through the analytical
Fig. 3 One-dimensional rod under Heaviside-type forcing procedure given in the Appendix f@gp;; or by the regulariza-
function tion method 6]. However, when higher-order spatial interpolation
function is used, the analytical procedure should be used for both
of these two cases in order to increase the accuracy.

From here onward, unless causing ambiguit@gp;;,

Ar=e(ty =ty 1) =T, A= e(ty—tyn_1) +T, Ggpi)» andGglpj will be written asGgp;; . G&pjj . andGgh; ,
respectively.
As=c(t,—ty)—r, A= \/c(tnftm)Jrr, The hypersingular integral appearing in expressi), which
is difficult to deal with for direct methods, can also be evaluated
As=c(th,—tm_1), Ag=c(t,—ty), by an indirect method. Writing in matrix form, Eq&6) and(27)
, become
r AzA,+Ag
A7_|n(A1A2+A5)’ As_ln(A1A2+A6 '

Similar to the steady-state problems, H83) contains only n-1

weakly singular integrals which can be evaluated either through {[Copl+[GRLIHUI"=[GELI{P} "+ >, [Gub]™{p}™
standard numerical procedure or through analytical meftiéd m=1

Figure 2 shows two special cases using linear elements. In case n—1
(a), when integration in E¢(34) runs along the same elemesee — 2 [GRY ™y}, (35)
Fig. 2(a)) with respect to the two spatial variable§,and ¢, m=1

) — TCBEM result ° SGBEM result L2 o SGBEM result —— Analytical result
5 -
Eu Eu 1
Pa 201 Pa
0.8
1.5 1 0.6 4
1.0 1 0.4 -
0.2
0.5
0 T oot
0.0 , ‘ . . . . . 0 1 2 3 4 5 6 7 et/a
0 1 2 3 4 5 7 8
ct/a
(c) Displacement at point 4 (a/2,b/2)
(a) Displacement at point C(a,0)
—TCBEM result ° SGBEM result 25 o SGBEM result —— Analytical result
2.5 :
Ep Ep, oo
P 20 ° P 21 : na ) >
L5 154 9
b O
1.0 ! = Bt K -
9 of
0.5 0.5 P
J »
0.0 T T T s T T T 0 T -
1 2 3 4 5 6 7
s 1 2 3 4 5 6 7 ctla os ctla
(b) Flux at point D(0,0) (0) Flux at point 4 (a/2,b/2)

Fig. 4 Comparison between the results from TCBEM and SGBEM, #=1.4 and B=0.6
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n-1 g - - ©- - 'Numerical result Analytical result
{[Conl+[GBLIHP}"=[GRBIU}™+ 2 [GRRI™{u}™
m=1 _El 6
n—-1 Pa N
- >, [GRHI™pI™, (36)
m=1 1
where the rigid body movement need not be considered as it 5 ; 7
been stated in the steady-state problem before. 2 1 ct/a
Multiplying Eq. (35) by ([Cep(£)]+[GELINIGES] ™, one 4
gets
-6 4
{[Cep(&)1+[GELI"Hp}" -8
={[Cen(&)]+[GRLIMGEL] H[Con(&)]+[GRAIHuU}" @ Displacement
+([Cen(&)1+[GEpD TGep] , .
- - ©- - Numerical result — Analytical result
n-1 n-1 8 .
> [GRLI™u™- X ([GELI™TpI™|.  (37) Epx 6l
m=1 m=1 P
4 4
Comparing Eqs(36) and (37), and bearing in mind that no 2 .
matter what kind ofu™} and{p™} are used, the results from these ",',"'."3 I [ | I
two equations fof{u"} and{p"} are the same, the relationship 0 o ' " "
among[ GEP1™", [GRL]™, and[GLL]™ for time-domain prob- 2 ! 4 5 6 7 ct/a
lems can be written as 4]
-6
[GRB]=([Cap(£)1+[GRHDTGEL] H([Copn(£)1+[GEDD), .
(38) -

(b) Space derivative p, =0u/ox
[GEpI™=([Cepl+[GEp]lN[Gapl '[GEpI™  (39)
Fig. 5 Results at point A(a/2,b/2) from SGBEM, #=1.0 and B
=0.6
wherem=1,2, ... n—1,[G&}] is a symmetric matrix.
As there is no singularity ifG&%]™" (m<n), it can be calcu-
lated directly from Eq(30) by the numerical method. Therefore
the only cost increment for the indirect method is from E2B)
which appears only at the first time step. If one prefers to use

; T -1
(39 fOf'E\GgFI’?]]mn:é‘,q W”tle (C‘?D]HG%]‘ )[GuGlS] as ‘:]‘ NeW  _ 0 andy=b for any timet. At x=a andt=0, a loadP=Ep is
matrix[A], the additional cost increment for B@9) at each time suddenly applied and kept constant until the end of the analysis

step is the multiplication of matrikA] with a vector(refer to Eq. . } i :
(37)). Compared with the huge amount of matrix manipulation E is the Young's modulus Twenty-four bogndary elements with
1e same length; are used for the numerical model.

for time-domain problems, such an increment is usually not si ) i
nificant. With Eqs.(38) and (39), an existing time domain AG- Comparisons between TCBEM and SGBEM results for differ-

BEM computer code can be easily modified to a SGBEM one. ent points, with¢=1.4 andp=cAt/L;=0.6 (c is the wave ve-

The same with steady-state problems, time domain SGBENKity, At is the time step are shown in Fig. 4, where one can see
formulation can be established through E@S) and(36): Equa- only slight differences. This provides a numerical proof to the
tion (35) is applied to all those sections of the boundary whernglationship among different kinds of coefficient matrices given
displacement components are prescrib&d)( while Eq. (36) inthis paper. When the linear method is not used.e., §=1.0),
isapplied to the sections where traction components are prescripegh displacement and its space derivative at pai(a/2,b/2)
gSZ)) A Eé’zgtgesﬁga?d ?JeBui'\éléFgr?Athcglijr?tlelgr:?agéocedure’ both Edgyhibit instability as shown in Fig. 5, which means that SGBEM

’ cannot guarantee the stability for the dynamic scheme. Against
this background, the lineat method should be used.

Bk zero atx=0 and the tractiong are also taken as null at

3 Numerlcal. Examples ) ) ) 3.2 Two-Dimensional Cavity. In order to show the effec-

Two numerical examples for time-domain potential problemg,eness of the proposed method for infinite domain problems,
are given in this paper. Since SGBEM cannot guarantee the j. 6 gives a 2D cylindrical cavity of radiuR in an infinite
bility of the dynamic scheme, the line# method[17] is used - . .
here. Linear time and space interpolation functions are used fhace. Att_(.)’ a boundary fluxp is s_uddenly applied and kept
both u and p. constant_ until the end of the anaIyS|s_. Thirty-two _boundary ele-

ments with the same length are used in the modeling.

3.1 One-Dimensional Rod. The first example is for a finite Time histories of displacement and its space derivative at the
domain problem as depicted in Fig. 3, which was presented p}gternal pointE, obtained from the BEM/FEM coupling formula-
viously by Mansuf16]. It consists of a one-dimensional rod fixedtion [18] and from the indirect SGBEM formulatiorg¢ 1.4 and
at one extremity and subjected to a Heaviside-type force functigh=0.6), are show in Figs.& and 7, respectively. From Fig. 7,
applied at the other extremity. The displacemengése assumed to one can observe the good accord.
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B —

1.6R

(a@)Geometry definition and boundary conditions (b) Discretization

Fig. 6 2D cavity problem

— BEM/FEM result o SGBEM result
B
PR 2.5 4
2 -
1.5
1 4
0.5
0 T T T T T
2 4 6 8 10 12
05 ct/R
(a) Displacement
— BEM/FEM result o SGBEM result
0.2
0 T T T T T
2 4 6 8 10 /R 1
-0.2
0.4 -
Ep,
p 0.6 ° o
-0.8
-]
-1

(b) Space derivative p, =ou/ox

Fig. 7 Results at point E(1.6R,0) from SGBEM and BEM /FEM
coupling method, 6#=1.4 and B=0.6

4 Conclusions

applied to evaluate the hypersingular integrals related to colloca-
tion BEM, or related to boundary stress calculation.

Appendix

As shown in Fig. 2, when the linear spatial interpolation func-
tion is used and the integration runs along two adjacent elements
(with subscript “1"), strong singularity appears in E(L4) asr
approaches zero. Although the numerical method can be used for
the Galerkin procedure, the analytical method is given here for the
inner space integration so as to increase its accuracy, as

t
(GBY)1= fo fojp*(X,é)m(X)dF(X)m(f)dF(&)

_ [t 7 771)
-Jo [y fjonf - an

i) 7 Sina
B 0 Jo (n+m COSa)2+(77i sina)?

] I

X d»

L Sina
=f [— I Lin(12+ 92+ 21, 7, cosa) — 2 In ;]

0 2,
Ij+ 7 cosa . 71Ij+nic05a7 _, cosa
I 7; Sina sina
X 1—%)%, (A1)
i

where one can also see thataif=0, (Ggf;),=0. As there is no
singularity in the outer space integration in expresdiah), the
numerical method can be used.

From Eq.(34) and Table 1, one can see that whep-t, and
r=0, strong singularity appears D""(X,&). ThereforeGgp;}"

=Ggpj; can be calculated analytically, as
b
(GEpij)1= fo fOJD{nn(Xé)(fO'no)m(x)dr(x)m(ﬁ)dr(@

Lol
:ff JJAlAZH[cAtfr](rO-nO)
0Jo

r

X ;(X)dT'(X) 7 (£)dT (&)
_ ! lj( r cAt 0,40
—*L J m*T)”[C“*”“ ™
X 7;(X)dT’(X) 7;(£)dIT (§)

lj |J r
o fo fo AA, T A, HEAt=r)(r® %) 7,(X)dT'(X)

The relationship among the three kinds of coefficient matrices
is given in this paper, through which hypersingularity is avoided
for SGBEM. With the indirect method, it is very easy to modify
an existing AGBEM computer code to a SGBEM one. There is no

limitation for the application of the indirect method. It can be usedhere At=t,—t, ;, A;=CAt—r, A,=.CAt+T,

li (1 cAt
Xni(f)dr(f)Jrf f TH[cAt—r](rO«nO)
0Jo
X 7;(X)dIl(X) 7 (§)dl(§)=D1+ Dy, (A2)

and Ag

to get symmetric BEM/FEM coupling procedure, as normally FE cAt. While there is no singularity i, the strongly singular
domain has more nodes than BE domain. It can also be used toirtiégration inD, can be calculated analytically by a similar way
kinds of SGBEM problems, such as elastodynamic problem, hegith Eq. (A1), but special attention should be given to the Heavi-
transfer problem, fluid problem, etc. A similar method can bside function,
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i [licAt o 0
D2=JO LTH[CM*V](Y ) 7 (X)dl (X) 7;(€)dI'(€)

flifloj CAtm; sina
0 Jo (mj+m cosa)’+ (7 sina)?

7j Y
oo
J

X

g 7; Sina ) )
=CAt —T[In(loj+ n; + 2l mi cosa) —2 In 7]
0 ]

- t -
I 7 Sina 9 sina

I+ 7; cow(t _,lojt micosa lCOSa)]
j

m

x| 1=

wherel ;= min{l; ,J/(cAt)*— (7 sina)*— 7 cosay.

|i)dm, (A3)
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Intensity of Singular Stress Fields
at the End of a Cylindrical
Inclusion

. In short fiber reinforced composite it is known that the singular stress at the end of fibers
T. Genkai causes crack initiation, propagation, and final failure. The singular stress field is con-
trolled by the generalized stress intensity factors defined at the end of the inclusion. In this
Q. Wang study the stress intensity factors are discussed for an elastic cylindrical inclusion in an
. o infinite body under (A) asymmetric uniaxial tension in the x direction, and (B) symmetric
Mechanical Engineering Department, uniaxial tension in the z direction. These problems are formulated as a system of integral
Kyushu Institute of Technology, equations with Cauchy-type or logarithmic-type singularities, where densities of body
Kitakyushu 804-8550, Japan force distributed in infinite bodies having the same elastic constants as those of the matrix
and inclusion are unknown. In the numerical analysis, the unknown body force densities
are expressed as fundamental density functions and weight functions. Here, fundamental
density functions are chosen to express the symmetric and skew-symmetric stress singu-
larities. Then, the singular stress fields at the end of a cylindrical inclusion are discussed
with varying the fiber length and elastic ratio. The results are compared with the ones of
a rectangular inclusion under longitudinal and transverse tension.
[DOI: 10.1115/1.1598479

N.-A. Noda

1 Introduction those of the matrix and inclusion are unknown. In the numerical
analysis, the unknown functions of the body force densities are

ressed as fundamental density functions and weight functions.

. > Knov nguigl,
stress at the end of fibers causes c_ra_ck Initiation, propagation, ?—?éﬁe, the weight functions are approximated as power series in-
final failure. Recently, Chen and Nisitafil, 2] indicated that the stead of step or linear functions used usually in the body force

singular stress field is controlled by the generalized stress intqﬂéthod [3—6]. Then, the singular stress fields at the end of a
sity factors(SIF;) defined for inclusion corners, and .ChEB]A'] cylindrical inclusion are discussed for the wide range of the fiber
discussed the singular stress of a rectangular inclusion as a t igth and elastic ratio.

dimensional (2D) model. Since actual fibers always have 3D
shapes and dimensions, 3D analysis is necessary to evaluate the

strength of composites. From this viewpoint, a cylindrical inclu2  Theory and Solution
sion is important as a 3D model of a fiber in matrix. In previous
studies, Kasano et dI7] treated a rigid cylindrical inclusion, and
Hasegawa and Yoshiy&] solved an elastic cylindrical inclusion
with rounded ends. Takao et ], Hasegawa et aJ10], and Wu

and Du[11,17 discussed stress fields induced by uniform eige lane, shown in Fig.d. The method of analysis will be explained

strain given within a cylindrical domain. Usually to obtain gene .
alized SIF’s for 3D problems is more difficult than to obtain nortqr the problem of pure shear in they plane. Herel andD are

mal SIE’s defined for ordinal cracks. Therefore, when Chen af§nensions of the inclusion, and” is a stress at infinity. The
Nisitani [3—5] applied the body force methdé] to 2D problems, notations G_M ,vm) denote the shear modulus and P0|s_son s ratio
they examined two types of numerical procedures, one of which the malltrlx, an(;j_ A den%tesl_thc(ie_or}es ofd_the Inclusion.
obtained from the values of unknown body force densities, a ctangular coordinatexfy, z) and cylindrical coordinater(,2)

the other of which is from the values of stress around the inclusiGie defined in Fig. 1. Herd{,7.0), (p.¢.() are rectangular and

corner. In both procedures the final results were extrapolated frqgﬁl::ned&C;Lg&%d;g?Jtsesd\’\tlgefgem?gg)t’ef%gesrgﬁeﬁ]pggeg'STQtirgogfy
the results of finite numbers of collocation poifits-6]. P Y

In this studv the stress intensitv factors are discussed for singular integral equations. Here, the fundamental solutions are
. Study the o> ty 1a ess and displacement fields when two ring forces acting sym-
elastic cylindrical inclusion in an infinite body undék) asym-

metric uniaxial tension in thex direction, and(B) symmetric metrically to the plang=0. In this case the boundary conditions
- O L ’ ) Y .~ only onz=0 can be considered due to symmetry. The two ring
uniaxial tension in the direction. The asymmetric problef) is

. 7, T forces have three typd43,14, that is, (1) ring forces in ther
solved on the superposition of two auxiliary loa¢ig;biaxial ten- direction with the my;);ﬂtud:] of cosi? EZ; ring forces in thed

sion and(ii) plane state of pure shear. Those problems are formb'l'rection with the magnitude of sin® (3) ring forces in thez

lated as a system of integral equations with Cauchy-type Qfiection with the magnitude of cosf2 In the following discus-

Io.garithrr)ic-.type. singulgrities, yvhere densities of t.’Ody force di%‘lon how to satisfy the boundary conditions around corner A will
tributed in infinite bodies having the same elastic constants B e'xplained.

Cormibuted by the Abolied Mechanics Division offE A © The problem can be expressed by the following equations in
ontributed by the Applied Mechanics Division o MERICAN SOCIETY OF P

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- terms of the un.kn(.)wn body. fo.rc.e d.enSItld_S”"' Fr ’.FH’.V').a.nd
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 30,(Fnl_lFtI ,F o) distributed at infinitesimal aread 6dr 5 in 'nﬂ_nlte
1999; final revision, Jan. 16, 2003. Associate Editor: J. W. Ju. Discussion on thediesM and|. Here, bodiesM and| have the same elastic con-
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departmepants as those of the matrix and inclusion, respectivelyyans

of Mechanical and Environmental Engineering University of California—Sant ; ; ; ;
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four mon sdIStanCe from the corner A as shown in Flg' th the fOHOWIng

after final publication of the paper itself in the ASMBURNAL OF APPLIED ME- equa_tion, the notatioffi_ means integrating body forces on bOth
CHANICS. the side and ends of the cylinder. Here, for example, the notation

In short fiber reinforced composite it is known that the singul

Consider a cylindrical bar in an infinite body under asymmetric
uniaxial tension in the direction shown in Fig. & This problem
is composed of the superposition of two auxiliary loads; biaxial
’iension in thexy plane, shown in Fig.d, and pure shear in they
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Fig. 2 Two types of body force distributed around the corner
9 > YN in the (&) normal, (b) tangential, and (c) circumferential direc-
6 r,p tions

F F
J'hvnM(rAvS)FnM(rA)drA+JhU‘M(rAyS)FlM(rA)drA
Fig. 1 Problem and coordinate system: (a) Uniaxial tension L L
perpendicular to the axis of the inclusion (x direction ); (b)

Uniaxial tension in the axis of the inclusion (z direction ); (c) + | nFMer s SYEa(radra— | B SVE. (rdr
Hydrostatic tension in a plane perpendicular to the axis of the LY (ra,S)Fam(ra)dra LY (Fa:S)Fni(ra)dra

inclusion (xy plane); (d) Pure shear in a plane perpendicular to
the axis of the inclusion  (xy plane); (e) Coordinate system

*jhfn(rAys)Fu(rA)drA*J hsgl(rArs)Fﬂl(rA)drA
L L

hF”M(rA,s) denotes the normal stress induced at the collocation )

e ; ; =—(Ujy,—U3)sin 26 (1b)
point s induced by the body forc&,,, acting at the point 4. oM Fol :
Since the integral includes the Cauchy-type or logarithmic-type

sir_lgu_larities, the integration should be interpreted in the Caucmuations(la) and (1b) enforce the boundary conditions,
principal value sense, —oy=0, anduy,—u, =0, respectively; other boundary condi-
1 1 F tiOhS, that iS,Tn[Mf’Tn“:O, _TnﬁM_iTm‘?I:O! UrM7Ur|:O, UZM
5 Fam(s) — 5 Fri(s)+ f hotM(ra,S)Fam(ra)dra —xuz,:O, can be expressed ina similar way. In Eds) anQ(lb)
L o,m @nduyy, are stress and displacement components induced by
the stress at infinity=™; here we assume bodyis also under the
+J hf™M(ra,S)Fou(ra)dra+ j hEM(ra,S)Fgm(ra)dra  stressesd’; 0% 7)), which induces?,, andu? in Egs.(la)
L L and (1b).
. . The singular stress_fie!ds near corner A can be expressed by two
- f ho'(ra,S)Fn(ra)dra— f h o (ra,8)Fy(ra)dra types of body force distributions; symmetric and skew-symmetric
L L types to the bisector of the corners. Figure 2 indicates the two
types of body forces distributed in the normal, tangential, and
_f hEﬂ'(fA ,S)F i (ra)dra circumferential directions to the boundary. Ih the vicinity of cor-
ner A, plain strain condition can be assumed,; then, the eigenvalues
N1, N2, A3, N4 controlling the singular stress fields is determined
=—{oqm(s)— oy (s)}cos 20, (18)  from the eigenequations for 2D problerfts2,15. In this study
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Fig. 3 (a) Typical boundary division for Egs. (3) and (4). (b)
Boundary division for singular integrals.

therefore unknown body force densitis y(ra)~Fgm(ra) in
body M and F, |(ra)~Fg,(ra) in body | are approximated by

using fundamental densitieﬁ\ -t r)‘4 ! and weight functions
W, ~W'” ’“, where unknown constants aag y~f,, |,

Frj(ra)=F(r ) +F 2 a) =Wy (ra)rt

+W”](rA)rAz !

Foi(ra) =Fyra) +F 20 = Wy (ra)rpt Wi (rar2
)
F/}](rA) FIII )\3(rA)+FIII )\4( ) III )\S(rA)r)\a 1
W M (=ML,
l)\l(rA) 2 anj A l,
I)\l(rA) 2 bn] i III )\S(rA) 2 an n— 1’
(3)

” )\z(rA) 2 dnJ /.\ ’

M

|| WA 1
Z(rA E nJr/nA )
n

”l )\4 rA) Efnjzl J*M:I)-

Here, fundamental density functions are chosen to express
symmetric stress singularity of the forms 471, 1/r1~*s and the
skew-symmetric stress singularity of the forms!TA2, 1/r1 24,

Equations(2) and (3) do not include the terms expressing loca

Table 1 Convergence of Fyy ., Fix, Fu, (L/ID=10, G,/Gy
=10%, v,=v,,=0.3)

Fra, Fria, Frrra,
M| from from from from from
| W (0) | Wy (0) Average Hag (0) | iy (0) average| ¥ Was (0)
21 0.290 | 0.417 | 0.354 |-0.723|-0.763]~-0.743( 0.070
310.321 | 0.396 | 0.359 (-0.792}-0.795|-0.794| 0.027
4] 0.333 [ 0.388| 0.361 |-0.790(-0.789|-0.789| 0.019
5(0.338| 0.383 | 0.360 [~0.788|-0.788}-0.788( 0.014
6] 0.340 [ 0.379 | 0.360 |-0.789{-0.788|-0.789] 0.011

uniform streching and shear distortion at corner A. Therefore the
stressesd;; ,oy ,7,5) applied in bodyl. In the numerical calcu-
lation, we may set the values of{j ,o%, , 7 ) in body! so as to
produce the same strains appearing in bistdynder the stress™.
The eigenvaluea ;, \, are given as the roots of the eigenequa-
tions for in-plane deformatiofl5,2], and the eigenvalues;, A\,
are given as the roots of the eigenequations for antiplane defor-
mation[1]. For example, the eigenequations for antiplane defor-
mation are shown in Eq$4) and(5).

For a symmetric state of stress singularity,

sin\(y— ) Ir'+1
sinnr -1 4)
For a skew-symmetric state of stress singularity,

SiNnA(y—m) Ir'+1
sinnw I —-1° ®)

where the corner angle for matrix=37/2 and the elastic ratio
I'=Gy/G,. WhenGy>G,, there is a real rook s of Egs.(4),
but no roots\, of Egs.(5). On the contrary, wheG <G, , there
is a real root\ , of Egs.(4), but no roots\ ;3 of Egs.(5).

Figure & illustrates an example of boundary divisions for
L/D=1C. In the numerical solutions for elliptical inclusions, we
do not have to divide the boundaries because the “fundamental
densities” to express an elliptical inclusion exactly are available
[16]. On the other hand, the boundary division is introduced here
because in this problem the fundamental densities are only useful
near the corner. Then, the fundamental densities with singularities
of symmetric and skew-symmetric types are employed on bound-
aries C-B-A-D-E in Fig. 3. It is confirmed that the results are not
affected until almost to the third digit by changing a region over
which the fundamental densities are used. Except along the
boundaries C-B-A-D-E in Fig. 3, body forces are simply distrib-
uted in the normal, circumferential, and tangential directions with-
out using symmetric and skew-symmetric distributions. On the
numerical solution as shown in Eg®) and(3), the singular in-
tegral Egs(1a) and(1b) are reduced to algebraic equations for the
determination of the unknown coefficients, for exampdeg,u
~f,, in Eq. (3). These coefficients are determined from the
boundary conditions at suitably chosen collocation points. The

Table 2 Convergence of Fing Fun, Fuin, (L/ID=10, G,/Gy
=10"%, v,)=v,=0.3)

FI,AI FII,/LI FIII,).‘
M| from from from from from
| (@ | W0 |average W (0) | Weg (0) |average W (0)
2| 0.191 | 0.221 | 0.206 | 1.260 | 0.989 | 1.125 | 0.044
31 0.212| 0.227 | 0.220 | 1.123 | 1.024 | 1.074 | 0.021
41 0.214 1} 0.223 | 0.219 | 1.058 | 1.051} 1.055 | 0.014
51 0.215} 0,222 | 0.219 | 1.060 | 1.048{ 1.054 | 0.010
6| 0.216 | 0.221 | 0.219 | 1.056 | 1.047 | 1.052 | 0.008
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Fig. 4 Fix, and Fiix, for a cylindrical inclusion  (solid line ) and a rectangular inclusion
(broken line ) under longitudinal tension  (v),=»,=0.3)

stress intensity factorK,,M, Kitag Kinag Kin, for corner A (4) The final results are obtained without using extrapolation
can be obtained from the values of weight functions at the cornfe@cause the weight functions are approximated as power series
tip W.(0), W'(0), W' (0), W!'(0), W;” *3(0), W;” *4(0). The instead of step or linear functiofi8—5| used usually in the body
expressions may be found in Nisitani et @5]), and Noda et al. force method. The convergence of the present solution is better
([17)). than the cases of Nisitahb] and Chen3,4].

The following values oﬂ:ml, Fiia, are obtained confirming

the convergence of the average values for various aspect ratio
3 Numerical Results and Discussion L/D and elastic ratidG, /G, .

The generalized stress intensity factdts, , Ky ., K v _ In _Table 3,_the _results for a cylindrical bar_under uniaxial ten-

o 2 "3, _ sion in thez direction are shown. For comparison, Table 4 shows

the results for a rectangular inclusion under longitudinal tension
obtained in the similar way of the present analysis. Chen’s results
[3] are in good agreement with Table 4. Results of Tables 3 and 4
are plotted in Fig. 4 as a comparison between the 3D and 2D

Kia, defined in Refs[1], [2] are analyzed with varying the

aspect ratid_/D and elastic ratid3, /Gy, . In the following dis-
cussion, dimensionless stress intensity faci€)|r§1~F,”M are

shown assuming Poisson’s ratip= 1y, =0.3,

Fio=K , lo" \/;(D/Z)l—xl’ models. With iqcreasing the vallgD, the stress intensity factprs ‘
1t 1 increase and finally become saturated. For the same elastic ratio
;:MzzKll’kz/gm\/;([)/z)lﬂz, G,/Gy, 3D and 2D results have a similar tendency with the
(6) difference under-30% in most cases.
F|||')\3=K|||')\3/0'73\/;(D/2)17)‘3, Table 5 shows the values &, , F ,, at the cornerA(6
=0), and Table 6 shows the ones at the corAéd= =/2) for
Fiti =Kt /o™ \m(DI2) M, uniaxial tension of a cylindrical inclusion in thedirection. Fig-

Convergence of the results are shown for the problem of pu'1J es 5 and 6 are the plots of_TabIe_s 5 and 6. As shown in these
shear in thexy plane in Fig. 3. Table 1 shows the values Ef,xl, tables and figures, the stress intensity factors have the largest val-

Fiy, at the comeA(#=0) and the values df, A at the corner Y€S atA(#=0) in most cases. From the comparison between the

7 results of Figs. 4 and 5, it is found thg,, values for
A(9=m/4) for L/D=10, G, /Gy =10". A_Iso Table 2 shows the z-directional tension are one to four times larger than the ones for
values ofF,,M, Fia, at the cornelA(6=0) and the values of

h — i2) for LiD= /Gr—10-5 x-directional tension in most cases, although Hme'xz values are
Fui, atthe corneﬁ(a—w 4) for L/D=10, G_' G'V'__lo ~IN" i the same order. From Figs. 4 and 5, it may be concluded that
Tables 1 and 2M is the number of collocation points at eacI}he stress intensity factors take saturated values at nearly the same

boundary division, and the total number of collocation points . -
7M. As shown in Tables 1 and 2, Tig ,. values can be deter- Value ofL/D; for example, wherQ, /G_M_loz’ theF,'M.vaIues
L become saturated whériD =100 in Figs. 4 and 5. In Fig. 5, for

H | |
mined from the valuetVny(0), Wi (0), and thef , values gy 6, /G, | the stress intensit, ,  decreases with/D, be-

H | il
can be determined from the valuesWy,(0), Wiy(0). From the  comeq aimost zero a/D =10, and then increases. Usualfy,,
examination as shown in Tables 1 and 2, we can see the followmﬁ. . . L
(1) WhenG, /Gy,>1, the difference of th€, , , F,, . values increases with increasing/D; however, a4 /D—1, the interac-
! gt Ao

obtained from different components of unknown functiongon between both ends of the cylinder seems to m%‘k“el larger.

W ,(0), Wiy (0) is larger, about 10%. Whe®, /Gy<1, the In Fig. 6, whenG, /Gy, = 10? the stress intensitf, ,  changes in
difference is smaller, about a few percent. Similar tendency wakgn asL/D increases, because in two auxiliary problems in Figs.
seen in the analysis of a 2D rectangular includiéh 1c andd, Fix, depends or./D differently. In Table 7 and Fig. 7

(2) The average values &, , Fy ,,, which is obtained from the results for a rectangular inclusion under transverse tension are
different components, always have good convergencifer5, 6 shown. The difference between the results for Figs. 5 and 7 is very

and look reliable. large, in other words, it seems difficult to use 2D solution to
(3) The values ofF;; \,, Fui x, are only a few percent com- evaluate the 3D results if the load is applied in the transverse
pared with the values dml, Fiia,: direction.
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Fig. 7 Fia, and Finx, for a rectangular inclusion under transverse tension, the case of plane
strain vy,=»,=0.3
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4 Conclusion

In this paper, a cylindrical inclusion as a 3D model of a short
fiber in composites was analyzed. Using the body force method
the problem is formulated as singular integral equations. The gen-
eralized stress intensity factors are calculated with varying the
aspect ratid_/D and elastic rati@s, /G, . The conclusions can be
made as follows.

(1) In the numerical solution of the singular integral equations
of the body force method, the unknown functions were approxi-
mated by the products of the fundamental density functions and
the power series along the short segments into which whole
boundary is discretized. The convergence of the present solution
is better than the cases of Nisitdhi] and Chen3,4], where the
final results are obtained by using extrapolation. The average val-
ues ofFMl, Fiia, which is obtained from different components

of unknown functions, always have good convergence to the third
digit, and look reliable, even for the collocation number of each
division M =5, 6. The results are shown in the tables and figures.

(2) When the cylindrical inclusion undexdirectional tension
the Fix, values are one to four times larger than the ones when
the cylindrical inclusion undex-directional tension in most cases
although theF”M values are almost in the same order.

(3) From the comparison between the results of a 3D cylindri-
cal inclusion and a 2D rectangular inclusion, it appears though 3D
and 2D results have a similar tendency with the difference under
+30% in most cases when the load is applied in the longitudinal
direction. However, the difference is very large if the load is ap-
plied in the transverse direction. Care should be taken if the 2D
solution is applied to evaluate the 3D results.

(4) The values ofF ,,, Fyi ,, are only a few percent com-

pared with the values dﬂM, Fiia,
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Appendix: How to Evaluate Singular Integrals

In this analysis it is important to evaluate integrals in Eds)
and (1b) accurately because they have singularities when the in-
tegral interval includes boundary collocation points. In the previ-
ous studies these integrals were evaluated as shown in the follow-
ing way|[6,18]. The integral interval is divided into three parts as
shown in Fig. ® and Eq.(6),

b e—gg etegg b
I=f f(x)dx=f f(x)dx+J' f(x)dx+f f(x)dx

a a £—¢gp eteg
:|1+|2+|3. (Al)

If we take suitable small values otg the integrall can be evalu-
ated as Eq(A2),

€0
I=J f(x)dx

EN) C,l
= T+C0+D0|n|a|+C18+Dla In|e]

—&g
+D182|n|e|+-'-)
:20080“1‘ 2D0(80 In 80_80). (AZ)
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Here, C71, Co, Do are constants, which may be obtained from [5] Nisitani, H., Chen, D. H., and Shibako, A., 1993, “Singular Stress at a Corner
expansion forms arounxk= & with painstaking tasks. In this study of Lozenge Inclusion Under Antiplane Shear,” Trans. Jpn. Soc. Mech. Eng.,

- . . . Ser. A,59-561, pp. 1191-1196n Japanese
therefore the following method is applied. First, we set [6] Nisitani, H., 1967, “The Two-Dimensional Stress Problem Solved Using an

&0 2¢, Electric Digital Computer,” J. Jpn. Soc. Mech. Eng0, pp. 627—6341968,
|2€:|—f f(e)de, |4€:|—f f(e)de, Bull. JSME, 11, pp. 14-23 — .
. ~ 260 [7] Kgsano, H". Ma}tsumoto, .H" _and Nakahara, I., 1981, “Tension of a Rigid
Circular Cylindrical Inclusion in an Infinite Body,” Trans. Jpn. Soc. Mech.
4eq Eng., Ser. A47-413, pp. 18—-2Qin Japanese
lg.=1— f f(e)de. (A3) [8] Hasegawa, H., and Yoshiya, K., 1994, “Tension of Elastic Solid With Elastic
—4eg Circular-Cylindrical Inclusion,” Trans. Jpn. Soc. Mech. Eng., Ser68,575,
X pp. 1585-159@in Japanese
These integrals can be expressed by [9] Takao, Y., Taya, M., and Chou, T. W., 1981, “Stress Field Due to a Cylindrical
Inclusion With Constant Axial Eigenstrain in an Infinite Elastic Body,” ASME
l2,=1—2Cpeq—2Dg(gpIngg—gg)=1—-C'—D’gqIn(2¢y), J. Appl. Mech. 48, pp. 853-858.
[10] Hasegawa, H., Lee, V.-G., and Mura, T., 1992, “The Stress Fields Caused by
l4,=1—2C"eq—D'(2¢¢)In(2¢), (Ad) a Circular Cylindrical Inclusion,” ASME J. Appl. Mech59, pp. 107-114.
, , [11] Wu, L., and Du, S., 1995, “The Elastic Field Caused by a Circular Cylindrical
lg;=1—4C’eq—D'(4g0)In(4sy), Inclusion-Part I,” ASME J. Appl. Mech.62, pp. 579—584.
. . 12] Wu, L., and Du, S., 1995, “The Elastic Field Caused by a Circular Cylindrical
whereC’'=2(Cy—Dy), D'=2D,. Since the integrals,, , 14, 12 Inclusion-Part II,” ASME J. Appl. Mech.62, pp. 580580, g
ls. exclude singular points, they can be evaluated accuratelys) Noguchi, H., Nisitani, H., Goto, H., and Mori, K., 1987, “Semi-Infinite Body

through normal numerical procedure. Finally, we can evalliate With a Semi-Ellipsoidal Pit Under Tension,” Trans. Jpn. Soc. Mech. Eng., Ser.

from A, (in Japanese 53-488, pp. 820-82$1989, JSME Int. J., Ser. B2-1, pp.
14-22.
1=41,,—4l 4, — g, . (A5) [14] Noda, N., and Tomari, K., 1997, “Fundamental Solution and its Application

for Stress Analysis of Axisymmetric Body Under Asymmetric Uniaxial Ten-
sion,” Bulletin of the Kyushu Institute of Technolog§y7, pp. 7-12.
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General Solutions of Anisotropic
Laminated Plates

Anisotropic laminates with bending-stretching coupling possess eigensolutions that are
analytic functions of the complex variables~x,y, where the eigenvalugs, and the
corresponding eigenvectors are determined in the present analysis, along with the higher-
order eigenvectors associated with repeated eigenvalues of degenerate laminates. The
analysis and the resulting expressions are greatly simplified by using a mixed formulation
involving a new set of elasticity matricés’, B*, andD*. There are 11 distinct types of
laminates, each with a different expression of the general solution. For an infinite plate
with an elliptical hole subjected to uniform in-plane forces and moments at infinity,
closed-form solutions are obtained for all types of anisotropic laminates in terms of the
eigenvalues and eigenvectof®OIl: 10.1115/1.1576804

W.-L. Yin

School of Civil and Environmental Engineering,
Georgia Institute of Technology,

Atlanta, GA 30332-0355

e-mail: wanlee.yin@ce.gatech.edu

1 Introduction ing the displacements, the stress potentials and the moment poten-

Symmetric laminates belong to the class of laminates in Whilg‘lals in terms of complex analytic functions, the governing equi-

the counling between bending and stretching is absent. For t|brium equations and the constitutive relations are reduced to an
ping 9 g ) ebraic eigenvalue problem, which possesses four complex con-

class, the general p“’b'e”.‘ .Of equilibrium under various types ﬁ’J ate pairs of eigenvalues and eigenvectors. Each simple eigen-
loads and boundary conditions can be separated into an out0r3

plane bending problem and an in-plane stretching/shearing pr lue u, and its eigenvector determine an eigensolution contain-

L h . . "ing an arbitrary analytical function ok+ uy. If repeated
lem. The latter is identical to the plane-stress anisotropic elastlcép : :

S . ~efgenvalues occur, then high-order eigenvectors may be needed to
problem. The similarity between this problem and the bendi 9 ' g 9 Y

bl f tric laminat b d by Lekhnifagii pplement the zeroth-order eigenvectors. In such degenerate
probiém of symmetric laminates was observed by Lexnniishil cases, the eigensolutions have more complicated forms of expres-
Specifically, the deflection function of bending satisfies a fourt Son
ord_er governing dlfferen_tlal equation ‘h%‘ IS 5|m|Iar_ to __the dl_ffer- In the conventional formulation of laminated plate theory, the
ential equation fqr the Airy's stress function. Lekhnitskil Obté}'ne@onstitutive relation is given by three symmetric stiffness matrices
the _general solu_tlon of the bending (c_nfondegenera_}e;ymmetrl_c . A, B, D, which reduce the equilibrium equations of the forces and
laminates by using the complex variable theory, in a way SImH%

0 his i Hoat f two-di ional anisotropic elasti oments to a system of differential equations governing the three
0 Nis Investigation or two-dimensional anisotropic elas idigy, isplacement components v, andw, [9]. This formulation is
In this work, we consider anisotropic laminates that general

. ) - X - N-suited for the analytical task of determining the general solu-
manifest bending-stretching coupling. Although the literature %bn. In this work. amixed formulation is adopted by taking the
the numerical analysis of laminated plates is vast, there appearifyatures and tﬁe in-plane forces as the primary unknown func-
be few systematic attempts to investigate the analytical repres@iz.c The conventional stiffness matricés B, and D are re-
tation and mathematical structure of the solutions, to the exteé]gced by new elasticity matrice&*, B* and’ D* (where A*

that such researches have been pursued both in the classical thzoAyl the other t tri d ‘f. d by Edsc,d), andB*

of isotropic plates and in the two-dimensional anisotropic elastic- , the other two matrices are defined by Esicd), an

ity theory. Half a century after its publication, Lekhnitskii's WOrki?aruoetssgr?(rjnZti”zr:CetEtl(s)r?rg;ucl:?)tlljorl]el(;hggﬁrgzrtr:én?su?g d?]fcilgetr(;- an
[1] still remains the standard reference on anisotropic plates. 9 P

The mature development of linetotropic elasticity was due eigenvalue problem associated with @2matrix function, which

substantially to the systematic investigation of Muskhelish¥li Cage?zisﬂxsgcfggt;zslgi l;:]s‘sglrl]]%gr?’s rggsrﬁgi\?[g dtr\',atﬂ:hae gggzz‘; d
and his associates, in which the use of complex function repres&ﬁ- g 9 P

tations of general solutions, Green'’s functions and integral equ%{ge_n\_/alueﬂ of d‘?ge”er?‘te. laminates may be ol_atalned in a_for-
malistic way by differentiating appropriate analytical expressions

tions, are essential. In anisotropic elasticity, the representation | the lower-order eigenvectors and eigensolutions with respect to
broadened by using multiple complex variables involving materid) 9 9 P

eigenvalues. Such representations are especially important ’t’%rr\l’vz,:(:: SISég%@rﬂqejtipﬁgvé?loer:f,lzuaés ?QSZ%brE 21;0; ter\ygtjoar-s
finding singularity solutions of multimaterial wedges in compositg ' a specil P g€l : e 9 i
structures near free edges and crack tig=6], and for the and eigensolutions of the various types of anisotropic laminates

boundary element formulation of elastostatic problefisg]. mz_aryhge roebst::lr:?ngl] zépg(él;rfs;mf%rmal resemblance to the author’s
However, similar representations of the general solution are pres- P y

ently available only for anisotropic laminates with simpbis- recent work on plane anisotropic elasticiyn, 11. However, the

tinct) eigenvalues and for isotropic laminates, but not for the Varﬁe_lgenvectors |n.the present problem have th_e dlmensm_n_ eight,
ous other classes of degenerate laminates. whereas those in the generalized two-dimensional elastiicity

In this paper, we obtain explicit analytical expressions of th Juding coupling between the in-plane and the antiplane modes

general solutions of all types of anisotropic laminates. By expre<i2V€ the dimension six. The present problem yields eleven differ-
ent classes of anisotropic plates, while there are only five different

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF classes of materials in plane_ anisotropic ela$t|C|ty. Each pne of the
MECHANICAL ENGINEERSfor publication in the ASME GURNAL OFAPPLEDME-  €/€VeN types possesses distinct representations of the eigenvectors
CHANICS. Manuscript received by the Applied Mechanics Division, June 5, 2008nd of the general solution, depending on the multiplicity of the
final revision, Nov. 22, 2002. Associate Editor: J. R. Barber. Discussion on the pa;;genvame& and on whether they are normal, abnormal, or su-

should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, Departmen e . : f ot :
Mechanics and Environmental Engineering, University of California—Santa Barbata, rabnormal. A classification of elght distinct types of elgenvalues

Santa Barbara, CA 93106-5070, and will be accepted until four months after fil& shown in Section 5:_ accompz_;mied by a sim_p_le proqf _that no
publication in the paper itself in the ASMEDWRNAL OF APPLIED MECHANICS. eigenvalue can be real if the laminate has a positive-definite strain
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energy function. In Section 7, we apply the general solution to an n={&,,8,)", (9a)
infinite laminate with a load-free elliptical hole subjected to uni-

form force and moment loads at infinity. An analytical solution is D={W .y W ., =W sy, F yy F i, = F st s (%)
obtained forall types of laminates in terms of the respective -

eigenvectors, thereby extending the previous solution of Lu and 0={My .My, =2Myy, —€x,— €, = 265} . (%)
Mahrenholtz [12] for nondegenerate laminates, in which therhen, from Eq(7) follows that

eigenvectors are shown implicitly but not explicitly due to the ,

inherent complexity of the Stroh formalism used in their analysis. =1 (X+uy)P(p)E=1"(x+pny)P(n)n, (10a)

. . . : 0="1"(x+uy)E(n)é (100)

2 Eigenvalues, Eigenvectors, and Eigensolutions
Letu(x,y) andv(Xx,y) denote the midplane tangential displace-
ments of a laminated plate and let(x,y) denote the normal m 0
displacement. The midplane strains and curvatures are usually 0o -1
grouped in the ordee={e,, €y, 26,} ' ={u v, ,u,+v " and
K={W y, Wy, 2W , }T. They are related to the stress and moment D(p)= -1
resultants,n={N, ,N,,N,,}" and m={M,,M, ,M,}", by the L )
constitutive equations of an anisotropic laminated plate

n=Ae+Bk, m=Be+Dxk, (1)

where the X3 symmetric matrice#\, B, andD characterize the - ) -

extensional stiffness, extension-bending coupling, and bending M 0

stiffness, respectively9]. -1 0
An equilibrium solution of the plate problem with kinetic or

kinematical boundary conditions and subjected to distributed tan- P(u)= H (11b)

gential and normal surface loads may be decomposed into a par- K 2

ticular solution under the same distributed loads and a comple-

mentary problem involving boundary loads and boundary

displacements only. A particular solution is any solution of the

inhomogeneous differential equatiorisontaining the specified -

distributed loadswith no regard to boundary conditions. It may

be obtained by integrating Green'’s functiofisndamental solu-

tions) for the infinite domain weighted by the distributed load

intensities. The present paper is concerned only with the comple- E

mentary problem, which is governed by homogeneous equilibrium (n)

equations

here

, (11a)

© o o o
O O ©O o o o
o O © o o o
O O ©O o o o

O O O o o o

(11c)

Ny «+ ny,y:Ov ny,x+ Ny,yzov )
Mx,x‘f‘ Mxy,y+Qx:01 Mxy,x+ My,y+Qy:O, QX,X+Qy,y:(0-)
3

O o o o o o
o o o o o o
O 0O 0o o o or
O o o o o o
o o ©F% o r
o o © B T O

T o O O O
P T o o © o

Clearly,

e —
These equations have the following general solution in terms of P'E=0, (122)
three arbitrary function& (x,y), ¥, (x,y) and¥, (x,y): YE=[04s,14] (120)

Nx=Fyy, Ny=F,, Ny=—F,, (4) where0,«,, |, denote, respectively, zero and identity matrices of
M=%, Me=V,, —2M, =P, +¥,,, (5 dimensionnxn and

Q=12AW,,~ Wy, Q=—12AW,,~V,) . (6) c 0 0

0
Notice thatM, M, , and—2M,, are expressed as the derivatives Y(p)= -4 0 1 0 0 _
of ¥, and¥, in the same way that the midplane straigs e, , 0O 0 1 0O
and 2,, are expressed in terms of the corresponding derivatives 0 0 0 — 0 1
of the displacement functionsandv. K
We seek solutions of the six functionsv, w, F, ¥, and¥, The variablesp and # must be related by the laminate constitutive

(1)

in the form equation, i.e., Eq(1). Define the symmetric matrix
XE{W,y1_W,X1F,yr_F,x:qllyxpzy_uy_U}T:f(X"‘,Ufy)f: D* B*
(7) Cr= B*T —A* (13a)
wheref is an arbitrary analytic function and the complex constant
u and the eight-dimensional complex vectorg Where
={&1,&, ... ,&}" will be determined subsequently. The super- A*=A"1 (130)
script T indicates the transpose operation on a matrix or a row
vector. The relations B*=ABA™1, (1%)
Woy= =T (X+ pny) péo=w =’ (X+ uy) €1, D*=A(D-BA'B)A, (13d)
Fxy=—F(x+uy)ués=F =1 (x+pny)pné, 01 0
require that A=[1 0 0. (13¢)
§1= —pér,  E3=—péa. (8) 0 0 -2
If we define Then Eq.(1) becomes
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0=C* ¢, (14) similar to the release of subterranean stress during earthquakes.
) ) Laminated plate theory is broad enough to encompass laminates
and, using Eqs(10a,b), one obtains with differently prestressed layers. For such laminates0 still
E(p)&=C*®(u)E=C*P(u) 7. (15) refers to the flat state, but the state0 cannot be identified a
_ _ priori except as the state correspondingite0. Be it so, it is not
Comparing Eqs(1) and(14), one finds that the roles @h andx  the principal reason for adopting the constitutive relation of Eq.
have been interchanged and their elements redefined and reg in the present theory, rather than the customary form of Eq.
ranged. Premultiplying the last equation by the matri¥eand (1). The present choice is dictated essentially by the mathematical
P', and using Eqs(12a,b), one has structure of the problem, and by the resulting expressions of the
_ T_ % general solutions of laminated plates. These general solutions are
[Oaxalaxalé={s.€6, 67,66} =Y (ICP()m (16) (i analytically in terms of the elements of the matricés

M () =0, (17) B*, andD*. To convert the solutions into expressions involving
. ) ) ) the elements oA\, B, andD would make the expressions unduly
whereM (w) is the 2<2 symmetricmatrix defined by complicated.
M (1) =P(u)TC*P(u). (18)  Under the assumption of a positive-definite the eigenvalues

) ] are not real and they occur in conjugate pairs since the complex
The components of the matriM (x) are quartic functions ofx, conjugate of Eq(22) is M 15(1)M oo ) — M 15(12)%=0, wherep
le., denotes the complex conjugate @f For each roojy, there is at
2 _ x(_ 2 _ T least one nontrivial solutiomp of Eq. (17). Equations(20) and
M) ={= % = 1P =% = Ll (21) yield the eight-dimensional constant vectrand Eq.(7)
M) =Mp(p)={—u? —1u}B*{—u?—-1u}"T, (19) gives a solution of the laminated plate containing an arbitrary
analytic functionf of the complex variable+ wy. Aroot x of the

Moo ) ={—p? — L} (= A*){—p? — Lu}". characteristic equation will be called afgenvalueand the cor-
Combining Eqs(8) and(16), one obtains an expression of the®esponding vectorg and x will be called theeigenvectorand
eight-dimensional vectog in terms of p={&,,&,}: eigensolutiorassociated withu. Since the elements &fl (1) and
J(w) are polynomials with real coefficients, it follows thatfis

E=JI(p)m, (20) an eigenvector associated wifl, then the complex conjugate

vector £ is an eigenvector associated with the conjugate eigen-

where s>
value . u and & determine another eigensolution involving an

-u 0 arbitrary complex functiog(x+ wy). The sum of the two eigen-

3 1 0 solutions yield real values ¢f if and only if the functiond andg

J(M)E[ 1(’“)} Ji(p)= are related by
Jo(m)]’ 0 -l _

0o 1 g(x+puy)=f(x+pny). (24)

(W)=Y (u)C*P(p). (21)  When this is the case, Eqgl)—(6) yield real values of the forces

and moments. We will assume that the eigensolutions associated
yith a complex conjugate pair of eigenvalues are always com-
ined in this way to yield real-valued physical quantities.

Equation(17) has a nontrivial solutiony if and only if the

i
on Consider the adjoint matrix d¥l

8(p)=Mpy() Moo ) = [M 1 ) =0, (22)

— —_A* _R*
It will be shown later that, if the strain energy of the laminate is W)= M22 M2 —P(w)T- A B P( )
positive definite for arbitrary combinations of stretching and bend- My, Mgy H -B*T D* o
ing deformations, then the polynomial EQ2) has no real roots. (25)
The strain energy of the laminate is given by
T - T T - which satisfies the identity
U(k,e)=1/12(k'm+e'n)=1/2(k'Dr+2k'Be+ €' Ae)

=1/2{k'D* k+n"A*n), (23a) W(IM(pu) =M (u)W(p)= ()l (26)

where An eigenvalueu, will be callednormalif it is nota common root

~ _ of all three equationsM 1(u)=M () =M, () =0, i.e., if
1= (W gy W, =Wl (2%) M(uo), and hencéN(ug), are not zero matrices. Otherwigeg
It is interesting to notice that the last expression of @a) does will be calledabnormal For a normal eigenvalue,, W (o) is a
not involve B*. matrix of rank one. Therefore, it has one and only one indepen-
For the functionU to be positive definite under pure bendingdent column vector. Then it has at least one nonvanishing diagonal
and pure stretching states, respectively, the stiffness matficesslement. Lety be the column containing the first nonvanishing
andA must be positive definite. Positive definitenesdJofinder diagonal element ofV(w). Equation(26) with §(ue)=0 en-
more general states of deformation requires, in addition, positigares that » satisfies (17), i.e., M(uo) n=0. Therefore, &
definiteness ofD*=A(D—BA B)A or, equivalently, of D =J(u)7nis an eigenvector associated wjily, and Eq.(7) gives
—BA™!B. Laminates with 88A 1B large or comparable in mag- the eigensolutiory.
nitude toD may violate this condition, making the state k=0 If uo is anabnormaleigenvalue, theM (ug) andW(uo) are
precariouga state of saddle-point equilibriyniThis cannot hap- zero matrices. Sincg.y is a common root of all elements of
pen if all layers are bonded together without initial stress, becau¥g(u) =M () =M () =0, it must be a multiple root of
any deformation from the initial state increases the strain enerdyu)=0. Equation(17) is trivially satisfied by an arbitraryy. Two
in every part. But it is conceivable to produce a laminate by préndependent eigenvectors are givengsyJ(uo) 7, wheren may
straining certain layers in tension and others in compression b chosen a$1,0;" and{0,1}". This choice yields the two col-
fore bonding the layers, so that a slight disturbance from the refmns ofJ(«) as the eigenvectors, and each may be multiplied by
erence staten=x=0 will cause the laminate to curl up and toan arbitrary analytic function of+ wqy to obtain a corresponding
drastically reduce the stresses in severely pre-strained layesigiensolution.
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3 Higher-Order Eigenvectors and Eigensolutions

e il 0 1 0 0 0O 0 O i
Equationg17) and(20) yield one independent eigenvector for a =K gll= 0O 001 0 0 O gl
normal eigenvalue and two independent eigenvectors for an a?_l- . . . .
normal one. If these numbers are smaller than the multiplicity df*€ 1ast equation and3lab) may be combined into a single
the eigenvalue, then the two equations in conjunction \Wijhdo ~ €XPression

not yield the complete set of eigensolutiofi®., four complex K'l ]
conjugate pairs In such cases, additional independent solutions K ém:{—'K’gﬁfl]
must be found. Such additional solutions are determined by rela- J

tions different from those governing the preceding eigensolutioriBhis equation, after premultiplication by
and they have more complicated forms of representation involving

successive eigenvectors of higher ordalso called “generalized -+ 0 10
eigenvectors” in the literature on anisotropic elastici#s inde- 1 0O 0 O
pendent solutions, the higher-order eigensolutions are not second-

ary in status. They are equally indispensable to the general solu- 0 —w 01
tion of the laminate, in the same way that a second analytical 0 1 0 O
function is indispensable to the general solution of the biharmonic i . . .
equation in plane isotropic elasticity. and repeated substitutions, yields the following expression for the

If an eigenvalue is of multiplicity, and it has only indepen- first four elements ofl:
dent zeroth-order eigensolutions, ther r higher-order indepen- 1,0 =3 iy i1 =192
dent solutions will be sought. We consider lth-order eigenso- (4. 0uxald (=12 N) (33)
lution (1=N=<p—1) having the following expression:

, (j=01,...N). (32)

whereJ;(u) was given by the second equation(@fl).
We now require that the kinetic and kinematical variables of the

X[N]:OSJZSN (NY D (x+ py) €870, (27)  Nth-order generalized eigensolution be related by the laminate
constitutive relation14), i.e.,
where (N,j)=NI/(N=})!j!, f0) denotes théth derivative of the NI C* NI (34)
complex analytic functiorf, and &%), £21 . &Nl s a set of ‘

complex constant vectors of dimension eight. Differentiating thiremultiplying (34) by Y (), and using Eqs(12b), (13), (21),
expression and regrouping the resulting terms, one obtains  (28), (29) andy=(z—2)/(sx— 1), one obtains an expression that
may be separated into various powerszpf

w:ny(NH@gouoﬂzNﬂ (N, U+ DIpgN-i] [Oaxa.laxal@N=]Y E(u) & H+jY(u)CP () 7~
+(j.2Y(u)C P g2

+(N=j)@ i1, (28) | |
=3 ) P+ (1D () Y
4“]=y“f(““>E§{°]+o<jZM (N, py fI D Egh ! +(1.2 () 73+ (.33 () of )
+(N_J‘)Eré{ijfl]’ (29) X(J=O,1,N)

Combining(33) with the last equation, one has
EN=3(pu) P+ (DI () 714 (.23 () P72
(30) +(1,33" () 7730, (35)

Again, it is understood thatf!=0 for negativej. Hence arNth-
order eigenvectoe!N may be expressed in terms of the two-

where®(u) andE(w) are as given by Eqglla.c). Let

1 4 0 0 000
0

K(uw)=
W= 0 14 0 0 0

Then the relationsv ,,=w ,, andF ,,=F , imply

o _ dimensional vectorsf®!, o1, ... N,
; (N DY D (x+ wy)K () €81 Premultiplying(34) by P(x)T and using Eqs(12a), (28), (29),
O=i=N (35), and(18), one obtains the following governing equation for
_ _ _ the eigenvectors of various orders after a sequence of algebraic
+ 2 (N TH O+ py)K €N manipulations:
0<j=N
- N,jyMD) N-il=0, (N=0,1,...p—1) (36
LS O Yk g 322, (NOM P () of ( p—1) (36)
0<j=<N

. _ where M) denotes thejth derivative of the matrix defined
XK () &N+ (N= K NI =0, by Eq. (18).

Equation (36) may be solved explicitly forl/l(1<j<N=p
—1), but the form of the solution depends on whetheis a
normal or abnormal eigenvalue. dfis normal, therM («) and its
adjoint matrix W(w) are both symmetric matrices of rank one.
HenceW (u) has at least one nonzero diagonal element and we
definep to be the vectof 1,017 if |W,y(u)|=|Way(u)| and to be
K(u)&%=0, (31a) {0,147 if otherwise. ThenW (u)p is a nonvanishing vector. Re-

peated differentiation of Eq26) yields

It is understood thag!!=0 if j is a negative integer. Let=x
+uny. Theny=(z—z)/(n—u), so that the last equation involves
a polynomial function of the complex varial#e For this equation
to be valid in a region of th&—y plane, it is necessary that the
coefficients of the various powers pfall vanish. Hence,

K(uw)dl+jk di-t=0, (1<j<N). (31b)

. N, DOMOWN=D(y=6N()l (N=0,1,...L).
We now definesf!! as the two-dimensional vector consisting of 0<j=<N (N.D) () ol o b

the second and fourth elements&¥, i.e., (37)
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An Nth-order eigenvector is required only [ is equal to or
greater tharN+1. In that cases!(x)=0 for O<j<N=p-—1.
Hence the right-hand side of E(B7) vanishes. We choosg "]
=W(u)p, and take each higher ordef!! to be the correspond-
ing column of Wi(x), 1<j<N. Then allp—1 equations of
(36) are satisfied. Hence!%, #4, ... . #*~* and Eq.(35) de-
termine the successive eigenvectors of increasing orders:

d%=awp, dU=awW’'+I'W)p,
dA=(IW"+2IJ' W' +I"W)p,

#31=(JW"+3J'W"+3J'W' +J"W)p. .
Equation(27) gives the corresponding eigensolutions
XO=1tIWp, MU=fQOW' +I'W)p+yf IWp,
X2=F(IW"+ 2 W' +J"W)p+ 2y £ (IW' +I'W)p
+y2f"IWp, (39)

= (W +33'W”+33"W' +J"W) p+ 3y f' (IW"+2J' W'
+J"W) p+ 3y?f"(IW' + 3" W) p+ y3 " IWp.

Clearly, the zeroth-order eigenvectd® and eigensolution %!

are identical to those determined in the previous section from Egs.

(17) and(20).

4 High-Order Eigensolutions Associated
With Abnormal and Superabnormal Eigenvalues

Next we consider ambnormaleigenvaluew, with the multi-

M” (o) 79+ 3M" (o) 7+ 3M” (o) 72+ M (o) #31=0.

But the last term on the left-hand side vanishes bechige,) is

the zero matrix. Hence the equation imposes no restriction at all
on #°1, which may therefore be set to zero without loss of gen-
erality, and that in effect throws out the tefdW" from x'°1.
Although one has the option of discarding or keeping the term f
JW” it will be retained in the following expressions &f! and

X% to facilitate future analysis of the algebraic structure of the
solution spaces. Hence we have

A=W’ p, (41a)

d21=(JW"+23'W")p, (41b)

3= (JW"+33'W"+33'W")p, (41o)

X H=fIW'p, (429)

XH=1,(IW"+23'W") p+ 2y FLIW p, (420)
A= F5(IW”+33' W' +33"W')p

+3yf4(IW"+20' W) p+3y2FdW'p,  (42)

wheref, f,, andf; are arbitrary analytic functions of-+ wgy.
The preceding list must be supplemented by a zeroth-order eigen-
vector % chosen from the two columns df{ o), and by the

plicity p=3, which has two independent zeroth-order eigenvegorresponding eigensolutiog®’. The choice must be made in

tors given by the two columns df o) and requires, in addition,
one or two higher-order eigenvectors for the capes3 andp
=4, respectively.

The higher-order eigensolutions forreormal eigenvalue, ob-
tained in the last section, were based on choosji§to be the

column of W) (o) which corresponds to a nonvanishing column
of W(ug), 1=<j=<L. This procedure fails for an abnormal or su-

perabnormal eigenvalue, for whidN(u,) has no nonvanishing
columns. The proper nontrivial solutions gf!! then depend on

whether or noM’ () is also the zero matrix. If it is not, then it

is of rank one and so is its adjoint math¥’(uo). Being a sym-

metric 2<2 matrix of rank one, at least one of the two diagon
elements ofV' () is not zero. We now defing to be the vector
{1,007 if |W],(w)|=|Wi(x)| and to be{0,1} if otherwise. Then

W=p'W’(u)p does not vanish. We then choose

=W (uo)p, (j=1,...p—1). (40)

Equation (37), in conjunction with 59 (x)=0 for 0O<j<p-1,
still ensure thasf%1=0, 74, ... and#?~ Y satisfy all equations

al

such a way as to ensure th&t and £ are linearly independent.
We therefore take

£9=J( o) (41d)

0 1],
1 ol?
X0 =1fo(x+ o) &°.

Besides having to replace the vecby p, another important
consequence of abnormality upon the structure of the general so-
lutions is that, withJWp=0, the term involving the highest de-

(42d)

rivative yNfINI(x+ .y) in Eq. (27) vanishes. Therefore, an eigen-
solution originally sought as of ordé¢ in the scheme of E¢27)

turns out to be effectively one order lower. Thus the facyoi’,

y2f” and yf’, which belong to a third, second, and first-order
eigensolution, respectively, no longer appear in the expressions of
X3, A1, and x1, Egs.(42a,b,c). In contrast to a normal qua-
druple eigenvalue, which has one eigensolution of every order
from zero to three, an abnormal quadruple eigenvalue has two

of (36). Therefore, they determine the eigenvectors and eigensyoth-order eigensolutions, one eigensolutiéf effectively of

lutions of the required orders via Eq®7) and(35). Substitution
of (40) into (27) and (35) yields expressions oftl! and x!/7 that
differ formally from those of a normal eigenvalue, E¢39) and
(39), only in replacing the vectgp by p, i.e., in possibly making
a different choice of the column from thex@ matrix JW and its

u-derivatives to ensure nontrivial results. But the new expressiog
for an abnormal eigenvalue also contain fewer terms because
terms involving the zero matri¥V vanish. Furthermore, the con-

tribution of the termf JW” to x°! in the last equation of39) to

the general solution is not different from that of a zeroth-ord

eigensolution with the eigenvecto£®'=J7%=JW" (Since
M (o) =0, Eq.(17) is satisfied by amrbitrary #/°!, in particular
by #%=JW"). Hence the term involvingW" in the expres-

the first order, and anothey®! effectively of the second order.

The effective order refers to the highest-order derivative of the

arbitrary functionf that appears in the expression of an eigenso-

lution.

For an abnormal eigenvalugd!!=fJW'p is effectively a
oth-order eigensolution. It is redundant and, in the case of a
ormaldoubleeigenvalue, it has been discarded in favor of the

two zeroth-order solutions whose eigenvectors are the two col-

umns ofJ(ue), because the latter are simpler in form. However,

§br abnormal eigenvalues of multiplicity three or four, the eigen-

vector &11=JW'p is needed in the expressions of the higher-
order eigensolutions, as seen in the last terms of the expressions of
x?! and x'¥1 in Egs. (42b,c). For this reason&! is included in

sions of£ 3 andx'3) may be absorbed into the zeroth-order eigergq. (41), while only one of the two columns df ) is chosen in

solutions. In fact, according to E¢B6), #°! is determined by the
following governing equation:
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(xR0 N x21 A3l = 01 41 d2] A3l Type 4AA—The eigenvectors are given by the two columns of
J(u) and the two columns of’ (u). The eigensolutions are given

fo O 0 0 by the two columns of(u)(fs(x),f4(x)) and the two columns

0 f, 2yf, 3y’ of Eq. (44). All isotropic plates have superabnormal eigenvalues
« 2 3 (43) *i, which are the double roots ofl;;(x)=0 and also of

0O 0 f, 3yf; M,,(w)=0, and for whichM ;, vanishes identically.

0 0 0 fa We now give a proof that, if the strain energy functith
=1/2(k"m+ €'n) is positive definite, then the characteristic Eq.
The complete list of three eigenvectors and eigensolutions &82) has no real roots. Considarandn of the form
sociated with an abnorméiple eigenvalue are also given by Egs. T ) T
(41) and (42) when the expressions &f°! and x'*! are removed. Wy W =Wyt ={= 1% = L} s,
An eigenvalueu is called superabnormal if botkl (o) and n={—pu2—-1u}"n,.
M’(uo) are zero matrices. Such an eigenvalue must be a double =~ =~ . .
root of each scalar component of the matrix equatibf)=0, Substituting into Eqs(23a,b), and using Eq(19), one obtains
and so must bguy, and their multiplicity must be four. Then

1
(o) = 6" (o) = 8"(ug) =" () =0 andM(u) has the form 2U=x"m+ nT€={KO,nO}[O (45)

M {KO

e 1 (p) Nol”
M(p) == po) (k= 1o)°C, If the Eq.(22) has a real rooj, thenM(u)7=0 has a nontrivial

whereC is a 2<2 constant matrix. Again, two independent eigenreal solution#. Let {«y,ng}"=2. Then U vanishes for a non-

vectors are given by the two columns &fu,). To obtain first- trivial state. This contradicts the assumption thhtis positive

order eigensolutions, we notice that fod=1 and M(uq) definite.

=M"'(uo)=0, Eq.(36) is trivially satisfied regardless af® and Applying the preceding arguments to the special cases where

74, Setting 7#1'=0 and choosingt®! to be, successively, the either x, or ny but not both vanish, one also finds thdt ()

two column of the identity matriX,, then Eq.(35) with j=1 =0 has no real roots provided thBt is positive definite, and

yields two independent first-order eigenvectors given by the twd,(x) =0 has no real roots provided thatis positive definite.

columns of the matrix)’ (uq). Equation(27) yields the corre- Hence an anisotropic laminate has four complex conjugate pairs

sponding first-order eigensolutions given by the two columns 6f eigenvalues, and they may or may not be all distinct. The
the following matrix: multiplicity of the eigenvalues, and whether they are normal, ab-

. normal, or superabnormal, determine the types of eigenvectors
yfp 0 and eigensolutions belonging to the laminate. A laminateois-
0 yf} degeneratéf it has four complex conjugate pairs ofdependent
zeroth-order eigenvectors. Laminates are called degenerate, extra-
wheref; andf; are two arbitrary analytic functions. degenerate, and ultra-degenerate, respectively, if they require one,
For each eigensolution obtained in this and the previous sagro, or three conjugate pairs of higher-order eigensolutions to
tion, the expressions for the midplane strains, bending and twistipplement the zeroth-order eigensolutions.
ing curvatures and stress and moment resultants may be obtainetihe eight different types of eigenvalues and the corresponding
from Egs.(28) and(29). sets of eigensolutions logically imply a classification of all aniso-
tropic laminates into 11 mutually exclusive types, each with a
distinctive representation of its general solution. To solve an equi-
- librium problem of a laminate using the general solution, one
plexity must first determine the type to which the laminate belongs, and
The preceding results imply the following classification of eiuse the representation of the general solution appropriate to that
genvalues into eight types. Each type is marked by a numbgpe.
showing its multiplicityp, and abnormal eigenvalues are marked Three of the 11 types are nondegenerate, three degenerate, four
with the letter A. The symbol AA refers to a superabnormal eigemxtra-degenerate, and one ultra-degenerate. Each type is charac-
value ug, for which bothM (u) andM’(u,) are zero matrices, terized by a distinctive combination of eigenvalues, and only

l O
o 1, , (44)

J'(w) +J(w)

5 Classification of Eigenvalues and Proof of the Com-

and thereforeu, must be a quadruple eigenvalue. those eigenvalues with positive imaginary parts need be men-
(A) Normal Eigenvalues tioned. The nondegenerate types include laminates (ajtfour
Type 1—A simple eigenvalue simple eigenvaluegb) two simple and one double abnormal, and
Type 2—Normal, double eigenvalue (c) two double abnormal eigenvalues. The degenerate types in-
Type 3—Normal, triple eigenvalue clude those with(a) two simple and one double normdh) one
Type 4—Normal, quadruple eigenvalue double normal and one double abnormal &done simple and

Normal eigenvalues with multiplicitp have eigenvectors and one triple abnormal eigenvalue. The extra-degenerate types in-
eigensolutions of orders zero through 1 given by Eqs(38) and  clude laminates witlia) one simple and one triple norméh) two
(39). double normal(c) one quadruple abnormal afd) one quadruple

(B) Abnormal Eigenvalues superabnormal eigenvalue. Only laminates with a quadruple nor-

Type 2A—Abnormal,p=2. u has two independent zeroth-mal eigenvalue are ultra-degenerate. For each type of laminates,
order eigenvectors given by the two columns of the maitjx), the complete sets of eigenvectors and eigensolutions are obtained
each yielding an independent eigensolution when multiplied by &y combining those associated with the various eigenvalues of the
arbitrary analytic function ok+ uy. laminate, as described at the beginning of this section.

Type 3A—Abnormal,p=3. Two eigenvectors are given by
Egs. (41a,h and the corresponding eigensolutions are given by o
Egs. (42a,b. In addition, one zeroth-order eigenvec®f! and 6 The Derivative Rule

eigensolutiomy!®! are given by Eqs(41d) and(42d), respectively,  The expressions of the higher-order eigenvectors and eigenso-
to ensure independence 8P! and &, lutions, as derived through an algebraic analysis in the present
Type 4A—An abnormal quadruple eigenvalug with work, may be obtained in a formalistic way by differentiating
M'(u)#0. Eigenvectors and eigensolutions are given, respeappropriateanalytical expressionsf the lower-order eigenvectors
tively, by the full systems of Eq$41) and(42). and eigensolutions with respect g which is regarded provision-
(C) Superabnormal Eigenvalue ally as a variable prior to evaluation at a specific multiple root of
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the_characteristic equat_ion. This rule, which may be _called the f={f1(X+ 1Y), Fo(X+ woy), Fa(X+ ay), fa(X+ may)} T,
derivative rule always vyields correct results when applied prop-
erly.

The zeroth-order eigenvector associated with an eigenyajue
are determined by Eq$17) and (20). These equations yield two
or one independent eigenvectors of the zeroth order, dependin
whetherw is an abnormal or a normal eigenvalue.

While Eqgs.(7), (17), and(20) determine an eigenvector and an x=2R4Z"Df], (48)
eigensolution only whep is equated to a root of the characteris- . . . - . .
tic equation, we shall temporarily suppress the identificatiop. of whereD is the |dent_|ty matrix if the laminate is nondegenerate.
with a specific eigenvalue, and regard it instead as a variable. J" degenerate laminatés) and (b), one has
then differentiate these equations repeatedly with respect to the 1 0 0 0
variable u to obtain

where the four arbitrary functiorfs , . . . ,f, are generally distinct
even if their arguments involve a common eigenvalye The

eral solution for all types of laminates may be expressed as
ollows:

0O 1 0 0 49)
o ) D= . 49
ANV= D (N YD (x+ py) END, (462) 0 0 1 didu
0<j=<N
0 0 O 1
E0=0(w) g+ (DI (w9 Y In the degenerate cage), one has to replace the off-diagonal

elementd/du in EqQ. (49) by 2d/du. In the extra-degenerate case
(a), the D-operator is given by Eq(50a) below. In the extra-
degenerate caséb) and(d) it is given by Eq.(50b).

+([§.23"(w) 72+ (1,337 () g1 7Y, (460)

iyM ) (N=j) —
o2, (NOM Py =0 (46c) 10 o 0
2 2
The superscripts ofy, & and y, which previously appeared in D= 0 1 didp d%du (508)
bracket symbols in Eq$27), (35), and(36) to identify theorder 0 O 1 2d/du
of higher eigenvectors and eigensolutions, now appear in paren- 0 0 0 1
thesis and denote the order of differentiation with respect to the
variable u. Otherwise, Eqs(46a,b,¢ are formally identical to 1 didpu O 0
Egs.(27), (35), and(36), respectively. Therefore, in a formalistic
way, repeated differentiation of EqS)), (20), and(17) yields Egs. D= 0 1 0 0 (500)
(46a,b,c), which may be converted into correct expressions of the 1o 0 1 didu|
higher-order eigenvectors and eigensolutions, i.e., &2, (35
and the solution of Eq(36), by merely changing th&th deriva- 0 0 0 1
tives of i, & and y into the kth-order vectorsy/¥! and &1 and  For ultra-degenerate laminates one has
. . k . .
g:gensolut!onx[ 1. In other words, higher-order eigenvectors and 1 didp d¥dp?  d¥dud
gensolutions may be obtained from the analytical expressions of

the zeroth-order eigenvectors and eigensolutions, in whictp- 0 1 2d/dp 3d%/du?
pears as a variable, by repeated differentiation, followed by evalu- D=1 o 1 idy | (51)
ation of u at the specific multiple eigenvalue. This derivative rule
presents an exceedingly simple and formal routine for generating 0 0 0 1

higher-order eigenvectors and eigensolutions. Replacing the first row of the matrix in E¢51) by {1,0,0,9, one

Notice that the vectorp and p are defingd for the cases of jpiaing theD-operator of the extra-degenerate cése
normal and abnormal eigenvalues, respectively, to ensure a non

vanishing eigenvectodWp in the first case andW'p in the
second case. With the exceptions of a double abnormal eigenvalue

which has the two columns af as eigenvectors, and a superab? An Example: Infinite Plate With an Elliptical Hole
normal eigenvalue which has the two columnslbfs additional

eigenvectors, in all othgr cases the eigenvectors of various ordﬁz{g boundary curvex{a)?+ (y/b)?= 1. The laminate is subject to
;ric?l\éznﬁpﬁ])m’ao{oJ\:\I{]gJ ﬁggrtth:{é‘éggg;’;ﬂ\’gf&g'f;?éirr]]t\'gtggr stress and moment resultants which approach constant limits
i 'éF F oo —F b ={N11,N55,Niob and  {M,,M,,—2M,,}
Syyt o xxo JXY. 11,'N22 N1 y 1 WVixs Xy,

Normalization, as is often done in the Stroh formalism of anis (M, My,,—2My5} at infinity. The boundary of the hole is

tropic elatsticity,[4]|;_yieléjhs c_omrl)licatefl ?nalytfictil egprgssti_ons OI%ad-free. This problem was solved by Lu and Mahrenhfi2]
eigenvectors, making the implementation of the dernvative Tug, anisotropic laminates whose eigenvalues are all distinct. The

ungt‘:lry _CLIJrrnt;;]srsr(k)r;:e.m mathematical vi intis that th I,.solution is obtained by combining a uniform solution with the
Ivial reémark irom a mathematical viewpoint IS that the varly, o caging fimiting state of forces and moments, and a comple-

o_usu-derivatives olwp perﬁ must.be. evaluated at the specifi entary solution. The force and moment components of the
eigenvalueafter performing differentiation, not before. Thus the., \,1ementary solution decay to zero at infinity, while on the
derivative rule cannot be applied to the first and second-or 6undary of the hole they nullify the boundary forces and mo-

expressions of Eq#41) and(42) because the terms involving thements of the uniform solution. The boundary condition of the

vanlshlng m"’.‘t”.)dN(“) have already_beer_l discarded, so _that furéomplementary problem may be given for the stress and moment
ther differentiation of these expressions is no longer legitimate

In light of the derivative rule, the general solutions of the varipOtentiaIS by integrating the uniform field of forces and moments
. - ! X . . followed by reversal of the algebraic signs. One has

ous types of anisotropic laminates may be written in concise

forms. LetZ* denote the &4 matrix containing the four eigen- {F,y,— F x ,‘Ifl,\Pz}T: —yt;+xt,, (529)

vectors g, associated, respectively, with the four eigenvalugs _ .

having positive real partk=1, 2, 3, 4. The eigenvalues are ar- 6={N11.N1o, =M1 Mg}, 5={N15,Nop, = M2, My}

ranged so that simple eigenvalues precede multiple ones, and all (520)

eigenvectors associated with a common multiple eigenvalue ak& consider the complex analytic functige- f(z) defined by the

arranged in ascending orders. Let inverse expression

Consider an infinite laminate with an elliptical hole defined by
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2z=(a+ipub)¢+(a—iub)¢ L, (53) 9l dz=2{(a+imb)—(a—imb) 2L (62b)

where the parameter will be identified subsequently with an Then, for the complementary solution,
eigenvalue. Equatio(b3) is essentially identically to the mapping

T
used by Lekhnitski[2] (p. 159. Substituting Wy s W =Wy o Fyy o F oo = F b
{=e'f (54) =R Z,(DINV~*(at,—ibty)], (63)
into Eq. (53), one obtains {My My, —2M,y, — &, — €y, — 26}
z=x+puy=acosf+ ubsing. (55) =RgZ4(DI')V Yat,—ibt;)]. (6%)
Hence the unit circle in théplane is mapped by E@53) into the Notice that, for various degenerate laminates, the differential op-
boundary of the elliptical hole: erator D reduces to the identity matrik, only on the elliptical
_ L boundary but not in the interior region of the plate. Hence the
x=acosf, y=bsing. (56) interior solutions of degenerate laminates have more complicated
Differentiating Eq.(53) with respect tou, one has forms. Notice also that Eq53) is a quadratic equation fof

. . . . . 72 which can be solved explicitly in terms @f andz. Therefore, the
2bsing=ib({—¢ Y +{(atiub)—(a—iub) “}(d¢/du). solutions given by Eqg61) and (63ab) are completely explicit.
Substitution of Eq(54) into the last equation yield$¢/dx=0 on  Finally, the differential operatdd for generating higher-order de-

the elliptical boundary. If the function implicitly defined by Eq."vatives involves theotal derivatives of the function, associ-

(53) is written as{=f(u,z), then ated with multiple eigenvalues, and these total derivatives have
vanishing boundary values for the present problem. In contrast,

df/du=0aflou+yafloz=0 (57) the diagonal matrid in Egs.(62) and (63) involves partial de-

rivatives ¢,/ 9z, which do not vanish on the boundary.

on the boundary. Notice that In the solution of Ref[12], the boundary conditions were sat-

oflou=—ib({— ¢ H{(a+iub)—(a—iub)¢® 1, isfied by fitting the in-plane normal and shearing forces, the nor-
. ) 1 mal moment and the out-of-plane shearing force. This involves
f/9z=1/(d2/9{)=2{(a+iub)—(a—iub){"}~" expressions requiring the spatial derivatives of the functigns

Repeated differentiation of Eq53), followed by evaluation on The task is considerably simplified in the present analysis by fit-
{=e 1% shows that the higher derivatives oiith respect tox ~ fiNg the moment potentials and the two componentg f which
also vanish on the hole boundary. This result is important for t§gquire only the boundary values gf but not their normal de-
solution of the present problem if the laminate has repeated eigatves. _ . ) _ i

values. The expressions of the higher-order eigensolutions aréOr Iamlgates with a vanishing coupling stiffness maBixand
complicated because they contain the derivativelswith respect  thereforeB*=0), the bending solution can be obtained separately
to . This generally makes it difficult to find the appropriate comfrom the in-plane solution. Consider the latter problem. Equation
bination of eigensolutions to fit the boundary data analyticallyl?) reduces to the scalar equatithy,(.) =0, which has either

Since the derivatives dfvanish on the hole boundary, the preser0 distinct pairs of complex conjugate roots or one conjugate
problem is not burdened by this difficulty. pair of double roots. For the first case, there are two independent

Let eigenvectors whose first two componefis, ,—F ,} are given
by {— u1,1} and{— w,,1}, respectively. For the secoridegener-
f= (G (X+ p1y), L(X+ oY), G(X+ psy), La(X+ 1ay))C, ate case, they are given instead py u4,1} and{—1,0}. Equation

(58) (61) yields the solution of the complementary problem, which
where(, is defined by Eq(53), in which the parametex assumes aSSUMes the following form for the nondegenerate and degenerate

the valuewy, (&, . . . .s) denotes the diagonal matrix having thec@Ses, respectively,
diagonal elements; , . .. ,{,, andc is an undetermined complex = —p1 — 1 ws
constant vector. On the elliptical boundadg/du vanishes so { Y }:Re{wz—m}—l (&L §2>[
= -F 1 1 -1 -
that Eqs(49)—(51) all reduce tdD=1,. Furthermore, on the same X M1
ellipse, allg, reduce toe™'? irrespective ofu, . Let V denote the N N
4x4 matrix obtained by removing the first two and the last two X a[ 12] —ib[ 11}” (64a)
rows from the matrixz*, i.e., N2z N1z
V=[04x2,14,04]Z"" (59) { Fy ]—Re{ — iy —1H§1 dg /dull O 1
Then, on the hole boundary, —Fx 1 0]Jlo 4 -1 -
—isi Ve i si N N
Vc(cosf—i sind)+Vc(cosh+i sin6) «| a 12] —ib{ 11)) . (64b)
N2, Nip

={Fy,—F ¥, ¥,}T=—bsingt;+acosot,.

One easily obtains It is interesting that this solution depends on the elastic properties
of the laminate through the eigenvalues only. In particular, for all

c=1/2V Y(at,—ibty). (60) isotropic plates, Eq(64b) with u,=u,=i yields stress solutions

. L that are independent of the elastic moduli, a fact which is known

Hence the solution of the complementary problem is given by {4 pe valid if the traction data on the hole boundary have vanish-

Wy, =W, Fy,—F, Wy, ¥y, —u,—0v}T ing resultant forces and moments.

=R4Z"(D({1,{2,{35,{a))V Yat,—ibty)].  (61)
Let Z, andZ; be the 64 matrices whoséth columns are ob-
tained by premultiplying thekth column ofZ* by ®(u,) and
E(wy), respectivelyk=1, ... ,4(see Eqs(11a,c) for the defini-
tions of ® andE), and let

8 Summary and Concluding Remarks

The problem of obtaining general equilibrium solutions of an-
isotropic laminated plates is completely solved through reduction
to an eigenvalue problem associated with>22matrix function
M(w). A fundamental difference that sets the present analytical
I'=(3¢,1102,0{,102,0{3132,0{413Z), (62a) formulation apart from the Stroh-type formalism of anisotropic
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elasticity is the choice of the primary set of unknown variables. whether a multiple eigenvalue is normal(M (x)#0), abnormal
contrast to the stress-function-based approach of Lekhnitskii afid (x)=0) or superabnormaM (u)=M'(u)=0). The elements of
Muskhelishvil, the Stroh formalism starts from the equilibriurM (1) are defined directly in terms of the elasticity matricas,
equations governing the displacement functidag]. Many fun- B*, and D* according to Eq(19). If the conventional stiffness

damental results have been obtained, historically, through the u gtrlcesA, B, andD, or another set of elasticity matrices is used

; h . - .instead, then the conditions of abnormality and superabnormality
of this formalism. Yet the expressions of the eigenvectors, whi sume more complex expressions. This may lead to indirect char-

were obtained by the Lekhnitskii formalism in such simple angcterizations of the various types of laminates, more complicated
explicit forms, become considerably more complicated in thepresentations of solutions, and a less transparent classification.
Stroh formalism. The reason is simple. The differential equationsBecause the classification of the laminates is based purely on
governing the stress functions have coefficients that are the elastisthematical criteria, each class does not correspond to a peculiar
compliances, which are taken as the constitutive parameters in #a¢ of physical characteristics. For example, all homogeneous iso-
Lekhnitskii formalism. In contrast, the Stroh formalism uses thgopic laminates belong to, but form only a small subset of, the
elastic stiffness. While the eigenvectors have simple analytiaghss of extra-degenerate laminates that have a quadruple, supera-
expressions in terms of the compliance coefficients, they becoimeormal eigenvalueg, (this is one of the 11 classes listed at the
unduly complicated in terms of the stiffness parameters. end Section 5 and designated as extra-degenéigteThis class

The algebraic complexity of the stiffness-based formulation bgs defined only by the conditiond (o) =M’ (o) =0 on the ma-
comes more acute in the degenerate, extra-degenerate, and WgRfunction M (u) of Eq. (18), whereu, need not be equal tari.
degenerate cases, where the zeroth-order eigensolutions mustgh in the subclass where the superabnormal eigenvalues are
supplemented by higher-order ones, and the latter have more cofy; the preceding conditions impose only two restrictions on the
plicated expressions involving the lower-order eigenvectors afe elements of the coupling matri¢:
well. A comparison of Section 2 of this paper with Sections 3 and _ . . . N N N . .
4 shows that the determination of the general solution is muchBIi+B%,—(Bggt+ B, +B3) =0, B33+ B3~ (Bi3+B3) =0,

simpler for nondegenerate laminates treated in existing studiggq similar restrictions on the symmetric matriok$ and D*.

than for the various degenerate laminates that are investigajggiropic laminates are defined by much more stringent conditions
fully in this paper. It is shown that the latter results may be oby, the elasticity matrices.

tained from the former in a formalistic way by proper use of the pegpite their lack of association with specific types of material
derivative rule. But the |mplement_at|on of this rulga becomes MO mmetry properties and other physical characteristics, the vari-
cumbersome, due to the complexity of the analytical expression Qs classes of laminates and their peculiar eigenvalues and eigen-
the zeroth-order eigenvectors in the Stroh formalism. Althoughy| tions are needed for correct representations of general solu-
many important findings concerning the algebraic structure of ﬂﬁ%ns, Green's functions, and the integrals arising in boundary
solutions of anisotropic elasticity were made in the context of th§ement methods. A general computational code for anisotropic
Stroh formalism, most of these same results can be obtained ify&inates must include the proper representations of solutions if it
simpler way, and expressed in simpler forms, by using the expected to work for nondegenerate as well as degenerate lami-
compliance-based formalisrfgl]. , _ _ nates(including isotropic and quasi-isotropic onglsecause in the

The present analysis of anisotropic laminates is a mixed formygier cases the number of independent zeroth-order eigensolutions
lation using the curvatures and the in-plane forces as the primayinsyfficient and higher-order eigensolutions must be used to
variables. The moments and in-plane displacements or strgiins Svide a complete representation.
treated as secondary unknowns relatedstihrough the constitu- A detailed study of the algebraic structure of the solution space
tive Eq. (14), which involves the new elasticity matricés’, B*, ¢ anisotropic laminates, including orthogonal eigenspaces,

* i i H i . . . . . .
andD™. The reason for this choice is that the first four elements oo gometrics, invariant tensors, and isomorphisms is presented
x are the components of gradientswoindF. They imply Eq.(8) i, 4 companion papef14].
which, together with the constitutive relation, reduce the determi-
nation of eigensolutions to a two-dimensional eigenvalue problem
associated with a 22 symmetric matrix functiorM (u). Cases References
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Concepts of Separated
J-Integrals, Separated Energy
rNstite ¥ Release Rates, and the
amessnezs | COmponent Separation Method of
~ne | the J-Integral for Interfacial

1. Fuimoto ¥ Fracture Mechanics

Department of Ocean Mechanical Engineering, First, this paper presents the concepts of separated J-integrals and separated energy
Kobe Universityof Mercantile Marine, release rates. The path-independent separated J-integrals have the physical significance
5-1-1 Fukae Minamimachi, of energy flows into an interfacial crack tip from adjacent individual material sides or,
Higashinada-ku, equivalently, separated energy release rates. Thus, the J-integral and the energy release
Kobe 658-0022, Japan rate can be evaluated by the sum of the path-independent separated J-integrals. Second,

the relations between the separated J-integrals and the stress intensity factors are derived.
Third, the component separation method of the J-integral is extended for interfacial crack
problems to allow accurate evaluation of the stress intensity factors. Finally, pertinent
numerical analyses are carried out to demonstrate the usefulness of the separated
J-integrals and the component separation metH@Ol: 10.1115/1.1576803

1 Introduction In the consideration of static interfacial fracture mechanics pre-

The establishment of interfacial fracture mechanics is of gre%fnted in this paper, the concepts of the separdfati
i

importance, because in heterogeneous materials containing
tinct interfaces most failures occur at these interfaces. For th]
reason, extensive research has been done on interfacial frac
problems and continues up to the present day. Interfacial fract

integral and separate@tatio energy release rate are readily
3\’/eloped from the separated dynardimtegral, because under
Batic conditions the dynamigintegral naturally reduces to the
Hic J-integral derived by Ricé4]. Furthermore, the relations
mechanics is founded mainly on the solutions for interfaci gtween. the separatekintegrals and the stress intensity factors
re obtained using the analytical solutions for the stress and dis-

Cr"’}CkS' Becal_Jse of t_he mlsmatt_:h between the mate”als on Kifcement fields of an interfacial crack, which were derived by
neighboring sides of interfaces, interfacial cracks inherently pres,\ and Ji5]

duce mixed-mode states. Thus, in interfacial fracture mechanics, ,qqition to theJ-integral and the energy release rate, the
th?\ﬁ‘ﬁ."llj(at'ondOme'.Xeld'mOde Istates 1S mdanr?atory. f stress intensity factor is also widely used in fracture mechanics. In
ishioka and Yasiri1] recently proposed the concept of Sepag qer 1o accurately evaluate mixed-mode stress intensity factors,

rated dynamid-integrals(equivalent to separated dynamic energyishioka and co-workergf—8], developed the component sepa-

release ratgsfor dynamic interfacial fracture mechanics. Th&aiion method of the dynamid-integral for various crack prob-

separated dynamigintegrals have the following salient featuresiems in homogeneous materials. In this paper, the component

i. The separated dynamikintegrals can be expressed in vecSeparation method of thkintegral is developed to accurately and
tor form, [1]. Thus they can be decomposed into the confonveniently evaluate mixed-mode stress intensity factors for

ponents of any coordinate system. static interfacial cracks. The component separation method of the
i. The separated dynamikintegrals can be expressed in pattflynamicJ-integral for evaluating mixed-mode stress intensity fac-
independent formg,1,2]. tors of dynamic interfacial cracks will be reported elsewhgd¢,

iii. The components of the separated dynathintegrals paral- ~ An alternative formulation to that proposed here was put for-
lel to the crack direction have the physical significance ¢¥ard by Yau and Wangd10], who proposed theM, integral
energy flows into a propagating interfacial crack tip fron{nthod for_ evaluating th(_e mixed-mode stress_lntensny_ factors of
the individual material sides or, equivalently, the separated interfacial crack. In this method, the analytical solution for an
dynamic energy release raté¢s]. appropriate auxiliary problem is necessary. However, the auxiliary

iv. The sum of the separated dynaniimtegrals corresponds to solution field is often difficult or impossible to construct for com-
the dynamicJ-integral derived by Nishioka and Atlufp], Pplicated interface problems such as curved interfaces. In contrast,

which has the physical significance of the dynamic enerdf)€ component separation method does not require fictitious aux-
release ratd3]. lliary solution fields, which represents a great advantage of the

present method over thd ; integral method.

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF To demonstrate the applicability of the separaledtegral and
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIEDME-  the component separation method, numerical analyses for perti-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, May 31nent interfacial crack prob|ems are also carried out.

2001; final revision, Dec. 19, 2002. Associate Editor: B. M. Moran. Discussion on
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Depart-
ment of Mechanical and Environmental Engineering University of California—Sani& SeparatedJ-IntegraIs

Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months after . . L. .
final publication of the paper itself in the ASMEDORNAL OF APPLIED MECHAN- Now we consider a crack along a bimaterial interfésee Fig.

ICS. 1), this interface may be curved or straight. The local coordinate
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be evaluated directly by the following equation, when all compo-
nents in the integrands of Eqda) and(1b) are expressed in the

material 1 interface crack-tip coordinate systenf, or whenf,=0:
XM= im j(m)[Wnk—tiui,k]ds (3a)
rm_oJT:

f [Wnk—tiui k]dS (m=1,2). (3b)
(M4 p (M4 p(m '

Similarly to the separated dynamikintegral, [1], the crack-
axis component of the separatédntegral )%™ has the physical
significance of an energy flow into the interfacial crack tip from
the materialm, passing through the separated near-field path
'™ . In other words 9™ is equivalent to the separated energy
release rat&(™ from the materian.

TheJ-integral and the energy release rate can easily be obtained
by the sum of the separatdeintegrals:

2
3= o, )

m=1

Fig. 1 An interfacial crack in a nonhomogeneous material

0 . . . . .
system; is considered at the interfacial crack tip. The an@de  |n numerical analyses, the following far-field expression for

measured from the globa{;-axis denotes the direction of thethe separated-integrals is convenient after taking the limit
interfacial crack. of I',—0.

For a static interfacial crack, the separatsthtio J-integrals

can be derived by eliminating all inertia effects from the separated (m)_ _ _
dynamicJ-integrals,[1], to give = r<m>+r(m)+r(m>[wnk v lds  (m=12. (5)
c |
JM=lim j(m)[Ww—tiUi,k]dS (1a) 3 Separated Energy Release Rates
I‘im)_‘0 Fs

Using the concept of the crack closure integral, the separated
energy release rates can also be derived by
=f [Wnk_tiui k]dS (m=1,2),
(™ ™y p(m '

(1b)
where the superscrigim) denotes the material numbéf is the
stra.un eqergy density, and (¥ d( )/dX,. The integral paths are —uf(a+Aa))|o_oldS| (m=12), (6)
defined in Fig. 2I'(™, 7™ T and'(™ are the separated 2
paths for the near-field, far-field, crack surface, and interface in-h M is th . . h aiside al h
tegrals, respectively. In Eq1), the separated-integrals are ex- WNereti" Is the traction acting on the material-side along the

1 Aa
G™= lim [m f [t (a)(u"™ (a+Aa)
Aa—0 0

pressed in the global coordinate system. interface line ofa<x?<a+Aa, u{™ is the crack-face displace-
The crack-axis components of the separdkintegrald%™ can ment of the materiai (m=1,2), anduf is thex; displacement
be evaluated by the coordinate transformation component at the crack tip.
om) - Furthermore, the separated energy release G{#8s5(m=1,2)
I = agd) (m=1,2), (2)  can be evaluated from the energy balateme Fig. 3, as
whereay, is the coordinate transformation tensor. The crack-axis 1 dE™ 1 /dpm dE}m) dwm
components of the separatddntegralsJ2™ (m=1,2) can also ~ G(M== == + (m=1,2),

B da B\ da da da
(7)
whereB is the thickness of the body, afd™ and W™ are the
fracture energy provided from materialand the strain energy in
materialm, respectivelyP{™ is the input energy from the applied

loads at the materiah side andP{™ is the work done by the
traction of the other side material through the interface.
The rates of these input energies to the matenian be evalu-

ated by
dE”")_J' du o o
da  Jm_gm'da ®

material 1

interface

and

dP"_ W s 9
da  Jun''da &

where V(M (=sM+gM+sM+gM)  denotes the entire
Fig. 2 Definition of integral paths for an interfacial crack boundary of the region occupied by the matermland Sfm) de-
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Material 2
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Fig. 4 Interfacial crack

1 kD D+ 1/
e=—mn| TR (14)
27| k@1 @4 17D
%= ’_4 (m) ;
3—4v (plane strain
. . . . . . K(m = (m) (m) (m:1,2) y
Fig. 3 A bimaterial with an interfacial crack (3=v'™M)/(1+»'™) (plane stregs
(15)

wherer(™ andu(™ denote Poisson’s ratio and the shear modulus

notes the entire uncracked interface at the matemialde. These Of.f_r;]e mat?“.ztim re?_pecttlvely. d disol t . f
integral paths are defined in Fig. 3. Since the continuity conditions, ' '€ €XPIICIL N€ar-ip Sress and displacément expressions Ior an

along the uncracked interface can be written as interfacial crack were derived by Sun and ). However, their
definitions of the stress intensity factors differ from E#3). Us-
uP=y? (10a) ing the stress intensity factors defined by Fip), the asymptotic

in-plane stress components for the materiaside can be ex-

and pressed as follows:
tV+1?=0, (1) . 1 - "
the following relation holds: i :m[Klflii (G,Inl—,s)
dP(Y  dp{? r .
PR ] (11) +K2f<2'i‘j">(a,|n|—,a)], (ij=11,22,12.  (16)

Therefore the sum of the separated energy release rates nBetailed expressions of the stress components are given in the
rally becomes the total energy release 1@te Appendix. Similarly the in-plane displacement components for the
material m side are expressed by

1 (d(PW+PpP2) d(V_V(1)+V_V(2>)} .

Wig@—2
GCH+GT=g da da 2mr r

(m) — (m) (m)
(12) U 47 '™ cosh me) {Klgl‘ (01”1' o )

4 Near-Tip Field of an Interfacial Crack

], (i=12. 17)
In the subsequent sections we derive the relations between the

sepa_rated]-integrals and the stress !“F‘?”S“y factors. However, iI.'3etai|ed expressions of the displacement components are also
the literature there are several definitions of the stress |ntensgtp(len in the Appendix.
r

factors for an interfacial crack tip. In this section we therefo On the other hand, the out-of-plane stress components are given
summarize the near-tip stress and displacement fields and the dgfires. [13] as '

nition of stress intensity factors used in this study.

(m) r o
+K292i 0,|n|—,s,K

In this paper, the following definitiond,11,12), of the stress Ks P
intensity factorsK,; andK, are employed: 03— — ——Sin=, 182
1 2 | 13 \/ﬁ 2 ( )
(oartiow] K1+iK2(r)'S 19)
Optioply-oc=—— 17| - K 0
V2mr Opg= + ——=c0s, (180)
\2mr 2

where the polar coordinate system {) is defined in Fig. 4. The

parametel is the characteristic length that normalizes the oscifor both material sides, whelg; is the stress intensity factor for
latory singular term, and is usually taken as the entire crack lengiht-of-plane deformation. Similarly the out-of-plane displacement
(I=2a). The parametet is the bimaterial constant, given by is expressed by
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2K; [ 0 Material 1 o

(m) _ — sin— =
3 L 27Tslnz (m=1,2). (19)

It is noted that, because of the oscillatory singularity in the r \
asymptotic stress field, the in-plane stress intensity fa¢¢grand /
K, cannot be interpreted as the mode | and mode |l stress inten- e

sity factorsK, andK,, in a homogeneous material. In contrast to
this, K3 is equivalent with the mode Il stress intensity factor, in
the case of an isotropic bimaterial.

Interface

5 Relations Between the Separated Energy Release
Rates and the Stress Intensity Factors

For the in-plane deformation, E¢6) can be rewritten as

Material 2 T®

Fig. 5 Semicircular near-field paths for the separated

) 1 Aa " o () o J-integrals
GW=+1im 5— | {05]4-0(x1)-U5"[ o= s n(Aa—X))
Aa—»OZAa o 22 1 2 + 1
+ 088 pmo(x)) - ul| 4, (Aa—x))}dX], (20a) factors. If we use a circular path for the evaluation of the near-
1 (aa field separated-integrals, as shown in Fig. 5, Ela) can be
6= i o [ 0Bl U, (aamsg)  Tewiten as
Aa—0 0 o) J‘ﬂ
Jo Y =1im Wn,—tu;  Jrd o, 26a
FZlio0) U]y damDE. (@) I g N e
And for the out-of-plangmode 1ll) deformation, Eq(6) can be 0
rewritten as 02 =im J [Wn—tiu; Jrdé. (260)
H 1 ha 1 0 1 0 0 e
GW=+ lim 5Aa 753 g=0(x9) - U5 o= 1 -(Aa—x])dx?, 6.1 Tangential Component of the Separated-Integral
aa—0 0 (212) J9M_ Using the asymptotic solutions for the in-plane deforma-
tion, i.e., Eqs(16) and(17) in Egs.(26a) and(26b) with k=1, the
@ . 1 (4a @ 0 (@ o0 relations between the separatkihtegrals and the stress intensity
G¥=—lim 57— | o3 lo=0(X1)-Us”|p= —n(Aa—x7)dx;.  factorsk, andK, can be derived as
Aa—0 0 ) )
(21b) \]0(1):(1Jr K(l))(Kl+ K2) (27a)
Then, substituting Eqg16) and(17) into Egs.(20) and(21), the ! 16V cosH(me)
following relations between the separated energy release rates and DN 2 12
the stress intensity factors are obtained: For in-plane deformation, JO(Z)_(1+ k) (KI+K3) (2m)
T (2) '
. eﬂE(l_"_K(m))(Ki_i_ Kg) 16,4L COSH(’H’S)
:8 (M (1+e27)cosh me) (m=1,2), (22)  These agree with the relations between the separated energy re-
# lease rates and stress intensity factors given by(Z2). Similarly,
and for out-of-plane deformation, for the out-of-plane deformation, substituting E¢8) and (19)
K2 into Eqgs.(26a) and(26b) gives
GM=—2" (m=1,2). (23) K2
4,U«(m) J(ll):%’ (289)
Thus, the sum of the separated energy release rates for in-plane 4u
deformation(see Eq.(22)) becomes K2
(1) 2) IP=— (280)
1 «KP+1 kD1 4p®
G=GM+G?= D o [(KI+K3).
16 cosfi(me) | M These agree with the relations between the separated energy re-

(24)  lease rates and stress intensity factors given by(E3).
This agrees with the relation between tftetal) energy release  Since the separatehintegrals and the separated energy release
rate and stress intensity factors obtained by Malyshev and SE3tes represent the energies supplied from the individual material

ganik[13]. Furthermore, the sum of the separated energy releages to the tip of the actually extending crack or virtually extend-
rates for out-of-plane deformatidsee Eq(23)) is ing crack, the sum of the separated quantities becomes the
J-integral or the total energy release rate. Thus, we have

, (25 39=2004 1020 (304 1) cosdy+ (IS + IP)sin b,

2

G=G<1)+G<2>=53 : !
4

o @
e ©
o . . =G=GY+G®, (29)
This is in agreement with the relation between (t@al) energy _ )
release rate and the stress intensity factor obtained by \[ilil For in-plane deformation, Eq§27a) and (27b) can be used to
obtain theJ-integral as

6 Relations Between the Separated-Integrals and the © 00 1002 1 D1 @41
i J) =37+ 3] =
Stress Intensity Factors 171 U 6 cosh(me) | pu® 4@
Using the asymptotic near-field solutions given by Ed®€)— 2 o
(19), the separated-integrals can be related to the stress intensity X (KI+K3). (30)
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(m)

o

1

R
(1) #(2>

This agrees with Eq(24). Thus, we can confirm the relationsSimilarly, for out-of-plane deformation, the ratios of the separated
1 M

given in Eq.(29), and the relation between the energy release rag@antities to their total can be expressed by
and the stress intensity factors, as obtained by Malyshev and Sal-
gnik [13] (see Eq.(24)). Furthermore, for out-of-plane deforma-
tion, theJ-integral from Eqs(28a) and (28b) is expressed by J<1)<m) Gm
1 39 G /

—+—1]. (31) !

M(l) M(Z))
This agrees with both E¢25) and the relation between the energyrpen the ratio of the separatdentegrals or separated energy
release rate and the stress intensity factor obtained by Wil release rates is given by

The ratio of the energies supplied to the crack tip from the

individual material sides seems to be very useful in interfacial
fracture mechanics. This ratio can be evaluated from the separated

; ' ; . 0(1) 1 2
J-integrals. For the in-plane deformation, the ratios of the sepa- ! _ G! ): p?
rated quantities to their total can be expressed by 2@ g W

/

Consequently, the ratio of the separatkthtegrals or separate
energy release rates can be expressed by

K2 (m=1,2). (34)

4

0)_ 10(1 0(2) _
‘]EL)_‘]l( )+Jl( ) —

(35)
oM gm KV+1 P41

+
M(l) M(Z)

kM1

M(m)

29 G

(m=1,2).

It is interesting to see in Eq§33) and(35) that the ratios of the
(32) separated-integrals or separated energy release rates are propor-
d tional to the inverse of the mismatch ratio of the shear moduli or
Young’s moduli. Thus, the compliant material side supplies more
fracture energy to the interfacial crack tip. These ratios can be
J(11<1) G (kV+1)u?@ used to quantify the fracture energy supply mechanism to the

22 NCH (K24 1)@ interfacial crack tip.

E@
— (plane stress ) )
EW 6.2 Vertical Component of the Separatedl-integral Jg<m>.
= W2 ) . (33)  For in-plane deformation, using Eqd.6) and (17) in Egs. (26a)
d-—v")E” (plane strain and (26b) with k=2, the vertical components of the separated
— (2 (1) P i o(m) —
1-v'9)E J-integralsJ;'"™” (m=1,2) are evaluated as

.(2m-3) 2 r r 2 r (m)
e tanh(me)| K1 sin| 2¢ Inl— +2K;K, cog 2¢ Inl— —Kj5sinl 2¢ Inl— (1+«'"™)
J9M=—|im (m=1,2). (36)
r—0 16u™ e cosi{re)
Furthermore, from Eq(36), the vertical component of th&integral for the interfacial crack is obtained as
r r r
2 o 2 .
- + _] — -
oy tanh(me)| K sm( 2¢In I 2K K, 00£( 2¢eIn I K5 sm( 2¢eln I) (14 1D s (1+ 1) - .
2= ,ILT:) 167e cosh{ me) u® € u? € - @)
I
Because of the trigonometric functions containing the logarith- KKy (1+ k)
mic singularity, the vertical components of the separated J(2’= - T (39)

J-integrals and thel-integral (see Eqs.(36) and (37)) oscillate
when the near-field path shrinks to the crack tip+0). There- This agrees with the relation given by Nishioka and Atf#j.

fore, the vertical components of the separalddtegrals and the  For out-of-plane deformation, using Ed48) and (19) in Egs.
J-integral cannot be related to the stress intensity factors for t{®6a) and (26b) with k=2, the vertical components of the sepa-

interfacial crack tip. _ _ ratedJ-integralsJ3™ (m=1,2) are evaluated as
However, if we consider a crack in a homogeneous material, the
logarithmic singularity terms vanish because0. Consequently, Jg““):o (m=1,2. (40)

the stress intensity factots; and K, reduce to the mode | and . . .
mode Il stress intensity factok§, andK, , respectively, and Eq. In addition, from Eq(38), the vertical component of thkintegral

(36) reduces to becomes zero:
J=0. (41)
KKy (1+«)

J9m = 8

(m=1,2), (38) 7 The Component Separation Method of the
J-Integral for Extracting the Mixed-Mode Stress Inten-
sity Factors of an Interfacial Crack Tip
whereu=pu®M=u® andx=k® =@ Thus, the vertical com-  To extract mixed-mode stress intensity factors from the dy-
ponent of thel-integral for the homogeneous case is given by namic J-integral and the dynamic energy release rate, Nishioka
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s [ 2 5 [39) 4 39
NN+ R NV A+ )
=5\ © (k=1,2)
“NA(6%+62) o

X (50)
I'. ' where 6, =8, and 5,= 6 (see Fig. .
-, The transformation to the stress intensity factors with the
"' 0:=0« characteristic length=2a, or to those with a desired charac-
teristic lengthl, can simply be conducted using the following
Fig. 6 Crack opening displacements equation[16],
(Kl) cosw  —sinew|[K,
=| . — 51a
Ko |sine cosw ||K, (513)
and coworkers developed the component separation meftépd, w=¢ In(I/I_). (51b)

In this paper, the component separation meth6éd,is extended
to the case of static interfacial fracture mechanics. The features of the component separation method can be sum-
Using the ratio of the stress intensity factors<K,/K,), the marized as follows:

tangential component of th&integral, i.e., Eq.(30), can be re- i It can be expressed by explicit formulas.

written as : > - 2
ii. It does not require any auxiliary solution field.
Jtlle(lJraz)Kz, (42) iii. It s appllcable. using the path-independent separated
J-integrals, thel-integral, or the energy release rate.
and iv. The signs of the stress intensity factors are automatically

determined by the signs of the corresponding crack opening

1 kP+1 k@41 displacements.
A= 16 cosR(z ) (1 2 | (43) v. Since its formulas do not include the oscillatory and loga-
K K rithmic singular terms, the numerical results for the stress
Using Egs.(17a) and (17h), the crack opening displacements in intensity factors are stable and accurate.
the x{” andx3”-directions behind the crack ti}, and é,, are | previous studies on extracting mixed-mode stress intensity
obtained as factors for interfacial cracks, Yau and Wangyls, integral method,
(Ky+iK,) [10], has been commonly used. However, it is sometimes difficult

to set up the auxiliary solution field that is necessary in the appli-
2(1+2ig)coshme) cation of their method. For some complicated conditions, such as
. crack kinking and branching, it is hard to obtain the auxiliary
[ r ([) (44) solution. The component separation method developed here there-
27 \1) fore has great advantages over tflg integral method, because
no auxiliary solution field is needed.
Then, from Eg.(44), the ratio of the stress intensity factors

can be related to the ratio of crack opening displacements as

8, +i 8=

kV+1 P+1
(1) * (2)

“ M

follows [15]: . .
[15] 8 Numerical Analyses of Interfacial Crack Problems
a=K, /K, =1lim(1-S68,/8,)/(8,16,+9), (45)  In this paper, all the stress intensity factors for interfacial cracks
r—0 are expressed using the characteristic leigtl2a. Stress inten-

_ _ sity factors with a different characteristic length can be obtained

S=(tanQ-2¢)/(1+2z tanQ), (46) using the transformation given in EO0).
and
Q=¢eIn(r/l). 47)

To calculate the ratio of the stress intensity factors it is necessary
to take the limitr —0. However, it is difficult to obtain accurate
numerical results in this limit because the quan8tigas logarith-

mic and oscillatory singular terms. For this reason, and to derive
explicit formulas for the component separation method, we elimi-
nate S(S=0) by taking tarQ=2¢ in Eq. (46). This can be

achieved by choosing the following special characteristic length: Interface

:_/6571 tan~ 1(23), (48)

wherer is the location at which the crack opening displacements
are evaluatedsee Fig. 6. The ratio of the stress intensity factors
can then be accurately evaluated by

Aluminum

A

a=35,18,. (49)

Using Eq.(49) in Eq. (42), the explicit formulas for the com-
ponent separation method can be derived as Fig. 7 An interfacial crack in an infinite bimaterial plate
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Table 1 Material properties of the bimaterial plate 322

Material Young’s Modulus (GPa) Poisson’s Ratio t t t t t
Epox . . - - 1
Aﬁjmiynum Alloy 7%03 (())??g Material (1) )
ED (M
8.1 An Interfacial Crack in an Infinite Bimaterial Plate. =]
To verify the validity of the separated J integrals and the compo- N
nent separation method, we considered an interfacial crack in an
infinite bimaterial plate, as depicted in Fig. 7. The bimaterial con-
sists of epoxy(material 2 and aluminum alloy(material 2. The 2a
properties of these materials are listed in Table 1. The crack length —-t—ld— v
was set as 2= 60 mm. ™1 A
The theoretical near-tip displacement field under the plane
stress condition was produced using E(s7a) and (17b) with
K,=K,=0.18 MPam*2 The theoretical displacement compo- oW
nents were used as the corresponding nodal displacements in the — P
finite element modelsee Fig. 8 which consists of the eight- (%
noded isoparametric elements. The stresses and strains were cal-
culated using the finite element method. The separ&iategrals
were then calculated along the paths depicted in Fig. 8. Excellent Material (2)
path-independence of the separalddtegrals was observed. The E® @
J-integral value was obtained by summing the separated >
J-integrals. ] ‘ ‘ ‘
The stress intensity factors were converted from ietegral ‘ ‘
value using the component separation metfsme Eqs(50) and 0,5,

(51)), and are listed in Table 2. The ratio of the crack opening _ _
displacements was evaluated at the corner nodes nearest to the a=10 mm W = 100mm

crack tip. The numerical solutions agree excellently with the the-  rjg 9 A central interface crack in a bimaterial plate
oretical values.

8.2 A Central Crack in a Finite Bimaterial Plate. Now,
we considered a central crack in a finite bimaterial plate subject to
a uniform applied stress,,, as depicted in Fig. 9. The finite
element mesh with the eight-noded isoparametric elements
shown in Fig. 10a). The separated-integrals were evaluated
using five paths around the crack tip, as shown in FigbLO'he
separatedl-integrals showed excellent path independence. Ti
J-integral values were evaluated by summing the separat
J-integrals. Then, the stress intensity factors were obtained usi
the component separation meth@ke Eqgs(50) and (51)). The
stress intensity factors were normalized by

Fig. 8 Finite element mesh pattern around the crack tip

Table 2 Stress intensity factors for an interfacial crack in an
infinite plate

Theoretical Value Component Separation Method

K, [MPa ml/z] 0.1800 0.1795—-0.27% (a) Finite element mesh pattern (a/W =0.1) (b) Integral paths
K, [MPa m1/2] 0.1800 0.1795-0.27%

Fig. 10 Finite element model for a finite bimaterial plate
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Fig. 11 Variation of normalized stress intensity factor with
evaluating location (homogeneous plate )

=5.0

36(=L1)
P / B0(=W) unit:mm

Fig. 13 Compact normal and shear specimen

Fi=Ki/(ooma), (k=1,2. (52)

In order to check the effect of the location at which the crack
opening displacementseer in Fig. 6) are evaluated, we first
solved the problem depicted in Fig. 9 f&®/E®M=1 and 10.

The normalized stress intensity factors obtained by the component
separation method are plotted against the distanoe Figs. 11

and 12 forE@/EM=1 and 10, respectively. In these cases, thgonent separation method are summarized in Table 3 and com-
nearest five-corner nodes were used for the evaluation of the cragited with the numerical solutions of Yuuki and CH&] using
opening displacements. The solid lines are the average valuestf boundary element method. The difference between the present
the five results. The results show excellent independence from tgutions and their solutions is defined as

distancer. Thus, extrapolation to the crack tip is not necessary

when the component separation method is used. Fr—Fk Bem
Next, we systematically changed the crack length and mismatch NEaew=ae. (k=1,2), (53)
Fl BEM+F2 BEM

ratio. The normalized stress intensity factors obtained by the com-

whereF, gem (k=1,2) represents the normalized stress intensity
factors obtained by Yuuki and CH&7]. It is seen that the present

Center Crack E®/E®=10 solutions are very close to their solutions. In fact, the difference is
3.0 at most only 0.46%.
— o —9o —0 — 0 —
20 F. 8.3 Compact Normal and Shear Specimen. Here we con-
o sider the compact normal and shé@N$S) specimen devised by
B i Richard and Benit£18], as shown in Fig. 13. The loading direc-
ooy 1.0 tion can be systematically changed from a loading angl¢-e0°
to 180°. The finite element mesh pattern is shown in Figajl4
0.0 F2 The paths for the separatédntegral are shown in Fig. 18). The
e . . * loading and constraint conditions are indicated in Fig. 13. The
-1.0 1 1 1 nodal forcesP,, P,, andP; were determined by the following
0.00 0.05 0.10 0.15 0.20 equilibrium conditions for forces and momet9]:
r/a
P,=P cos¢ (54)
Fig. 12 Variation of normalized stress intensity factor with
evaluating location (bimaterial plate ) P,+P3=Psin¢g (55)
Table 3 Normalized stress intensity factors for a central interface crack in a finite bimaterial plate under uniform tension 4
=2a)
Upper: F, (difference %, Lower: F, (difference %,
a/w
EW/E@ 0.1 0.2 0.3 0.4 0.5
1.0 1.003%-0.25 1.0226-0.19 1.0561—0.15 1.1079-0.14 1.1852-0.13
0.000@0.00 0.000@0.00 0.000@0.00 0.000@0.00 0.000@0.00
2.0 0.99780.14 1.0169-0.16 1.0501-0.23 1.1013-0.21) 1.1774-0.25
—0.0747-0.29 —0.0742-0.29 —0.0748-0.30) —0.0771-0.39 —0.0819-0.34
3.0 0.990%0.12 1.0094-0.20 1.0423-0.22 1.0926—-0.26 1.1673-0.25H
-0.1112-0.39 —0.110%-0.38 —0.1108-0.40 —0.1139-0.39 —0.1206—-0.40
4.0 0.98400.14) 1.0031-0.19 1.0357—0.2H 1.0854—-0.26 1.1588—-0.27
—0.1326-0.40 —0.131G—-0.43 —0.1315-0.49 —0.1349-0.39 —0.1425-0.49
10.0 0.96440.20 0.9836-0.18 1.0152-0.29 1.0627—-0.20 1.1322-0.19
—0.1774—-0.42 —0.1741-0.36 —0.1736—-0.26 —0.1768—-0.30 —0.1851—-0.22
100.0 0.94260.28 0.9618-0.05 0.9922-0.17) 1.0372-0.10 1.1023-0.15
-0.2079-0.3) —0.2027-0.16 —0.20080.00 —0.20280.07) —0.21040.04
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pah ¢ [Deg]
— 1
§ Fig. 16 Stress intensity factors versus loading angle (homo-
"4+ geneous material )

correction factors-, andF,,, respectively. In addition to the pure
modes undekp=0 deg and 90 deg, thE, value under another
pure shearing load)=180 deg, is also exactly zero. Furthermore,
as can also be predicted theoretically, theresults are exactly
symmetric with respect t¢p=90 deg, whereas thie, results are
exactly antisymmetric. The present results agree excellently with
the results obtained by Richard and Benit3].

Next we consider a bimaterial specimen of epoxy and alumi-
num alloy. The properties used are the same as those listed in
Table 1. Figure 17 shows the variation in the normalized stress
PiLi+Pol=Psl ;. (56) intensity factor with the evaluating location. Once again, the re-
sults show excellent independence from the evaluating location.

Figure 18 shows the variations of the normalized stress inten-

F= Kk/(;\/ﬁ) (k=1,2), (57) sity factors for various loading angles. In contrast to the homoge-
_ ] ) neous case, the mismatch of the Young’s moduli causes-the
whereg=P/(W-t), andW andt are the width and thickness of yalues to be nonzero under the pure shear loadingsdwith deg

the specimen, respectively. _ _ ~and 180 deg, and thE, value is also nonzero under the pure
First, a homogeneous aluminum alloy specimen is considerggnsion loading withp=90 deg.

In Fig. 15 the normalized stress intensity factors obtained using

the component separation method are plotted against the evaluaB.4 A Curved Interfacial Crack in a Composite Material

ing locationr. Under the pure tension loading with=90 deg, the Now we demonstrate the applicability of the separakéutegrals

F, value is exactly zero, whereas under the pure shear loadiagd the component separation method to the problem of a curved

with ¢=0 deg, theF; value is exactly zero. For both values of thanterfacial crack. For a curved interfacial crack, thlg integral

loading angle,¢p=0 deg and 90 deg, the results show excellerinethod is difficult to apply because of the difficulty of construct-

independence from. Thus, the stress intensity factors can accung an appropriate auxiliary solution field.

rately be evaluated using the component separation method. ~ We consider a fiber-reinforced composite material that consists
The normalized stress intensity factors obtained using the coff-SiC fibers and aluminum base mater{@0], as shown in Fig.

ponent separation method of tlentegral are plotted in Fig. 16 19. Using periodicity conditions, only a unit celéee Fig. 20

against the loading angle. In this case, the normalized stress Was analyzed under the plane strain condition. The Young's

tensity factorsF; andF, correspond to the mode | and mode lImodulus and Poisson’s ratio of Si@aterial 2 are assumed to be

(a) Finite element mesh pattern (b) Integral paths

Fig. 14 Finite element model for a CNS specimen

The stress intensity factors were normalized as follows:

5.0 CNS Specimen Homogeneous 5.0 CNS Specimen Inhomogeneous
oF1($=90°) ©F2(¢=90°) o Fi (¢=90%) B2 (¢=90%)
40 | oFi(¢=0°) aF2($=0°) 40 FoF($=0") 2F($=0")
30 F o Pa S O o 3-0 B o o o O O
B =
20 =20
o T T S G- —
00 F &—HB—B—B—B— 0.0
-1.0 A 1 2 L -1.0 8—r8—f = ju=)
0.00 0.01 0.02_ 0.03 0.04 0.05 0.00 0.01 0.02_ 003 004 005
r/a r/a
Fig. 15 Variation of normalized stress intensity factor with Fig. 17 Variation of normalized stress intensity factor with
evaluating location (homogeneous CNS specimen ) evaluating location (bimaterial CNS specimen )
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Fig. 18 Stress intensity factors versus loading angle (nonho-

mogeneous material )

E@ =450 Gpa andv?=0.170, respectively, whereas those offig. 21 Finite element mesh pattern for the fiber-reinforced

aluminum(material 3 areE(Y=69 Gpa and/")=0.333. In this composite material
proglem, two symmetrical curved interfacial cracks are consid-
ered.

Figure 21 shows the finite element mesh pattern used for theThe separated-integrals and the-integral are plotted in Fig.
analysis. Due to the symmetry conditions, only one-quarter of th® against the path number. All of them are excellently path-
cell was analyzed. The unit cell was subjected to uniform digndependent. The separatihtegral of the matrix is much higher
placements ofi=0.1m at the upper and lower boundaries. Thehan that of the fiber. In other words, the separated energy release
separated)-integrals were evaluated for five paths around thgyte of the matrix is much higher than that of the fiber. This im-
crack tip, as shown in Fig. 22.

LA, 200 | PR
—- —i —— L I
3o
70+
——&— 00— © L 4 @
Fig. 19 Fiber-reinforced composite material 60 °o
Matrix
! g
| 50
45 Deg Eé
Crack =4
= 40
o—l
o
O 30+
- - — - — - — 0
Al
20+
Crack - 10- . R R N A
a=3.14um - = - - - 1,0@
: 0 Fiber
16 unit : pm 1 2 3 4 5
Path No.
Fig. 20 Curved interfacial cracks around the SiC fiber Fig. 23 Path independence of the separated  J-integrals

514 / Vol. 70, JULY 2003 Transactions of the ASME



Composite

4.0
Ki
20 F
N
:2 00 F
K
2.0 L L
0.00 001 0.02 0.03
r/a

Fig. 24 Variation of stress intensity factor with evaluating lo-
cation (fiber-reinforced composite )

J-integrals and the stress intensity factors using the asymptotic
solutions for an interfacial crack tip. It was shown that the path-
independent separatelintegrals have the physical significance
of energy flows into an interfacial crack tip from the adjacent
individual material sides or, equivalently, the separated energy
release rates.

To accurately evaluate the stress intensity factors, the compo-
nent separation method of tdentegral was extended for interfa-
cial crack problems. The component separation method has great
advantages over th#l, integral method that is often used in
interfacial fracture mechanics problems.

Finally, pertinent numerical analyses were carried out to dem-
onstrate the usefulness of the separakéuategrals and the com-
ponent separation method. In particular, it was shown from the
separated-integrals for curved interfacial cracks in a SiC fiber-
reinforced aluminum base composite that the compliant base
metal provides a much larger fracture energy to the interfacial
crack tip. In addition, the component separation method demon-
strated accurate extraction of the stress intensity factors from the

plies that the compliant base metal provides a much larger fractlygth independent separatédntegrals, without constructing any

energy to the interfacial crack tip than does the stiffer fiber.  auxiliary solution field.
The stress intensity factors were obtained using the separated

J-integrals and thel-integral in the formulas of the component

separation methodsee Eqs(50) and (51)). The results for the Acknowledgments

stress intensity factors are plotted against the evaluating locationThis study was supported by the natural science grant from the
(See Fig. 24.Excellent location independence is found, even faviitsubishi Foundation. The authors gratefully acknowledge Mr. T.

the curved crack. Thus, the results should be very accurate. keigimoto for his assistance.
this case, the average stress intensity factors wkre

=90.520 MPam*?2 andK ,= — 45.277 MPam*?, Appendix

9 Conclusions

On the basis of the stress intensity factors defined by(Eg),

the explicit near-tip stress and displacement expressions for an

In this paper, we first presented the concepts of patimterfacial crack can be summarized as follows.
independent separateHlintegrals and separated energy release The asymptotic in-plane stress components for the material
rates. We then derived the relations between the separaside can be expressed by

m K4 teg—(3-2 0 r ) 360 r ) . [36 r
o) =————————|e"e0 (3 2Mem 3 cog — +eIn—| + 26 siNPcO§ = +eIn—| —sindsin —+eln~
227 cosh{me) 2 | 2 ' 2 '
[ r 0 r
_efaﬁ+(372m)sar C05<—_8 In_) _ e+89(32m)6ﬂ'[ 3 sir(—-i—a |n—)
2 | 2271 cosh{ms) 2 |
) (36 r ) 36 B 32 |6 r
+2¢ sin@sin ?+sln|— +sinéco 7+eln— +e 20t (8-2mem gin E_Slnl_ , (A1)
K 0 r 360 r 360 r
o e”"‘“‘zm)”{cos{—Jrs In—)—zs sinecos(—+s In—| +sin@sin — +e In—)]
2271 coshime) 2 2 | 2 '
0 r 0 r
+ee0+(3-2mpem CO{—*S In _) _ e+89(32m)8ﬂ'{ sinl = +¢ |n—)
2 [ 2271 cosh{me) 2 |
. (36 r . 30 r B 3.2 [0 r
—2g sinésin 7+sln|— —sinfdco 7+sln— — g et (E=2mem gjp E_Slnl_ , (A2)
K [ r 36 r 360 r
0(1'?)=—1 e“"<32m>£”(sin(—+e In—) +2¢ sinasin(—+e In—) +sin0cos(—+s In—)]
227 cosh{me) 2 2 ' 2 I
% r [ r
_e*89+<3*2m>”sin(——s In —) —_—— e””(e’zm)”{ —005<—+a In—)
2 [ 2271 cos{we) 2 |
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The in-plane displacement components for the matenialde are expressed by
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The Mode Il Crack Problem in
Microstructured Solids Governed
by Dipolar Gradient Elasticity:
Static and Dynamic Analysis

This study aims at determining the elastic stress and displacement fields around a crack in
a microstructured body under a remotely applied loading of the antiplane shear (mode
II) type. The material microstructure is modeled through the Mindlin-Green-Rivlin dipo-
lar gradient theory (or strain-gradient theory of grade two). A simple but yet rigorous
version of this generalized continuum theory is taken here by considering an isotropic

H. G. Georgladls linear expression of the elastic strain-energy density in antiplane shearing that involves
Mechanics Division, only two material constants (the shear modulus and the so-called gradient coefficient). In
National Technical University of Athens, particular, the strain-energy density function, besides its dependence upon the standard
1 Konitsis Street, strain terms, depends also on strain gradients. This expression derives from form Il of

Zographou GR-15773, Greece Mindlin’s theory, a form that is appropriate for a gradient formulation with no couple-
e-mail: georgiad@central.ntua.gr stress effects (in this case the strain-energy density function does not contain any rotation
Mem. ASME gradients). Here, both the formulation of the problem and the solution method are exact

and lead to results for the near-tip field showing significant departure from the predictions
of the classical fracture mechanics. In view of these results, it seems that the conventional
fracture mechanics is inadequate to analyze crack problems in microstructured materials.
Indeed, the present results suggest that the stress distribution ahead of the tip exhibits a
local maximum that is bounded. Therefore, this maximum value may serve as a measure
of the critical stress level at which further advancement of the crack may occur. Also, in
the vicinity of the crack tip, the crack-face displacement closes more smoothly as com-
pared to the classical results. The latter can be explained physically since materials with
microstructure behave in a more rigid way (having increased stiffness) as compared to
materials without microstructure (i.e., materials governed by classical continuum me-
chanics). The new formulation of the crack problem required also new extended defini-
tions for the J-integral and the energy release rate. It is shown that these quantities can
be determined through the use of distribution (generalized function) theory. The boundary
value problem was attacked by both the asymptotic Williams technique and the exact
Wiener-Hopf technique. Both static and time-harmonic dynamic analyses are provided.
[DOI: 10.1115/1.1574061

1 Introduction dependence on strain and/or rotation gradients, the new material

c?nstants imply the presence of characteristic lengths in the ma-

The present work is concerned with the exact determination o . . . . ) -
g s . erial behavior, which allow the incorporation of size effects into
mode Il crack-tip fields within the framework of the dipolar gra-

dient elasticity(or strain-gradient elasticity of grade veThis stress analysis in a manner that the classical theory cannot afford.

. oo L The Mindlin-Green-Rivlin theory and related ideas, after a first
theory was introduced by Mindlift], Green_ and Riviir 2], and development and some successful applications mainly on stress
Green[3] in an effort to model the mechanical response of matey - -entration problems during the sixtieee, e.g., Mindlin and
rials with microstructure The theory begins with the very generaIEshe|[4] Weitsmar{5], Day and WeitsmaﬁG]l Coo’k and Weits-
concept of_ a cor_1tinuum _containing elements or parti_tt@leq man[7], Herrmann and AchenbagB], and Achenbach et d19]),
macromedig which are in themselvedeformablemedia. This paye also recently been employed to analyze complex problems in
behavior can easily be realized if such a macro-particle is vieweth iariais with microstructurésee, e.g., Vardoulakis and Sulem
as a collection _of smallersubparticléwfilled microme_di)z_l In this [10], Fleck et al.[11], Lakes[12], Vardoulakis and Georgiadis
way, each particle of the continuum is endowed withirgeernal  [13] wej and Huthinsori14], Begley and Huthinsofl5], Exa-
displacement field, which is expanded as a power series in '“terﬂﬁktylos and Vardoulaki§16], Huang et al.[17], Zhang et al.
coordinate variables. Within the above context, the lowest-orderg], Chen et al[19], Georgiadis and Vardoulak[®0], Georgia-
_theory(dlpola_r or_grade-two theoiys_the one obtalne_d b)_/ retain- dis et al.[21,22, Georgiadis and VelgaKi23], and Amanatidou
ing only the first(linean term. Also, since these theories introduceind Aravag24]). More specifically, recent work by the author and

co-workers[13,20-23, on wave-propagation problems showed
" ContributedEby the Am;lied '\fﬁch&}nic_s DLViSAOQMOSEAMER'CANASOC'ETYMOF that the gradient approach predicts types of elastic waves that are
ECHANICAL ENGINEERSfor publication in the URNAL OF APPLIED ME- . H :
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Apr. 28,not pre_dlcted by the classical theo@H and t_or&_onalsu_rface
2002; final revision, Dec. 19, 2002. Associate Editor: B. M. Moran. Discussion o/aves in homogeneous materjadgd also predictslispersionof
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Depanigh-frequency Rayleigh wave@he classical elasticity fails to
ment of Mechanical and Environmental Engineering University of California—San i i i i
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months a?%fedmt dlspersmn of these Wavesamy frequen.cy' Notice that
final publication of the paper itself in the ASMEDURNAL OF APPLIED MECHAN- & these phenomena are observed in experiments and are also

ICs. predicted by atomic-lattice analysésee, e.g., Gazis et dI25]).
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Thus, based on existing gradient-type results, one may conclygghich again has dimensions @fength?) in the couple-stress

that the Mindlin-Green-Rivlin theory extends the range of appliheory without the effects of collinear dipolar forces, wherés

cability of continuum theories in an effort towards bridging thehe couple-stress modulus apds the shear modulus of the ma-

gap between classicénonopolar or nongeneralizetheories of terial. Of course, one of the quantitiesor (/) also appears

continua and theories of atomic lattices. within a dynamic analysis, which therefore may allow for an in-
In the present work the concept adopted, following the aforéerrelation of the two different characteristic lengilise one in-

mentioned ideas, is to view the continuum as a periodic Strucn}rgggceer?eirg;fszgariglaet?v%gv)\/loarag tbhye ggh;;iiggigdgﬁgg] igrfge ki-
like that, e.g., of crystal lattices, crystallites of a polycrystal o eorgiadis and Velgaki23)). Indeed, by comparing the forms of

grains of a granular material. The material is composed wholly gispersion curves of Rayleigh waves obtained by the dipolar

unit cells (micromedia having the form of cubes with edgeS Of(“pure" gradient and Coup|e_stre58pproaches with the ones ob-

size Zh. This size is therefore an intrinsic material length. Weained by the atomic-lattice analysis of Gazis ef 28], it can be

further assuméand this is a rather standard assumption in studiestimated that is of the order of (0.h)2, [22], and 7 is of the

applying the Mindlin-Green-Rivlin theory to practical problems orger of 0.3:h?, [23).

that the continuum iflomogeneous the sense that the relative  The mathematical analysis of the dynamical problem here pre-

deformation(i.e., the difference between the macrodisplacemeBgnts some novel features related to the Wiener-Hopf technique

gradient and the microdeformation—cf. Mindlja]) is zero and not encountered in dealing with the static case. The Wiener-Hopf

the microdensity does not differ from the macrodensity. Then, Wechnique is employed to obtain exact solutions in both cases, and

formulate the mode Il crack problem by considering an isotropigiso the Williams technique is employed for an asymptotic deter-

and linear expression of the strain-energy dendityThis expres- mination of the near-tip fields. Also, since the gradient formula-

sion in antiplane shear and with respect to a Cartesian coording exhibits asingular-perturbationcharacter, the concept of a

systemOX;X,X3 readsW= pep3e 3+ uc(dseps)(dseps), Where  houndary layeris employed to accomplish the solution. On the

the summation convention is understood over the Latin indicagther hand, the gradient formulation demands extended definitions

which take the values 1 and 2 only;6,&,3) are the only iden- of the J-integral and the energy release rate. It is further proved,

tically nonvanishing components of the linear strain tengois by utilizing some theorems of distribution theory, that both energy

the shear modulug; is the gradient coefficienta positive con- quantities remain bounded despite the hypersingular behavior of

stant accounting for microstructural effectsand ds() the near-tip stress field. Finally, physical aspects of the solution

=d( )/dxs. The problem is two-dimensional and is stated in thare discussed with particular reference to the closure of the crack

plane &;,X,). The above strain-energy density function is th@aces and the nature of cohesive tractions.

simplest possible form of case Il in Mindlinsl] theory and is

appropriate for a gradient formulation witio couple-stress ef- 2 Fyndamentals of the Dipolar Gradient Elasticity

fects, becaus®V is completelyindependentpon rotation gradi-

ents. Indeed, by referring to a strain-energy density function that™ : . .

depends upon strains and strain gradients in a three-dimensid@d}ing to the elastodynamics of homogeneous and isotropic ma-

body (the Latin indices now span the range2,3), i.e., a func- terials is given here. If a continuum W|th.m|cro.structure is viewed

tion of the formW=(1/2)C,qs & pae <+ (1/2)dogeiimkoaskiim With as a collection of subpartu_:le(smcromeqlla having t_he f_orm of
pasi€pasj pasjimXpgskjim

(Cpasj»Opqsjim) DEING tensors of material constants aRgg unit qells(cubes, the foIIowmg.expressmn of _the kln.etlc-en.ergy

L pasi»Tpasil - N 9 density (kinetic energy per unit macrovolumés obtained with

= dpeqs= dpEsq, and by defining the Cauchyn Mindlin's nota- t 10 a Cartesi dinat o 1

tion) stress tensor as,q=JW/de,q and the dipolar stress tensor' ©SPECt 10 @ Lartesian coordinate systemxoXs, (1],

(a third-rank tensoras myqs=dW/d(dpeqs), One may observe 1 T, _

that the relationsn,qs= My (qs) @andmyqg =0 hold, where () and T=5pUplp+ gph (FpUg)(dplg), 1)

[ ] as subscripts denote the symmetric and antisymmetric parts of

a tensor, respectively. Accordingly, couple stresses do not appadrerep is the mass density,[2is the size of the cube edges, is

within the present formulation by assuming dipol@nterna) the displacement vectad,( )=d( )/dx,, (1)=d( )/dt with t de-

forces with vanishing antisymmetric pdrhore details on this are noting the time, and the Latin indices span the rafigg,3. We

given in Section 2 beloyA couple-stress, quasi-static solution ofalso notice that Georgiadis et 422] by using the concept of

the mode-IIl crack problem was given earlier by Zhang ef#8].  internal motions have obtained) in an alternative way to that by

Note in passing that in the literature one may find mainly twilindlin [1]. In the RHS of Eq(1), the second term representing

types of approaches: In the first tygeouple-stress capdahe the effects of velocity gradient& term not encountered within

strain-energy density depends on rotation gradients and hasal@ssical continuum mechanjcseflects the greater detail with

dependence upon strain gradients of the kind mentioned abovikich the dipolar theory describes the motion.

(see, e.g.[11,17—19,2B, whereas in the second type the strain- Next, the following expression of the strain-energy density is

energy density depends on strain gradients and has no depend@gséulated:

upon rotation gradientgsee, e.g.,[13,16,20—23. Exceptions

A brief account of the Mindlin-Green-Rivlin theoryl—3], per-

. h 1
from this trend exist of coursesee, e.g.[5—7]) and these works W= Ecpququsstr Edpqulprqujlm , )
employ a more complicated formulation based on form Il of
Mindlin's theory, [1]. where €pqsj dpgsjim) @re tensors of material constantsy,

Here, in addition to the quasi-static case, we also treat the tim(l/Z)(apuq+aqup) is the linear strain tensor, anth,s=dpeqs
harmonic dynamical case, which is pertinent to the problem @f the strain gradient. Notice that in the tensopgs; and dyqgs;im
stress-wave diffraction by a pre-existing crack in the body. In theuhich are of even rankthe number of independent components
latter case, besides the standard inertia term in the equationcgh be reduced to yield isotropic constitutive relations. Such an
motion, a micro-inertia term is also taken into acco(inta con- isotropic behavior is considered here. Again, the fornncan
sistent and rigorous manner by considering the proper kinetise viewed as a more accurate description of the constitutive re-
energy density and this leads to aexplicit appearance of the sponse than that provided by the classical elasticity, if one thinks
intrinsic material lengthh. We emphasize that quasi-static apof a series expansion fal containing higher-order strain gradi-
proaches cannot include explicitly the size of the material cell ignts. Also, one may expect that the additional téomterms will
their governing equations. In these approaches, rather, a chaigg-significant in the vicinity of stress-concentration points where
teristic length appears in the governing equations only through tig strain undergoes very steep variations.
gradient coefficient (which has dimensions diengtt]?) in the Then, pertinent stress tensors can be defined by taking the
gradient theory without couple-stress effects or the réagu) variation of W
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F2 ~dipolar forces ph? )
Ng(Tgs— IpMpgs) — D g(NpMpgs) + (DN NgngMp st 3 n,(d,us)

!
j g/sub-parﬁcles _p. )

E E o | — NgNMgrs=RY, (5b)
F1 (monopolar

where body forces are abserD,()=d,()—n,D(), D()
:l |: ::l force) =n,d,( ), ng is the unit outward-directed vector normal to the

boundary,Pé”) is the surface force per unit aré@monopolar trac-

l tion), andR{" is the surface double force per unit ar@tpolar
F2 (monopolar force) traction).
0 1 Finally, it is convenient for calculations to introduce another

quantity, which is a kind of “balance stres¢See Eq(7) below),
Fig. 1 Monopolar (external) and dipolar (internal ) forces act-  and is defined as
ing on an ensemble of subparticles in a material with micro-
structure Opq= Tpgt Xpq> (6)

WheranS=(ph2/3)(¢?qus)*¢9pmpqs. With this definition, Eq(4)
takes the more familiar form

IW

- 7

9 g (39) IpTpq= PUq )
Notice thato,q is not an objective quantity since it contains the

W AW acceleration termSp(n2/3)((9qUS). These micro-inertia terms also

(30) are responsibl_e for t_he asymmetry @fq. This, howevgr, dc_Jes _
not pose any inconsistency but reflects the role of micro-inertia

and the nonstandard nature of the theory. In the quasi-static case,

where the acceleration terms are absept,is an objective tensor.

On the other hand, the constitutive equations should definitely

m ==
PIS OKpgs I dpEqs)

wherer,q= 74, is the Cauchyin Mindlin's notation) stress tensor
andmy,s=Myq is the dipolar(or doublg stress tensor. The latter - L
tensor follows from the notion ofmultipolar forces, which are Obfly th?hprln_mplle otf obJe_cbt;vn]}(cf. ch‘s'(g) ?{]?.(10) blel_ovv). is ob
antiparallel forces acting between the micro-media contained in ow, the simplest possible torm ot constitutive refations 1S ob-
the continuum with microstructurgsee Fig. 1 As explained by ta'”‘?d by taking an Isotropic version of the exp_ressmrﬁzhln- .
Green and Rivlif[2] and Jaunzemik26], the notion of multipolar voIvmg only three material constants. This strain-energy density
forces arises rather naturally if one considers a series expansfildlﬂct'on reads

for the mechanical powet1 containing higher-order velocity gra- 1 1

dients, i.e., M=F,u,+F4(dplg) +Fpodpdqlis) + ..., where W= S\eppeqqT L& pgEpqT 5 MC(dse pp) (dsEqq)

F, are the usual force@nonopolar forceswithin classical con- 2 2

tinua and €,q,Fpgs: - - -) are the raltipolar forces(dipolar or T uclo P 8
double forces, triple forces and so)owithin generalized con- 1958 pg) (758pa), ®)
tinua. In this way, the resultant force on an ensemble of subpaiind leads to the constitutive relations
ticles can be viewed as being decomposed éxternalandinter-

nal forces with the latter ones being self-equilibratiisge Fig. 1 Toq= N OpqEssT 21 Epqs 9)
However, these self-equilibrating forcéwhich are multipolar

forceg producenonvanishingtresses, the multipolar stresses. Ex- Mg pq= Cs(NOpgeij+ 21Epg), (10)
amples of force systems of the dipolar collinear or noncollinear , . .
type are given, e.g., in Jaunzenfizs] and Fung27]. where (\,u) are the standard Lariseconstantsg is the gradient

As for the notation of dipolar forces and stresses, the first ind&gefficient(material constant with dimensions gength]?), and
of the forces denotes the orientation of the lever arm between the; iS the Kronecker delta. Equatiori8) and (10) written for a
forces and the second index the orientation of the pair of tigeneral three-dimensional state will be employed below only for
forces; the same meaning is attached to the last two indices of #feantiplane shear state. _
stresses, whereas the first index denotes the orientation of théh summary, Eqsi4), (5), (9), and(10) are the governing equa-
normal to the surface on which the stress acts. The dipolar fordins for the isotropic dipolar-gradient elasticity with no couple
Foq have dimensions dfforce][length; their diagonal terms are Stresses. Combining), (9), and(10) leads to the field equation of
double forces without moment and their off-diagonal terms afBe problem. Pertinentiniquenessheorems have been proved for
double forces with moment. The antisymmetric paf,y Various forms of the general theorMindlin and Eshel[4],
=(1/2)(x,F—XqFp) gives rise to couple stresses. Here, we déchenbach et all9], and Ignaczal{28]) on the basis opositive
not consider couple-stress effects emphasizing that this is comgigfinitenesf the strain-energy density. The latter restriction re-
ible with the particular choice of the form &% in (2), i.e., a form quires, in turn, the following inequalities for the material con-
dependent upon the strain gradient but completely independ&@nts appearing in the theory employed he@eorgiadis et al.
upon the rotation gradient_ [22]) (3)\+2,LL)>O, ILL>0, C>O !I’l add|t|on,stab|l|ty fOI’ the
Further, the equations of motion and the tractionboundary cofi€ld equation in the general inertial case was provef2&]j and
ditions along a smooth boundary can be obtained either fro® accomplish this the condition>0 is a necessary on@ve
Hamilton’s principle(Mindlin [1]) or from the momentum balance Notice incidentally that some heuristic gradient-like approaches

laws and their application on a material tetrahed(Georgiadis NOt @mploying the rigorous Mindlin-Green-Rivlin theory appeared
et al.[22)); in the literature that take a negative—their authors, unfortu-

nately, do not realize that stability was lost in their field equation
Finally, the analysis ii22] provides the order-of-magnitude esti-

) mate (0.h)? for the gradient coefficient, in terms of the intrin-
sic material lengthh.

2
. P .
Ip(Tpg™ IsMspg) = plq— 3~ (Jpplly),
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cVAw—V2w=0, (16)

whereV?2=(3%/9x?) + (3%l 9y?) andV*=V?V?2. Finally, one may
utilize o defined in(6) for more economy in writing some equa-
tions in the ensuing analysis. The antiplane shear components of
this quantity are as follows:

IW 5 IW

Oxz=p| oo | TREVT (172)
Iw 5 IwW

Ty~ M W —,LLCV W . (17b)

Assume now that the cracked body is undeemotelyapplied
Fig. 2 A crack under a remotely applied antiplane shear load- loading that is als@ntisymmetricabout thex-axis (crack plang.
ing. The contour T surrounding the crack tip serves for the Also, the crack faces are traction-free. Due to the antisymmetry of
definition of the J-integral. the problem, only the upper half of the cracked domain is consid-
ered. Then, the following conditions can be written along the
plane (—o<x<ow,y=0):
3 Formulation of the Quasi-Static Mode Il Crack
IMyy,  IMyy,  IMyy,
Problem, the J-Integral, and the Energy Release Rate t,,=7,,— x oy ax

Consider a crack in a body with microstructure under a quasi- (18)
static antiplane shear stdigee Fig. 2 As will become clear in the

=0 for (—o<x<0y=0),

next two sections, the semi-infinite crack model serves in a myy,=0 for (—»<x<0y=0), (19)
boundary layertype of analysis of any crack problem provided w=0 for (0<x<c,y=0), (20)
that the crack faces in the problem under consideration are trac-

tion free. It is assumed that the mechanical behavior of the body is 9w

determined by the Eqg4), (5), (9), and(10) of the previous (9_yz=0 for (0<x<=,y=0), (21)

section. AnOxyzCartesian coordinate system coincident with the
systemOXx;X,X Utilized previously is attached to that body, andvhere(18) and(19) directly follow from Egs.(5) (notice also that
an antiplane shear loading is taken in the directior-akis. Also, (18) can be written asry,—(dmy,,/dx)=0 by using theo

a pure antiplane shear state will be reached, if the body has t&antity, t,, is defined as theotal monopolarstress, and20)
form of a thick slab in the-direction. In such a case, the follow-together with(21) always guarantee an antisymmetric displace-

ing two-dimensional field is generated: ment field w.r.t. the line of the crack prolongation. The definition
of the stresdty, follows from (5a). The problem described by
u,=uy=0, (112)  (11)-(22 will ‘be considered by both the asymptotic Williams

(11) method and the exact Wiener-Hopf technique. Notice finally that
no difficulty will arise by having zero boundary conditions along
w=w(Xx,y), (11c) the crack faces since, eventually, the solution will be matched at
regions where gradient effects are not dominging., for x
and Eqs(8)—(10 take the forms > Y2 with the K, field of the classical theory and in this way
dexs\? [dexg\? [deyl\? [ dey,)\? the remote loading will appear in the solution.
( ) +( ) + <—) + (—) } Next, we present the new extended definitions ofXHetegral

u,=w#0,

W= (el +e5,)+uc

J J J J e
% y X y (12) and the energy release rae These definitions of the energy
quantities are pertinent to the present framework of dipolar gradi-
aw ent elasticity and to the aforementioned case of a crack in a quasi-
Txz= Mg (13)  static antiplane shear state. By following relative concepts from
Rice[29,30, we first introduce the definition
aw
= — 1 Iw Iw
Tyz= By (130) J:f (Wdy—ﬁgm—dr—ﬁgmo(—)dr), (22)
r X ax
Pw ) ) ) . )
My, = 1 C , (14a) wherel is a two-dimensional contour surrounding the crack tip
X (see Fig. 2 whereas the monopolar and dipolar tracti@é@ and
Pw 1) R onT are given as
Myyz=pmC———,
Ixd
Y P =ng(74,~ dpMpg2) ~ Dg(NpMpgo) + (Dyn)NpNgMyg,,
9w 234)
Myx= UC——, (14c)
a7 oxay R =n,ngmyq;. (2%0)
B Pw In the above expressions, with componentsig, ,n,) is the unit
myyz_:“c(;_yZ' (14d) outward-directed vector normal 1, the differential operator®
. ) . andD, were defined in Section 2V is the strain-energy density
Further,(4) provides the equation of equilibrium function given by(12), and the indicesl(p,q) take the valuex
J My, IM J IMyy,  IM andy only.
—| e = =2+ — | 1y —2 - —2X| =0, Of course, the above expressions for the tractionsl'oare
X X ay ay X ay

compatible with Eqs(5). Further, it can be proved that the inte-
(%) gral in (22) is path independent by following Rices29], proce-

which along with(13) and(14) leads to the following field equa- dure. Path independence is of great utility since it permits alter-

tion of the problem nate choices of integration paths that may lead to a direct
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evaluation of]. We should mention at this point th&22) is quite tice that the way the-integral will be evaluated below is quite
novel within the present version of the gradient the@s., a form different than that by Zhang et dl18]. Indeed, use of the theory
without couple stressgsbut expressions fad within the couple- of distributions in the present work leads to a very simple way to
stress theory were presented before by Atkinson and Leppingt@valuate] (see Section 7 below

[31], Zhang et al[18], and Lubarda and Markenscdf82]. In As for the energy release ratERR) now, we also modify the
particular, the latter work gives a systematic derivation of consestassical definition in order to take into account a higher-order
vation integrals by the use of Noether’s theorem. Finally, we neerm that is compatible with the present strain-gradient framework

A aw(x,y=0)
0 tyZ(X'yzo)'W(X’yzo)+myyz(x1y=0)'T dx
G= lim ’ 24)
Ax—0 AX
I
whereAx is the small distance of a crack advancement. taining again only the dominant singular terms, the boundary con-

Of course, any meaningful crack-tip field given as solution tditions t,(x,y=*0)=0 andmy,(x,y=*0)=0 will give at ¢
an associated mathematical problem, should resulfimtavalue ==«
for the energy quantities defined above. Despite the strong singu-

2 2
larity of the stress field obtained in Sections 5 and 6, the results of (‘9_ + i ‘9_ + i) ‘9_W -0 (25)
Section 7 prove thal andG are indeed bounded. oo r?ae* r? 90
. . . 10 1 92
4 Asymptotic Analysis by the Williams Method Tt e w=0. (29%)

As is well known, Williams[33,34] (see also Barbd35]) de- B ] ) ] » )
veloped a method to explore the nature of the stress and displafeaddition, the pertinent antisymmetric soluti¢ie., with odd
ment field near wedge corners and crack tips. This is accolehavior in6) to the equatiorV*w=0 has the following general
plished by attaching a set of (¢) polar coordinates at the cornerform:
point and by expanding the stress field as an asymptotic series in o+l ; ; _
powers ofr. By following this method here we are concerned, in w=r? (A (@ + 1) 6]+ Apsinl(0=1)6]),  (26)
a way, only with the field components in the sharp crack at vewherew is (in general a complex number andA; ,A,) are un-
small values of, and hence we imagine looking at the tip regiotknown constants. Now25) and(26) provide theeigenvalugrob-
through a strong microscope so that situations like the ones, elgm
on the left of Fig. 3(i.e., a finite length crack, an edge crack or a _
crack in a strip appear to us like the semi-infinite crack on the (w+1)cos{(w+1)71]-A173(w71)c0§[(w71)77]-Az—((2),7a)
right of this figure. The magnification is so large that the other
surfaces of the body, including the loaded remote boundaries, ap- (w+1)siN(w+1)7]-A;+(w—3)si(w—1)7]-A,=0.
pear enough far away for us to treat the body as an “infinite (27b)

V‘?Qd%e;"\f”th “tl_oadlnfg a(tglngnltty." Thet f'etlr? is, of I((:otl_Jr_se, aCom- £or a nontrivial solution to exist, the determinant of the coeffi-
plicated function of (,6) but near to the crac |m|.e.,. ast cients of A1,A,) in the above system should vanish and this
—0) we seek to expand it as a series of separated variable ter Ses the result: sin@m=0=0=0,1/2,1,3/2,2 Next, by
each of which satisfies the traction-free boundary conditions @Bserving from(iz) that the strain-éner’g)’/ de,ns.ify. W behaves at
the crack faces. 2 5 f 1
In view of the above, we consider the following separated forrWoSt as ¢ W/ﬂ ) or, by using the fomw(r,z?)—r _u(e), no
worse tharr ™+, we conclude that the maximum eigenvalue al-

w(r,0)=r®*tu(g), where the displacement satisfi€ks). Fur- . I ” ) S
ther, if only the dominant singular terms {@6) are retained, the I(f))v:\/el(jzby theintegrability condition of the strain-energy density is

P/ 4_g2yg2
IiDEZ/;fZ Jtrhi/ g’/r(?blfT/ Zg‘ifgggefA"lv—oz where thh_Z fV . The above analysis suggests that the general asymptotic solu-
= (/or rolor r%9°/96%). Also, in view of the defini- ;g of the formw(r, ) =r>2u( @), which by virtue of(26) and
tions of stresses as combinations of derivativesvoéind by re- (27b) becomes

w(r,8)=Ar¥33sin 0/2)—5 sin36/2)], (28)

whereA= — A, and the other constant {26) is given by(27b) as
A,=3A,/5. The constan (amplitude of the fieldis left un-
specified by the Williams technique but still the nature of the
near-tip field has been determined. Finally, the total monopolar
stress has the following asymptotic behavior:

t,(X,y=0)=0(x"¥) as x—+0. (29)

This asymptotic behavior will also be corroborated by the results
of the exact analysis in the next section.

5 Exact Analysis by the Wiener-Hopf Method

Fig. 3 William's method: the near-tip fields of (i) a finite length An exactsolution to the problem described 1§1)—(21) will
crack, (i) an edge crack, and (i) a cracked strip correspond to be obtained through two-sided Laplace transfofses, e.g., van
the field generated in a body with a semi-infinite crack der Pol and Bremmeff36] and Carrier et al[37]), the Wiener-
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A i Im{p) The transformed expressions for the stresses that enter the
boundary conditions are also quotér convenience, ther,,
quantity is employed in the boundary conditidns

U§z(va): _MBBeiﬂyv (33)
my,(P.y)=u(Bcp’e™#+Ccy’e™), (34)

+|pl

+|pl -ilpl
-i|p] -€ *e  +ilpl Re(p)

my,4AP,y)=—up(BcBe #+Ccye ). (39)

Next, in preparation for formulating the Wiener-Hopf equation,
the one-sided Laplace transforms of the unknown total monopolar
stresst, (x>0,y=0) ahead of the crack tip and the unknown
+{p| crack-face displacememt(x<0y=0) are defined

ay(X,y=0)

T+(|O)=fxtyz(x,y=0)e‘deXEfx
0 0
Ai _

,l (k) f—amy”(;('y 0)}erdx, (36)
+lvl .
Wf(p)=f w(x,y=0)e PXdx. (37)

+ily| -ilyl Further, we assume the following§initeness conditions atx
=> —*o: |ty (x,y=0)|<M- exp(—prx) for x—+% and |w(x,y
-ily] -a +a  +ily] Re(p) =0)|<N- exppuX) for x——oo, where M,N,p;,pw) are posi-
tive constants. As a consequenté(p) is analytic and defined in
the right half-plane— p;<Re(p) (the “plus” half-plane, while
+lvl W™ (p) is analytic and defined in the left half-plane Re{pw
(the “minus” half-plane.
Then, enforcement of boundary conditions results in the follow-
ing equations:

T (p)=03,(p,y=0)—p-mj,(p,y=0), (38)
W~ (p)=w*(p,y=0). (39)

Hopf technique(see, e.g., Roo88] and Mittra and Le¢39]) and  The above equations along with the equatisn* (p,y=0)/ay?
certain results from the theory of distributioteee, e.g., Gel'fand =0, Egs.(33)—(35 and the general solution i(82) provide an

Fig. 4 Branch cuts for the functions  (8,7)

and Shilov[40] and Lauwerie[41]). algebraic system of three equations in four unknoiithe func-
The direct and inverse two-sided Laplace transforms are disnsT*, W™, B, C). Finally, eliminatingB andC in this system
fined as leads to the following Wiener-Hopf problem
* T+(p) 2 1/2 —
f*(py)=| flxye Pdx (308) Garp= KeP(a=p)7L(p)-W(p), (40)
1 where the kernel functioh(p) is given as
fxy)=5—| f*(p.y)e”dp, (30) 1-cp? (a?—p?)?
2mi Br L(p):—cpz 1+T2pﬁ§ . (41)

whereBr denotes the Bromwich inversion pattithin the region

of analyticity of the functionf*(p,y) in the complexp-plane. single Eq.(40). This will be effected through the use of elements
Transforming(16) with (30a) gives the ODE of the theories of complex variables, integral transforms, and dis-
A d2w* tributions (theorem of analytic continuation, extended Liouville’s
c—— +(2cp?—1)—— +(cp*—p?)w*=0.  (31) theorem, Abel-Tauber asymptotic theorems, transforms of distri-
dy* dy butiong. First, we check that the functidn(p) has no zeros in the
gomplex plane. This was found independently by using both the
principle of the argument, [37], and the program
MATHEMATICA™. We notice that unlike the current static case,
w* (p,y)=B(p)- exp(— By)+C(p)- exp— yy) for y=0, the counterpart kernel function in the dynamic case exhibits two
(32) (nonextraneoyszeros, a fact that modifies somehow the standard
. Wiener-Hopf method. Further, we find that the asymptotic behav-
where B(Zpglzan_d C(p) are yet unknown functions5=A(p) jor of the kernel is limy,_..L(p)=—3/2 and this leads us to in-
=(e°=p%) " with £ being a real number such that>+0, and  troduce a modified kernel given & p)= —(2/3)-L(p), which
y=7(p)=[(1/c) — p*]¥*=(a®~p?) 2 with a=(1/c)* In fact, possesses the desired asymptotic property, limN(p)=1. In-
introducing ¢ facilitates the introduction of the branch cuts fordeed, this new form of the kernel facilitates fisoduct splitting
B=(—p?)Y2cf. [20] and [37] for this procedure as applied toby the use of Cauchy’s integral theorem. The Wiener-Hopf equa-
related situations. To obtain a bounded solutioryas+», the tion takes now the form
p-plane should be cut in the way shown in Fig. 4. This introduc- N
tion of branch cuts secures that the functigisy) are single- T (p) 3
2

valued and that R@)>0 and Ref)>0 along the Bromwich path. (a+ p)m:

The next target will be to determine both andW~ from the

The above equation has the following general solution that
bounded ay— +x

)(*MC)pz(afp)”ZN(p)W’(p), (42)
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a’ Cr'
—— (= >
& € € a Re(p)

Fig. 5 Contour integrations for the factorization of the kernel function in Eq.
(42)

and the kernel is written as the following product of two analytidherefore, E(p) should be a polynomial since only algebraic
and nonzero functions defined in pertinent half-plane domains gfowth of the fields in the neighborhood of the crack tip is al-
the complex plan€,38,39, lowed. Further, determining the coefficients of this polynomial
will lead to the desired decoupling @f" (p) andW™ (p). Below,

—NTt -
N(p)=N"(p)-N"(p), (43) we determine the form dE(p) by the use of asymptotic analysis.
where In particular, we will use theorems of the Abel and Tauber type
having the form
N (ool - L [ N@I ) .
P= 2@ Jo, ¢-p [ i im f*
< limf(x) lim f*(p), (47)
x—0 [p|—e
1 IN[N
N(p)=exp[2—f ﬂd{] (44b) LT
m Je, (=P lim f(x)« lim f*(p), (48)
X0 [p|—0

The use of Cauchy’s integral theorem is depicted in Fig\N 5(p)
is analytic and nonzero in Re(>—e andN™(p) is analytic and where the symbodLl means that the image functiéti(p) and the
nonzero in Re@<e. The original integration paths,C,) ex- original function f(x) are connected through thene-sided
tend parallel to the imaginary axis in the compleglane. Finally, . S pN oo —pxg df

an alteration of the integration conto(also depicted in Fig. )5 Laplacejtransffrm rslaﬂons‘ (p)—fof(x)e X an _(X)_
along with use of Cauchy’s theorem and Jordan’s lemma alloys(1/271)Je/f* (p)e”dp, andp is a complex variable which in
taking as equivalent integration paths th€/(C!) contours (47) and(48) tends to infinity or zero along paths in the pertinent

around the branch cuts extending alor@<{< —& and s<{¢ half-plane of convergencénalyticity). Relations(47) and (48)

. : . hold under certain conditions given, e.g.,[86]. Also, the ex-
<a. This ‘?Ve“t“?”y le"ids t_o the following forms of the SeCtIontended Liouville’s theorem[39], will be utilized. Referring to
ally analytic functiondN=(p):

(46), this states that it ™ (p)-[N"(p)-(a+p)*3~*=0(p") and

. 1 (2 (a2— %)% d¢ (3ucl2)p?(a—p)Y’N~(p)-W (p)=0(pé) in the respective
N™(p)=ex o | arctan—/._— ' (45)  half-planes of analyticity, theB(p) is a polynomial of degree not

3 P
0 £ ep exceeding the minimum df v],[£]), where the symbdl ] denotes
with the propertyN*(—p)=N"(p). the integral part of a number.
With the product factorisation in hand, E@t2) takes the fol- ~ Now as a first possibility of the near-tip behavior, one may
lowing form that defines a functioB(p): adopt a behavior of the total monopolar stress and the crack-face
T*(p) 3uc displacement that is analogous to the classical fracture mechanics
© B B - .
N (o) (arp= 2 MA@ YN (0) W (p)=E(p).  Penavionviz
(46) ty(x,y=0)=0(x"3) as x—+0, (4%)
The above equation defindg(p) only in the strip —e<Re() w(x,y=0)=0(x"? as x——0. (4%)

<0. But the first member in the equation is a nonzero analyti is field gives by (47) and the transformation formula
function in Rep)>—e¢, and the second member is a nonzero ana- 7 g y

lytic function in Re)<<0. Then, in view of the theorem of ana-x*—T'(x+1)-p *"* (with T'( ) being the Gamma function and
lytic continuation(or identity theorem for single-valued analytick>—1), 36,38, the following asymptotic behavior in the trans-
functiong, the two members define one and the same function tfatm domain

is analytic over the whol@-plane,[38,39. In other wordsE(p) N 1

is anentirefunction. Polynomial and exponential functions are the T'(p)=0(p™ "% as |p|—, (508)
types of entire functions. The case of an exponential fundtien — Y — ~312

a function of the form exm(p)], whereg(p) is a polynomial W (p)=0(p™™) as |p|—e. (5C0)
should be excluded because such a function hassaantial sin- Then, Liouville’s theorem leads to the conclusion tEgp)=0,
gularity at infinity. Indeed, an exponential growth of the functionsvhich, however, is an inadmissible result since it shows that the
involved in (46) would result in violating the so-callegidge con- stress field is zero everywhef@though the cracked body is under
dition, i.e., the condition of bounded energy density around tHeading. Therefore, the possibility of a near-tip behavior given by
geometrical singularity(crack edgg in the physical domain. (49) should be discarded.
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Next, pror_npted by th_e results of the Williams asymptotiqm‘plﬁONJr(p) is to use lim,oN(p) and perform a product fac-
method obtained before, i.e., the resultg28) and(29), we con- torization of the latter limit byinspection This way is easier than

sider the following possibility of near-tip behavior finding limp oN*(p) from (45). Indeed, one may obtain first
t(xy=0)=0(x"3?) asx—+0 (513) from (41) and the definition ofN(p) the limit lim,_oN(p)
Y =2(3cY?) Y(e?—p? Y and then
w(x,y=0)=0(x*? as x——0. (51b) , 2 g
Here, certain results of the theory of generalized functions will be lim NWp)z(W) Gip ™2 (54)
employed concerning transforms o$ingular distributions, [p|—0 p

[40,41]. In this connection, we note that the distributigh for  Fyrther, a combination ab3) and (54) provides the limit
Re(\)>—1 is identified with the function&:xA for x>0 and

12
x, =0 for x<0. For other values of the complex parametgof lim T (p)=Eq- (_) %_ (55)
course\ here is not to be confused with the Lamenstant it is [p|—0 3c/ p
defined by analytic continuation of the functiondk’; ,h) T

= [5x*h(x) dx, whereh(x) is a test function. In this way, a dis- Which by (48) and the transformation formula®—T'(«+1)

tribution is obtained for all complex values dfwith the excep- P~ *~* (with k>—1) allows writing

tion of A=—1,—2,—3, ... . In a sinlar mannerx" is defined 2\12 1
(ﬁ) (

by starting fromx* =0 for x>0 andx* =|x|* for x<0. Then, lim t,(x,y=0)=Eg- o (56)
X—+o

LT
(51) and the transformation formute —T(A+1)-p *"1 (with _ _ "
N#—1,-2,—3,...),[40,41, provide the following asymptotic Finally, matching the above expression wily, /(27x)™* pro-

behavior in the transform domain: vides the value of the constant Bg= K, (3c)"42.
o - In view of the above, we record the final transformed expres-
T'(p)=0(p™) as |p|—2, (528)  sjons(valid for all p in the pertinent half-plane of convergeice
W (p)=0(p %2 as |p|—=. (520) fqr the total monopolar stress ahead of the tip and the crack-face
displacement
Further the extended Liouville’s theorem leads to the conclusion 12
that E(p)=E,, whereE, is a constant. As shown below this T*(p)= K (3c) N*(p)- (a+ p)L2 (57)
constant will be determined from conditions at remote regions in 2 '
the physical plane. The previous result is mathematically admis- K
sible, while any other case like, e.d.,(x,y=0)=0(x"1) or -(p) = m
O(x ?) asx— +0 is precluded since éven analytic continuation W) (3c)*up*a—p)* N (p)’ 8)

fails to define one-sided Laplader Fourie) transforms of the where it is reminded thai= (1/c)"2 andN*( -

- . T . : \ p) andN~(p) are
associated singular distributionsf. Gel'fand and Shilof40], p.  giyen by (45). Exact expressions for the original functions(x
171). Of course, it remains to prove that the field(Bil) gives a >0y=0) andw(x<0y=0) can be derived froni57) and (58)
boun_dedvalue for _the energy guantities dﬁlnteg_ral z_and ERR, through one-sided Laplace-transform inversions. Such an inver-
despite the hypersingular character of stress. This will be showndjy, will be performed in Section 8, where we elaborate more on

generally(lgnaczal{ 28] and Knowles and Pucil¢2]) a necessary
condition for uniqueness.

Our task now is to determir,. As in the work of Zhang et al.
[18], a matching procedure is followed that equatesitimer so- | tance as explained below.
lution lim,_..t,,(x,y=0), as obtained by the present gradien? The limits of the expressions i(67) and (58) for |p|—= are
analysis, with theouter solution Ky, /(2mx)*? provided by the found to be
conventional fracture mechanids,;, is the stress intensity factor
for each specific problem treated by the conventional fracture me-

near-tip asymptotic expressions gf(x>0,y=0) andw(x<0y
=0). These expressions, however, suffice for the evaluation of
the J-integral and the ERR and possess also much practical im-

K|||(3C)l/2p1/2

i + —
chanics. The latter fielésingular solutioh dominates over an area | l"mmT (P)=—> ' (59)
that is relatively close to the crack tip but lies outside the domain =
where gradient effects are pronounced. We notice the following in . Ky
support of the assertion that this procedure is indeed reasonable: lim W™ (p)= —=1z— —=n. (60)
: gy pl—2 (3¢)™u p
(i) as shown below the stress behavestgs- O(x 2 for x

— oo, (ii) the very form of the field Eq(16) exhibits the singular- . ) ) 1t e
perturbation character of the gradient formulation and therefopdlich by the inversions p ?[F(—1/2)] X
suggests doundary layerapproach(Van Dyke[43]) to the crack — _ (271~ 1302 and p %25 (5/2)] 1(—x)%2
probl_er_n(one may_observe that an extremely sma!l qu_antity—thg 4(3712)~1(—x)32 give the following near-tip field
coefficientc—multiplies the higher-order term, which is the one

introduced by the nonconventional formulatioRinally, one may . Ku(3c)¥? 1
observe that this concept is in some respects similar to the one lim ty,(x,y=0)==——m— {3m. (61)
introduced by Ric¢44] in analyzing small scale yielding around a X0
crack tip. 4K,
The transformed total monopolar stré&s(p) is given by(46) lim w(x,y=0)= m(—x)w- (62)
as x——0
T*(p)=Eo-N*(p)-(a+p)*2 (53) In view of the fact thaK, is the stress intensity factor obtained

by a classical elasticity analysis for the same crack proljame
an expression that holds fall values of the Laplace transform geometry and loadingas that considered through the dipolar gra-
variable p in the right half-plane. For the moment, we need talient approach, Eqg61) and (62) provide a kind ofcorrespon-
evaluate only Iim,POT*(p) in order to obtain then dence principleThis correspondence principle connects any clas-
limy_...ty(x,y=0) by (48). One way to obtain the expression ofsical fracture mechanics solutigthrough the pertineri;, value
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Y A~ . Ky (3¢)"?
1 J=G=Iim {2(—1) ——p—
i e—+0 4
1
i XW 7| (x4 ¥x_)Ydx (64)
(-£0%) | (€0") coo
I _ Further, the product of distributions inside the integral is obtained
f <+ ] through the use of Fisher’s theorefd9], i.e., of the operational
ey relation x)Mx,) 'TM=—wS(X)[2sin@N)] Tt with N# -1,
l 0 X —2,—3, ... andd(x) being the Dirac delta distribution. Then, in
vo_ > > view of the fundamental property of the Dirac delta distribution
(-£07) (£.07) that [¢ 5(x)dx=1, Eq. (64) provides the result
Fig. 6 Rectangular-shaped contour surrounding the crack tip K|2||
for the evaluations of the  J-integral and the energy release rate J=G=—, (65)

which shows that thé-integral and the ERR afsoundeddespite
the hypersingular nature of the near-tip styemsd identical with

obtained for each specific problgmith the near-tip field result- the respective classical elasticity result. Our flndlngs. suggest
ing by the nonclassical gradient formulation of the problem ifnerefore that, at least for the one-parameter theory of microstruc-
question. Thus, a host of classical fracture mechanics solutiond#¢ employed here, theverall energy situatiorirate of total po-
crack problems may serve within a nonclassical gradient frami@ntial energy of the cracked body is not affected by the material
work as well. microstructure and only thiecal crack-tip field is influenced.

Three final notices pertain to the form of the above asymptotic
field. First, the cusp-like closure of the crack fadesclosure 7 Eyact Expression for the Stress Ahead of the Crack
smoother than the one predicted by the classical theorglied .
by (62) is not unusual in experimentsee, e.g., Millg45] and Tip
Elssner et al[46]). Secondly, an aggravation of the stress field as In this section we elaborate more on the stress ahead of the
compared to the respective result of the conventional thébry crack tipt,,(x>0,y=0) and its nature, and also provide compari-
aggravation appears here through the stromgéf singularity) is ~ sons of the exact expression with both the asymptotic for(61n
not unusual in analyses with nonclassical effestse, e.g., the and the classicak™ ' field. First, an exact one-sided Laplace
couple-stress results of Bogy and Sternk@® and Zhang et al. transform inversion off *(p) in (57) will be obtained.
[18]). In addition, Prakash et a[48] have provided an analysis One may write formally
and experimental evidence supporting the possibility okaff? K, (30)Y2 1
stress singularity in dynamic crack initiation. All this evidence ; (x>0y=0)= i ( _J' [N*(p)-(a+ p)ll2]ep><dp
shows that deviations from predictions of classical fracture me-Y? ' 2 2w g
chanics are possible in some situations and are, at least, worthy of
investigation. Of course, by no means we claim that the results in _Ku@Bo)*? 1
(61) and (62 carry over to other situations like, e.g., the plane o 2 2@’
strain/stress case. An appropriate dipolar gradient analysis for th . . . .
latter case is needed to give the answer. Thirdly, the minus sign/fj€re the integration variable takes values only in the half-plane
the RHS of (61) shows that the asymptotic gradient crack-tigc®>—¢ (e—+0) and any line, in this half-plane, parallel to

stress field has a cohesive-traction nature. This point will be ff1e IM()-axis may serve as the Bromwich path. Théntegral

ther elaborated in Section 8 below. It will be shown also in Sed€fined above depends uperandc. | is evaluated by deforming

tion 8 that(61) dominates only within an extremely small regiont€ integration path in the left half-plarisee Fig. 7 where the

adjacent to the crack tip. integrand is nonanalytic, exploiting in this way the existence of
branch cuts for the functioni™(p) and @+ p)*% Noting the

property limpy_.N"(p)=1 and also thaN™(p)=N(p)/N~(p)

(cf. Eq. (43)), thel-integral is written by Cauchy’s theorem as

(66)

6 Evaluation of the J-Integral and the Energy Release
Rate (ERR)

The evaluation of the energy quantities is accomplished here by i Im(p)
using Fisher’s theorenj49], concerning the product of distribu-
tions. For theJ-integral, we also consider the new rectangular-
shaped contouF (see Fig. 6 with vanishing “height” along the
y-direction and withe — + 0. This change of contour permits us- A
ing solely the asymptotic near-tip field i%1) and (62). Notice
that Zhang et al[18] in evaluating the ERR for a mode Il crack
problem with couple stresses followed a rather involved method >
based on earlier work by BueckniQ]. It seems that the proce- 0 Re(p)
dure followed here is simpler and more direct. Indeed, taking into
account(14d), (18), (19), and(21), the definitions in(22) and(24)
provide the following integral for both energy quantities:

] & aw(x,y=0)
J=G= Ilim {2 ty(X,y=0)- ————dx;. (63)
e—+0 € IX

Fig. 7 Contour integration for the evaluation of the complex
Now, by using the solutioii61) and(62), we obtain integral in Eq. (66)
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Fig. 8 Graphs of the exact gradient  (total monopolar stress ), asymptotic gradient (total
monopolar stress ), and classical K, field solutions in normalized forms

1 1 ™ 3¢ .
=] 312 R )
5 iI 5 i{lL/ZR exp(l > ax+Rx€e?|de

-a
+i f N*(p)- (Ja+p|)*%e”dp

° [ReN(p)—i ImN(p)](|a+p|)*%P
+f_a N"(p) dp

f‘a[ReN(PHi Im N(p)](|a+p|)*%
+ —
0 N~ (p)

dp

72
R3/2

=i fﬁwN+(p)~(\a+ p|>1’2e"xdp+if

—a -
3¢ ;
X ex |7—ax+Rxé“’ do},

whereR is the radius of the two quarter-circular paths having
center at the poinp= —a (see Fig. 7 and the anglep is defined
by the relationp+a=R-exp(¢). Also, R—x in the left half-
ImN(p)=2(1—cp?)(a?
—pAY43|p|17* for p real and|p|<a. Further, it can be shown

plane, and Re&l(p)=2cp¥/3 and

11
2w

a[Im N(p)](a—p)*%e~>
fo N*(p) dx

_ J Ni(p) . (p_a)lIZefpxdp_i_ R3/2efax

a

g 3
xf exp(Rx~005(p)~cos(7¢+Rx-singo)d<p].
2

(68)

The third integral inside the braces vanishesRas>~ and it is

(67)

branch cut for the functiona+ p)*2. Therefore, the total mo-
nopolar stress ahead of the crack tip is found from the following
expression involving two real integrals:

¢ —0)= Ky (3¢)™? Jaﬂm N(p)](a—p)*%e P
yz(X7y_ )_ 2 0 N+(p)

dx

—f N‘(p)-(p—a)l’ze“’xdp]- (69)
a

It can be checked that both integrals are convergent. Also, a nu-
merical evaluation of these integrals can easily be accomplished.
Finally, the above expression can be written in a more convenient
dimensionless form as

tyz(xay:())
~ Ku8Y2( [L[ImN(p)](1-p)*2exp —c**p)
B 27TC1/4 JO N+(p) dp
’ _fN(p)'(p‘l)llzexp(—cl’zxmdp]’ (70)
1
where

N+( ) 1 fl . +(1_§2)3/2} 1 dg (71)
“(p)=exp — | arctan——m—|>—— ,
P T Jo IS {*p
2(17p2)3/2
Im N(p)=T for O<p=<l1. (72)

The graph of the exact gradient expression for the total mo-
nopolar stress ahead of the crack tip in the normalized form
(2w, /3V%K ) versusc™ % is given in Fig. 8. In the same
figure the normalized graphs of the asymptotic gradient solution
(—7Yc¥2x¥% and the classical K,, field solution
(2713x)Y2cY* versusc ~ Y%x are also shown. The latter two graphs
are provided for the purpose of comparison with the exact gradi-
ent stress distribution. Also, Fig. 9 presents the variation of the

interesting to note that although the conditions for Jordan’s lemmeaact stress, in the normalized form 7(1‘%,2/(30)1’2K”,) with
are not met by the integrand i(66), the contribution of the (x/h), where 2 is the size of the unit cell of the structured
quarter-circular paths is zero because of the existence of tmaterial (intrinsic material length—see Section). 2The two
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Fig. 9 Variation of the exact total monopolar stress (according to the gradient theory )
with (x/h) for the cases c=h? and c¢=(0.01h)2. The graphs depict that the cohesive zone

is small as compared to the intrinsic material length h and that the stress ahead of the
cohesive zone exhibits a bounded maximum.

graphs of Fig. 9 were obtained for the relatians (0.01h)? and simple statement of the fracture criterion. Of course, the classical
c=h?. As mentioned in the Introduction, the study by Georgiadi§acture mechanics analysis does not possess this feature since the
et al.[22] gives the estimate=(0.1h)2. Thus, in the latter case Stress maximum is unbounded at the crack-tip positierd and

the stress graph will be in between the two graphs of Fig. 9. THee stress drops monotonically far-0 with no anylocal maxi-
purpose of presenting these two graphs is to make apparent M. Finally, outside the cohesive zone, the sttggs<>L..y
boundsof the region ahead of the tip at which the stress takes gn0) Predicted by the gradient theory is lower than that predicted
negative values for possible relations between the gradient coy-the classical elasticity theory.

ficient c and the intrinsic lengtfn.

On Fig. 8 now, an immediate observation is that the asymptotic
gradient solution is inaccurate except for the region very near &
the crack tip. Another observation is that the exact gradient stre?s-
field tends to the classic#,, stress field at points lying outside em
the domain where the effects of microstructure are pronouncedWe consider again the semi-infinite crack configuration of Sec-
i.e., for x>c'2 However, in the near-tip region where the distion 4 but now assume a dynamical antiplane shear state. The
tance from the crack-tip is comparable to the leng/t}, the two transient problem leads to an extremely difficult mathematical
fields differ radically indicating therefore that material microstruciitial/boundary value problem. Here, as a first step we deal with
ture is a significant factor in the fracture behavior of solids. Thiae time-harmonicinertial crack problem which, to our knowl-
behavior of the exact solution depicted in Fig. 8 reminds somedge, consists the first attempt to analyze a dynamical crack prob-
how typical boundary layerbehavior as, e.g., that found for thelem within gradient elasticity. The more general transient solution
surface pressure near the leading edge of a Joukowski gveil  may follow from the present one through Fourier synthesis. It is
Dyke [43]). In particular, the following remarks deserve moreilso expected that the basipatial behavior of the solutioite.qg.,
attention. Fox<0.5¢Y2 the stress, ,(x>0y=0) takes on nega- the order of singularities and the near-tip behavieill be re-
tive values exhibiting therefore” @ohesive-tractioncharacter tained in the transient case as well. Within classical elasticity,
along the prospective fracture zofsee, e.g.[51,57 for the na- problems involving cracks under remotely applied time-harmonic
ture of fracture cohesive zonesiowever, in view of the relation loading have been considered by, among others, Cherep&8pv
betweerc andh, the lengthL . (cohesive-zone length of the orderand Freund54]. _ _ o
of 0.5c*? along whicht,,<0 is extremelysmall. For instance, ~The cracked body is subjected to a remotely applied time-
even if h is rather large, sayh=2x10"%m (case of a harmonic loading and the crack faces are traction-free. In view of
geomateria—see[13]), for c=(0.1h)2 we have L,=0.0%h the general expressions given in Section 2, E8)—(14 remain

=10"° m. The same conclusion can also be reached by observms same but11) and(15)—(17 are replaced by

Dynamical Time-Harmonic Mode 1ll Crack Prob-

the graphs of Fig. 9 which show thiat is a very small fraction of Uy=uy=0, (73)
h. It is also interesting to note thaf, does not vary appreciably
althoughc varies over a wide range, i.e., from= (0.01h)? to ¢ u=w#0, (7)

=h2. Therefore, the length, can be considered practically equal

to zero and be ignored. Accordingly, the domain of dominance of WEWYH=w(x.y)-expif), (7%0)
the x~¥2singularity being of extremely small size can be considd My, IMyys| 9 IMyy, My,

ered of no physical importance. Instead, one may attribute physi | 7z~ ~ 53~ — ay + ﬁ_y( TyzT o ay

cal importance to the solution outside the cohesive zone, where

the stress exhibits a maximum thatbsunded This maximum 9w ph? ) R

may serve as a measure of the critical stress level at which further =P 52 = 73~ W) g (74)
advancement of the crack may occur. In other words, this result of )

the present gradient formulation of the crack problem permits a cV4w—gV2w—k?w=0, (75)
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ow oW i Im(p)
= w0 — — 2|
Oxz= g~ HCV X (769)
oW o[ W o +|B1 ||-1BI
O'yz_:Ung_/J* W J (760)
.
where ) is the frequency of the time-harmonic statgs= (1 +i|-l§| '@ +i||§|
—Q?(ph?/3u)), and k=(Q/V) with V=(u/p)*? being the >
shear-wave velocity in the absence of gradient efféces, in -io Re(p)
classical elasticity Equation(75) is the field equation of the
problem. It is called metaharmonic and appears also in the prc -1Bl +|B|
lem of bending vibrations of thin platé¥ekua[55]). More details
about it can be found if13,20. In what follows, as is standard in |
time-harmonic problems, it is understood that all field quantitie
are to be multiplied by the factor exgXt) and that the real part of
the resulting expression is to be taken.
The above equations are also supplied by the boundary con
tions (18)—(21). The resulting boundary value problem is attacke:
again by the Wiener-Hopf method. First, transformiiig) with 4iIm(p)
(30a) gives the ordinary differential equation
4W* 2W* +IVI
- 2_ 4 42— 2\ =
Cgyr T (2eP 9 gz F(epTmgp k*)w* =0, (77)
with the following general solutiobounded ay— + ) +ilyl -il¥l
_ =>
w* (p,y)=B(p)-exp(—By)+C(p)-exp(—7yy) for y>0(, . -ilyl T *T 4yl Re(p)
7
where vl
B=B(p)=i(p*+c?)"? (7%)
with
[(gz+4ck2)1’27 g]1/2 Fig. 10 Branch cuts for the functions (ﬁﬂ
o= 7 >0, (7D)
(2¢)
y=7p)=(=p?)? (808) X
with e = (=) "+ 7) - L(P)- W (), (85)
EE |
[(92+4Ck2)1/2+ g]1/2 o
T= 201 >0. (8M®)  where the kernel functioh(p) is given as
In the above equation®(p) and C(p) are unknown functions, T(p)=(o2+ p2 (r*—p?)3? 86
and the complex-plane should be cut in the way shown in Fig. (p)=(o"+p9)+ i(o?+ p2)17 ' (86)
10. Finally, the Laplace-transformed stresses that enter the bound-
ary conditions are found to be Now, contrary to the static case analyzed in Section 6, the kernel
p— o function in the present dynamic case exhibits two zeros in the
oy P.y)=—uc(r*Bpe P —o?Cye ), (81) complex plane. This was found through a rather involved proce-
I -~ dure using the principle of the argumef8y], and taking care of
my,{P.y)=uc(Bp’e™ A+ Cy%e™ ), (82) the behavior and the branch cuts of the functiofis))). In addi-
o _ tion, a check was made by the symbolic program
my,(p.y)=—ucp(BBe »+Crye 7). (83) MATHEMATICA™. Thus, the functionL(p) exhibits the(non-
Next, to formulate the Wiener-Hopf equation, the same “halft_extraneou)szeros
line” transforms are defined as if86) and (37). Also, (38) and g (g2/4c?) + (K3/c)|V2) 12
(39) apply in the present case too. The usual procedure of elimi- +Z= +{—+i —_— ] , (87)
nating the functions&,C) in the system of equations resulting 2c 3

}‘(r)c\JNr?néh\(/avgﬁgfggn;?(éqk:l)Jc;Liir(l)iary conditions leads then to the foalfnd, in addition, has the asymptotic behavior |mef(p)

—3x2/2. Next, the functiorM (p) is introduced as

pC—_—. ~ _
T (p)=— BVB*~7)-W (p), (84) 2 (72—p?)-L(p)

X M(p)= 2 P (88)
where y?=(g%+4ck?)¥?c is a positive real constant dependent

upon the material properties and the frequency. Notice also thgich no longer exhibits zeros and also has the desired asymptotic

x°=(c?+ 1) ="~ p° property lim, _...M(p)— 1. This new form of the kernel permits

Further, since a product factorization of the functipris im-  its product factorization through Cauchy’s integral theorem.
mediately accomplished by inspection agp)=(r+p)*Ar In view of the above, the Wiener-Hopf equation of the problem
—p)*2, Eq.(84) takes the form becomes
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rem of analytic continuation applies and leads us to conclude that
E(p) is an entire function. Working also along the same lines as
those in the respective analysis of the previous static case, we find
that the near-tip stress and displacement fields behave (&4)in
Results analogous to the ones in the static case can be further
obtained from the basic analysis of this section.

Ti Im(p) novel feature of the present mathematical problem. Still, the theo-

Re(p) 9 Conclusions

The present work was concerned with the exact determination
of mode Il crack-tip fields in a microstructured body under a
remotely applied loading. The material microstructure was mod-
eled according to the Mindlin-Green-Rivlin theory of generalized
elastic continua(dipolar gradient or strain-gradient theory of
grade twg. A simple but yet rigorous version of this theory was
employed by considering an isotropic linear expression of the
elastic strain-energy density in antiplane shearing that involves
only two material constantéhe shear modulus and the gradient
coefficien}. The formulation of the problem and the solution
methods were exact. The boundary value problem was attacked by
the Wiener-Hopf technique but the asymptotic Williams technique
(89) was also employed in a preliminary analysis. Both static and time-

and the kernel is written as the following product of two analyti@armonic dynamic analyses were provided. A singular-
grturbation character was exhibited within the gradient formula-

and nonzero functions defined in pertinent half-plane domains i3
the complex plane tion and the concept of a bqunc_iary layer was em_ployed.
The results for the near-tip field showed significant departure
M(p)=M"*(p)-M~(p), (90) from the predictions of the classical fracture mechanics. In par-
ticular, it was found that cohesive stresses develop in the imme-
diate vicinity of the crack tip and that, ahead of the small cohesive
. 1 INfM ()] zone, the stress distribution exhibits a local maximum that is
M7 (p)=exp —5— | | ,,Tdf » (918)  pounded. This maximum value may serve, therefore, as a measure
Gt of the critical stress level at which further advancement of the
1 IN[M()] crack may occur. In addition, the crack-face displacement closes
M~ (p)=exp =— f ——d{}. (91b) more smoothly, in the vicinity of the crack tip, as compared to the
D[ZT” circy €7P ] classical result. The new formulation of the crack problem re-

The use of Cauchy's integral theorem to accompligf) is de- quired also new extended definitions for tleintegral and

picted in Fig. 11. Notice that Cauchy’s theorem still applies in thi@e energy release rate. The determination of these quantities

case of anonsimplecontour (a contour with self-intersections was _made possible through the use of the theory of generalized
because the number of intersections is firitee for the general functfl_onsl. . . H bility of izing th
result in, e.g., Ablowitz and Fokd$6]). M *(p) is analytic and A final notice pertains to the possibility of generalizing the

. _ . : - present analysis by considering a continuum theory of even higher
NONZero in Rgﬁ)>0 gnd M (p/) |s”analy.t|c and NONZEro 1N 4 qer than that of dipolar gradient theory. The next step could be
Re(p)<<0. The integration path@ + Cj’) begins from the poink 3 tinolar theory. The dipolar theory involves doublets of forces
at (—io+ie), with  real suche— +0, and runs along the entire (qoyple forcep as “internal” forces. The tripolar theory will in-
imaginary axig(along the two cuts, it runs parallel to them on thg,g|ve rather doublets of momentsiple forces. Besides the fact
right) and around the cut along the positive real axis. The integrayat the latter generalized forces possess a not so clear physical
tion path C;+C/) begins from the poink, it runs along the meaning, the increased complexity of such a theory does not hold
entire imaginary axigalong the two cuts, it runs parallel to themmuch hope for treating practical problems.
on the lef} and around the cut along the negative real axis. Both
integration paths end at the poibt and the second path is con-
sidered a continuation of the first so that Cauchy’s theorem ,fécknowledgments
applied and(90) is obtained. In both cases, the quarter-circular The author is thankful to Prof. L.M. BrocUniversity of Ken-
paths at infinity have a zero contribution according to Jordantscky) for discussions on aspects of the mathematical analysis
lemma. Finally, the small semi-circular paths around the branclntained in this work. Also, the author is thankful to Prof. I.

Fig. 11 Contour integrations for the factorization of the kernel
function defined in Eq. (88)

T (p)-(r+p)*?  3uc (6’+p*)(p-2)

(p_;,.Z) - T (T_p)l72 M(p)W_(p),

where

points have a zero contribution. Vardoulakis(NTU Atheng and N. Aravas(University of Thes-

Then, with the formal product factorization in hand, E89) is ~ saly) for discussions on generalized continuum theories. Financial
written under the following form that defines a functigip): support of this work under the “Thales” program of the NTUA is

N 12 5. o gratefully acknowledged.

T(p)-(r+p)"®  3uc (o°+p )(p—Z)M,(p) W (p)
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Anisotropic strain gradient elasticity theory is applied to the solution of a mode Il crack
in a functionally graded material. The theory possesses two material characteristic

lengths,€ and €', which describe the size scale effect resulting from the underlining
microstructure, and are associated to volumetric and surface strain energy, respectively.
The governing differential equation of the problem is derived assuming that the shear
modulus is a function of the Cartesian coordinate y, i.e5G(y)=Gye?Y, where G

and y are material constants. The crack boundary value problem is solved by means of
Fourier transforms and the hypersingular integrodifferential equation method. The inte-
gral equation is discretized using the collocation method and a Chebyshev polynomial
expansion. Formulas for stress intensity factorg, Kare derived, and numerical results
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This concept is illustrated by Fig. 1, which shows an FGM with a

1 Introduction
Classical(local) continuum theories possess no intrinsic lengt ontinuously graded microstructure. Typical examples of FGMs
P 9 Eﬁ:lude ceramic/cerami@.g., MoS;} /SiC[16] and TiC/SiC[17]),

scale. Typical dimensions of Iength_are generally _assoc_iated WA metaliceramice.g., Nb/NQSi, [18] and Ti/TiB [19]), sys-

the o_veraII geometry of th? _domam under consplerauon. Th_'t‘éms. Comprehensive reviews on several aspects of FGMs can be
classical elasticity and plasticity are scale-free continuum theorigs, - 4 in the articles by Markworth et d20], Erdogan21], and

in which there is no microstructure associated with materiﬁrjai [22], and in the book by Suresh and 'Morteniéﬂ]. ’
points,[1]. In contrast, strain gradient theories enrich the classical-rhiS paper presents a linkage between gradient elasticity and
continuum with additional material characteristic lengths in ordejraded materials within the framework of fracture mechanics. The
to describe the sizéor scalg effects resulting from the underlin- remainder of the paper is organized as follows. First, the consti-
ing microstructures. Recent work on strain gradient theories {give equations of anisotropic gradient elasticity for nonhomoge-
account for sizeor scal¢ effects in materials can be found in theneous materials subjected to antiplane shear deformation are
articles by Wu[2], Fleck and Hutchinsofi3], Lakes[4,5], Smy- given. Then, the governing partial differential equatigROES
shlyaev and Fleck6], and Van Vliet and Van Mief7]. Recent
applications of gradient elasticity to fracture mechanics include
the work by Fannjiang et a[8], Paulino et al[9], Exadaktylos

et al.[10], Vardoulakis et al[11], Aifantis [12], Zhang et al[13],
Hwang et al[14], and the review paper by Hutchinson and Evans
[15]. The present work focuses on anisotropic strain gradient elas-
ticity theory for fracture problems in functionally graded materials
(FGMs). To the best of the authors’ knowledge, this is the fiost

one of the first solutions for FGMs with gradient terms.

The emergence of FGMs is the outcome of the need to accom-
modate material exposure to nonuniform service requirements.
These multiphased materials feature gradual transition in compo-
sition and/or microstructure for the specific purpose of controlling
variations in thermal, structural, or functional properties. The spa-
tial variation of microstructure is accomplished through nonuni-
form distribution of the reinforcement phase with different prop-
erties, sizes, and shapes, as well as by interchanging the roles o
reinforcement and matribase materials in a continuous manner.

} Metallic phase

Metallic matrix
with X
ceramic inclusions

Transition region

Ceramic matrix

Wi
metallic inclusions
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are derived and the Fourier transform method is introduced aAd pointed out by Chan et gl27], the constitutive equations of
applied to convert the governing PDE into an ordinary differentigradient elasticity for FGMs have a different form from the ones
equation(ODE). Afterwards, the crack boundary value problem isbove. Thus, for FGMs with material gradation along the Carte-
described and a specific complete set of boundary conditionssian coordinate, the constitutive equations of gradient elasticity
given. The governing hypersingular integrodifferential equation &re
derived and discretized using the collocation method. Next, vari-
ous relevant aspects of the numerical discretization are describefi ~ »(¥) €xkdij +2G(y) (&j; —02V2e) = 204G (Y)1(dei))
in detail. Subsequently, numerical results are given, conclusions (12)
are inferred, and potential extensions of this work are discussed.

Two appendices supplement the paper. One contains the lengthyi; =\(Y) €xdij +2G(Y) €+ 2¢" v [ €9 G(y) + G(y) dkeij |
expression of the regular kernel in the fiigbverning hypersin-
gular integrodifferential equation, and the other provides some (13)
useful formulas for evaluating hypersingular integrals and com- i = 20" G (Y) €+ 202G (y) dyei; - (14)

puting stress intensity factofSIFs. )
Note that the Cauchy stresses are influenced by a term con-

taining the spatial derivative of the shear modulus, and so are the
o ) ) o total stresses; . The term “— 2€Z[akG(y)](akeij)" that appear
2 Constitutive Equations of Gradient Elasticity in (12), but not in(9), can be interpreted as the interaction be-

This section introduces the notation and constitutive equatiofféeen the material gradation and the nonlocal strain gradient ef-
of gradient elasticity, which will be used to investigate antiplantct, which will play a role in the governing partial differential
shear cracks in functionally graded materiéiGMs). In three- €quation(PDE) (17) discussed in the next section. Moreoven if

dimensional space, the displacement components are defined @88dG are constants, the constitutive equations for homogeneous
materials(see Vardoulakis et al11], Exadaktylos et al.10], and

U=u, Uu=v, U=W, (1) Fannjiang et al[8]) are recovered as a particular case of Egs.

and for antiplane shear problems, the following relations hold: (12)—(14). If the shear m_odulu§5 is a f_unctio_n ofy (see Fig. 2
and a mode 1l problem is under consideration, then each compo-

u=v=0, w=w(X,y). (2) nent of the stress field can be written F&7]:
Strains are defined as Oux=Oyy=0,,7=0, 0y,=0
. :1(% . %) @) 0= 2G(y) (6~ €2V %63 — 20°[3,G(Y) 1y € 0
To2\axi o)’
L . ! i I O'yZZZG(y)(eyz_ezvzeyz)_262[‘?yG(y)](0"yEyz)9&0 (15)
where both the indicesi and j run through &;,X5,X3) )
=(x,Y,2z). For antiplane shear problems, the nontrivial strains are Hxxz=2G(Y) € dxex,
1w 1 ow MxyzZZG(y)gz‘?xEyz
€5 = €y =% —- 4
X202 9x Yz 2 gy

Casal[24-264 has established the connection between surface
tension effects and anisotropic gradient elasticity theory. For
material graded in thg-direction, the Casal’'s continuum can be y
extended so that the strain-energy density has the following for

W= 3\(Y)€iiej+G(y) € €ji + G(Y) €2 (dgeif) (Oeji)
+ 0 vl G(y)eje;],  €>0, (5)

which has been generalized for an FGM with Lameduli A
=\ (y) andG=G(y). Moreover,d, = d/ 9%, . When the formula-
tion is derived by means of a variational princigte principle of
virtual work), terms associated with undertake a volume inte- -
gral, and terms associated witi can be reduced to a surface
integral using the divergence theorem. In this sense, the char:
teristic length ¢ is responsible for volumetric strain-gradient
terms, and the characteristic is responsible for surface strain-
gradient terms. Moreovey, , d,v=0, is a director field equal to
the unit outer normah, on the boundaries.

The Cauchy stresses; , the couple stressgs,;; and the total
stressegr;; are defined as y

Tij:&W/afij (6)
Miij = IWId€;j (7

Oij = Tij — Okhbiij - ®)

For homogeneous materialse., A\ and G constanty the stress
fields are expressed in terms of strains and strain derivatives a

0'”-=)\ekk5ij+ZG(6”—€2V26”—) (9)
Tij :}\Ekkﬁij +266ij +ZG€,Vk‘9k€ij (10)

ki) =2G(L e +€26keij). (112) Fig. 2 Mode Il crack in a functionally graded material
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Myxz— ZG(y)(gzayfxzf €' €)
Myyz= 2G(y)(€2(9y€yz_ U €yy).

w=0,

V2+ 7i
ay

Again, it is worth pointing out that there is an extra termaip, i.e., the perturbed harmonic equation, which has been investigated

ando, as compared to the homogeneous material (see Vard-

by Erdogan and Ozturf8]. However, because the corresponding

oulakis et al[11] p. 4539. term to the coefficient? affects the highest differential in the
goyerning F_>DE(19)_, a singular pt_erturbation is expected as the
3 Governlng Partlal leferent|a| Equa“on limit €¢—0 is considered. By tak|ng botbf—>0 and €—>0, we

obtain the harmonic equation for classical elasticity. Various com-

By imposing the only nontrivial equilibrium equation

bination of parameteré and y with the corresponding governing

oy, 90y, PDE are listed in Table 1.

Ty O (16)

4 Fourier Transform
of G(y) is obtained: Let the Fourier transform be defined by

the following partial differential equatio(PDE) for general form

z?

G ow ezvzﬁw
X (y) x x

ow 2 Zﬁ_W)
(y)( y V%
- 2[a26<y> W aG(y) Fw , 3G(y) Pw

F oy ay oy oaday)

7)
If the shear modulu& is an exponential function of, i.e.,
G=G(y)=Gee”, (18)

Fw)(§)=W(§)= f w(x)e™édx. 23
(w)(& & T ( (23)
The inverse Fourier transform theorem gives

HW) () =w(x) = % f :W<§>e‘ixfd§, (24)

wherei=,—1. Now let us assume that

then (17) can be simplified as W(X,y)= J’ W(E,y)e Xéd¢, (25)
2y 4, 2 26’W 2 2 2(92W (9W H H H
—VW=2y(V —+VW—yHl——+ =0, (19) i.e., w(x,y) is the inverse Fourier transform of the function
o Wy W(EY).
or in a factored form Considering each term in E¢L7) term by term, and using Eq.

w=0. (20)

g J
_ 2 _ p2y2 2
v ev)(v vy

In terms of the differential operator notatiof20) can be writ-
ten in the form as

Y=Y ’ Y j’)y ! Y ély'

whereH,, is the perturbed Helmholtz operatdy, is the perturbed —27€2V25—W _

Laplacian operator, and the two operators commute, lieL,,
=L,H,. Thus, the PDHE?20) can be considered as a double per-
turbation of the composition of the Helmholtz and harmonic
equations,

(1—€2V?)V2w=0, (22)

that is, one perturbation is to the Helmholtz operator (1

—€2V?), and the other perturbation is to the Laplacian operator V2w

V2. Both the Helmholtz and the Laplacian operators are invariant
under “rigid-body motions.” However, FGMs bring in the pertur-
bation and destroy such invariance. By settipig 0 in (20), one
gets(22), which is the PDE for gradient elasticity.

Another viewpoint of the perturbation is focused on the role of

—2Viw=—¢2

(25), one obtains

Awixy) _d'wxy)  dw(x,y)
X P Ty T T ayR
y y

J— (§4W§ s 2W+,94W) e g
\/— y) 7

ay*
(26)

FPwx,y)  Pw(x,y)

2
2yt IX2ay ay® )
IW(EY)  FPW)

_ \/_ ( §2 (‘fy ay3)ef|x§ d§
(27)

F*W(X,y) . PPW(X,y)
ox? ay?

1 (- 5 PPW e
:E » —¢& W(§,V)+a—yz e d¢  (28)

the characteristic length. By taking ¢ —0 (at the level of the 22 FW(X,y) 5 y) o XE di (29
differential equation we obtain a lower order of PDE, Y ay? \/— £ (29
: - , . , IW(X,y) 8W(§ y) o ixe
Table 1 Governing partial differential equations ~ (PDESs) in an- v dé. (30)

tiplane shear problems ady V2
Cases Governing PDE References Equations(26) to (30) are addedaccordmg to Eq(19)), and after
(=0,7=0 Laplav‘f;‘fam’m Standard textbooks. simplification, the governing ordinary differential equati@DE)
=0, 7#0 Perturbed Laplace equation: Erdogan and Ozturk [28]. is obtained:
(V2 + 'yai) w=0 4 3 2
(#£0, y=0 Helmholtz-Laplface equation: Vardoulakis et al. [11]. d +2 yf d —(2¢ 2§2 + ,},262 +1) d_ —y(1+2¢ 252) i
(1-2V) V=0 Fannjiang et al. [8]. dy4 dy2 dy
£#0, v#0 Equation (20): Studied in this paper.

(1-+2£ - V) (V?+14)w=0

Journal of Applied Mechanics
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Table 2 Roots A\, together with corresponding mechanics theory and type of material

Cases Number Roots Mechanics theory References
of roots and type of material

£=0,v=0 2 +¢| Classical LEFM, Standard textbooks.
homogeneous materials

£=0, v#0 2 /24 + €2 Classical LEFM, Erdogan and Ozturk [28].
nonhomogeneous materials

£#£0, v=0 4 gl £/ + 1/ Gradient theories, Vardoulakis et al. [11].
homogeneous materials Fannjiang et al. [8].

£#0, v#0 4 —v/2E£ /Y244 €2, Gradient theories, Studied in this paper.

nonhomogeneous materials
—-y/2E/E+ 2[4 +1/62

5 Solutions of the Ordinary Differential Equation which are adopted in this paper. One may observe that the first
. - . . vo boundary conditiongBCs) in (39) are from classical elastic-
f The_ corresp_ondlng charagterlstlc equation to the ordinary dﬁz’ e.g., linear elastic fracture mechanitsEFM). The last BC
erential equatiofODE) (31) is A : -
regarding the couple-stregs,,, is needed as the higher order
2N+ 290203 — (20282 + Y202+ 1)NZ— y(1+ 2022\ theory is considered.
+(£28+ £9)=0, (32)
which can be further factored as 7 Hypersingular Integrodifferential Equation
[€2N24 y02N — (1+ €22 (N2 + yA— £2)=0. (33) Approach
Clearly the four roots\; (i=1,2,3,4) of the polynomial33) By taking account of the symmetry along tkeaxis, we may
above can be obtained as consider thatw(x,y) takes the following general solution form
(for the upper half-plane
Y Nrag )\_—_y+\/m 34)
172 2 0 "2 2 1 (= _
w(x,y)= _/_f [A(¢)e'Y+B(§)er]e ™ ed¢, y=0
_ Y mar a2 _ Ym0z 21 J
)\3—7— &+ yolA+ 1167, )\4—7+ &ty 14+ 1/¢7,
(35) — L jw [A( g)ef(y+ v‘4§2+72)y/2
where we let\;<0 and\3;<0. As y—0, we recover the roots V27 ) e
found by Vardoulakis et aJ11] and Fannjiang et a8]. The roots PN s vy .
A, and\, correspond to the solution of the perturbed harmonic +B(§e” VA HAYR1emXedg y=0, (40)

equation, and the roots; and\, match with the solution of the )
perturbed Helmholtz's equation. Various choices of parameters/N€reA(¢) andB(¢) need to be determined from the boundary

and y with their corresponding mechanics theories and materignditions(39). As Eq.(40) provides the form of the solution for
types are listed in Table 2. w(x,y), it can be used in conjunction with E€L5) such that

By taking account of the far-field boundary condition
O'yz(xxy) = ZG(Y)(EyZ_ €2V2Eyz) - 262[ ayG(y)](ayeyz)

W(X,y)—0 as Vx2+y?— +o, (36) . ,
and withy>0 (the upper half plange one obtains = % M(y,E)A(E)e (F v’yz—+4g‘2)y/2—ixgd§’
T J—x

W(&,y)=A(§)eM +B(§)er?. (37)
Accordingly, the displacement(x,y) takes the form y=0. (41)

1 o _ Notice that the term associated wili{£) has been dropped out
W(X,y)= \/? f [A(&)eMY+B(£)er]e *édé.  (38)  from ay,(X,y). Moreover,
mJ—w

. . Je
Both A(¢) andB(&) are determined by the boundary conditions. ,uyyz(X,y):ZG(y)( 2 (?;Z—e’eyz), y=0,
6 Boundary Conditions Gy) (*
Figure 2 shows the geometry of the mode Il crack problem in = on f {(E2N3— €' NDA(HMY + (€205
which a functionally graded materigFGM), with shear modulus e
G(y)=Gye"”, bonded to a half-space is considered. Thus the —€'Ng)B(&)eMM e *édg
problem reduces to the upper half-plane, s is treated as the
boundary. By the principle of virtual work, the following mixed G(y) [~ PNy
boundary conditions can be derived: = _r—f {caly,H)A(g)e iy Hasye
2’77 —©
O'VZ(X,O)ZD(X), |X|<a o AT T A i i
w(x,0)=0, X|>a (39) +oa(r.§B(ge T RedE, - (42)
HyyAX,00=0,  —oo<Ix<+oo, where
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Caly, &) =ENI— '\

14 Nt 2 :
=S (YOPH )+ S (yCHO) Y Hag+ 282,

(43)
and
ca(7,6)=0N5— €'\
= 2g+ J ()41
+%('y€2+€')\/m. (44)

In order to derive the Fredholm integral equation, we define the

density as the slope function

d(X)=aw(x,0")/ox. (45)
The second boundary condition (89), and Eq.(45), imply that
d(x)=0, |x|>a, (46)
and
a
J:a¢(x)dx:0, (47)

which is the single-valuedness condition. The definitid§), to-
gether with Eq(40), lead to

l ” .
Ef (—iO[AE)+B(&)]e *dE= p(x), —oo<x<oo.
(48)
By inverting the Fourier transform and usifg6), one obtains

-1 (- .
(if)[A(§)+B(§)]=Ef p(x)e*édx, —om<x<

(49)

=_—1fa H(1)e'dt.
V2m ) -a

The last boundary condition i(89), imposed onu,,AX,y),
provides the following pointwise relationship betwe&(¢) and

B(é):
2+ (p02+ 0 ) Y4+ E+ y(p02+L")]2
CE+1+[(p02+0)2](y+ VAE+ P+ 413
=p(7,6)AE),
where the notatiop(y,§) is introduced here, i.e.,
02824 (y02+ € WP lat+ E+ y(y02+ )12

2+ 1+[(y02+ ") [2)(y+ A&+ 2+ ale?)
(51)

B(&)=— A(é)

(50)

p(v,é)=—

Substituting(50) into (49), one obtains

A(é)= (52)

i &t
1507, g)J plnett,

J_ i
where

1 CEFTLH[(p02+ ) [2](y+ VAE+ Y2+ 4107)

T4p(7.6)  1+[(702+€)I2)(VAEEt y2r A2 —JAE2t 42)
(53)

Journal of Applied Mechanics

ReplacingA(€) in Eq. (41) and using thefirst) boundary condi-
tion for o, (that is, lim,_ o+ o7y (X,y) =p(X), [x|<a) in (39), one
obtains the following integral equation in limit form:

. G(y)J*‘ —M(7.9)
lim

v 2m .
y—0

i&(1+p(y,8)
X F P(t)e'etdt

e~ (rt VP +asyyi2- xéq g

=p(x), [|x[<a. (54)
By rearranging the order of integration, we obtain
. (y) —Ai(7,€)
m s R ey
x o= (r+ P +addyyngig(t- Idedt
=p(x), [|x/<a, (55)

which can be rewritten as

G (a2 * )
lim >— | $(t) f K(&y)e €t 9dgdt=p(x), |x|<a,
ot (56)
with the kernel

_)\1('}’:f)
ig[1+p(7,8)]

Asymptotic analysis allows splitting of the kern€(£,y) into
the singulafK..(§,y) =lim|,_,.K(£,y)] and nonsingular parts:

K(£,y)=Ko(£,y) +[K(&y) —Ko(€:3)]s

singular

—(y+Vy2+a8d)yi2

K(&y)= (57)

nonsingular

(58)
where(asy is set to zerp
|§| 5€2')/2 €/,y er 2
K=(£,0)= |§H 8 +T+l_(ﬁ)
2 2 ’
S22 g ezez] (59)

and K(£,0)—-K..(£,0), denoted byN(&,0)=N(£), can be ex-
pressed as a fraction:

P(£)
Q'
with P(&) andQ(¢) described in Appendix A.

Substitution of Eq.(59) into (56), in the sense of distribution
theory,[29], leads to

N(£.0=N(&)= 574 (60)

jw K.(&y)ed¢

lim
y~>0Jr
_262 ™ 2 ' '
:W—E(Z(f ’)/+€ )5 (t—X)
. 5€2218+ €' yl4+1—[€'1(2€)]?

t—x '

and to the following hypersingular integral equation:
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N(E)sin[(t-x)E]

0.03 - ' ! ! ! T ! ' !
0.02

0.01

N(E)sin[(t-x)E]

-0.01

002 ; i i ; i ;
0

Fig. 3 Plot of the integrand in Eq.  (62) for €=0.05, ¢'=0.005, y=0.1, r=v3/7, and s
=v2/3. (a) £€[0,5000]; (b) Zoom for the range £€[0,500]. Moreover, as £—0, the limit
of N(&)sin[&(s—n)] is about 22.4 X 1073,

Go [*[ —-2¢2 = which is an integrodifferential equation with both hypersingular
7j£ [ = 5(2€2y+€’)5’(r—x) and Cauchy singular kernels. In addition to the single-valuedness
—a _condition condition in (47), _the integrod_ifferential Eq.(64)

5029284 €' yjd+1—[€')(26) ]2 is sp[veg under the physical constrairftsmooth closure
+ Y yr—x L€7/(20] +k(x,0) | p(r)dr condition”):
=p(x), |x|<a, $(a)=¢(—a)=0, (65)

(61) so that the solution can be found uniquége Refs[8] and[30)).

where the regular kernel is

k(x,t)=f N(&)SiN £(t—x)]dé (62 & Numerical Solution
0 The numerical solution of the mode Il fracture boundary value

; ; ; ; ; ; lem is accomplished by means of the collocation method,
with N(&) described in Eq(60). Figure 3 permits to graphically ProP T : .
evaluate the behavior of the integrand of E6R). Clearly, such [31,32. The process of obtaining .the numgrlcal solution of Eq.
kernel is oscillatory, but the magnitude of oscillation decreasé@¥ can be divided into the following steps:
and tend to zero ag increases, i.e., ligy,,, N(&)siM&t—x)]=0. « Normalization,
Another point that we need to be cautious about in (B8) is the - representation of the density function,
behavior a&=0 of N(§) = P(£)/Q(¢&) asQ(é) has the factogin .« Chebyshev polynomial expansion,
the denominator. However, this would not affect the integrability « eyaluation of the derivative of the density function,
of the integrand in Eq(62) because of the term $if{t—X)]. Thus  « formation of the linear system of equations,
||m|gao N]Etf)SIFE(tg—X)] e(;qsts and is finite, which depends on the . eyaluation of singular and hypersingular integrals, and
values oft, x, £, €', andy. « evaluation of nonsingular integral.

As a result of distribution theory29], the differentiation of a ) ) ]
delta function,é(t), has the following property: Relevant details for each of the above items are given below.

o 8.1 Normalization. By the following change of variables,
f o' (t=x)p(t)dt=—'(x). (63)
- s=[2/(d—c)][t—(c+d)/2],

Thus one may rewrite Ed61) as . d .
one may convert the integraf.g(t)dt into the form of

Go (| 24 5€272/8+€'7/4+1—(€'/€)2/4+k(x 9 J1,f(s)ds. Because the crack surface is located in the range
a J_ | (t—x)? 1—x ’ (—a,a), a convenient change of variables becomes

G t/a=s and x/a=r,
X¢(r)dr+5(€’+2€2y)¢’(x)=p(x), |x|<a,

which is the normalization of the variablésandx, respectively.
(64) Thus Eq.(64) can be written in normalized fashion as

536 / Vol. 70, JULY 2003 Transactions of the ASME



1 (! [=2(£/a)? d n+1
?jgl[ (s—r)3 E[Un(r)vlfrzkfﬁnﬂ(r), n=0. (73)

+5(€/a)2(ay)2/8+(€'/a)(ay)/4+1—[(4'/a)/(€/a)]2/4 Thus

S—r ©
d
®'(1)=g- JI=12>) AU
+IC(r,s)]<I>(s)ds+[€’/a+2(€/a)2(ay)]<l)’(r)/2 n=0
— 1 “
=P(r)/Go, |r|<1, =ﬁn§0 (N+1)ATH(r). (74)
(66) 8.5 Formation of the Linear System of Equations. The
where strategy to determine the coefficier{ss consists of forming a set

_ _ _ of linear algebraic equations. Replacififs) in (66) by the rep-
®(r)=¢(ar), P(ry=p(ar), K(r,s)=ak(ar,as). resentatior(70), and using74) one obtains the governing integral
As clearly seen in Eq(66), the quantitie€/a, ¢'/a, anday are eduation in discretized form:

dimensionless parameters. Thus the following dimensionless pa- w 5 s T
rameters are defined: SN Ap [V Un(s)VL=s et 1+5€ y +€_y
3
~ ~ = _ —r 4
T=tla, T'=¢'la, F=ay, (67) P ()
. . . . . . = 2 o )
which will be used in the humerical implementation and results. 4 E A, (L U(s)VL—s d
- — — —ds
8.2 Representation of the Density Function. The next step 20/ |a=1 ™ Ja S—Fr
of the numerical approach to ttieormalized hypersingular inte- - _
gral Eq.(66) is to establish the actual behavior of the unknown A, 1 5
density functiond(s) around the two crack tips= = 1. For ex- +Z — | NI=sTU()KLr,s)ds
ample, the governing integral equation in classical linear elastic nl !
fracture mechanic$LEFM) has Cauchy singularity if the slope Y P P(r)
function, say®(s) grv, is chosen to be the unknown density L A,(n+ DT, . (r)= . rl<1.
function. A well-known representation 31,32, aWi—2 o 8 Gy
D(s)erm=f(s)/V1-5° [g]<1, (75)

wheref(+1)#0. For the cubic hypersingular integral, E§6), Notice that the running inder starts from 1 instead of (see
the representation ab(s) is found to be[8], (72).

D(s)ce=P(s)=g(s)V1-%7, (68)

whereg(= 1) is finite,g(= 1)#0, and the subscript GE stands for_ 8.6 Evaluation of Singular and Hypersingular Integrals.
gradient elasticity. Thus by approximatigs), one can find the The governing integrodifferential E¢64), and its discretized ver-
numerical solution tab(s). sion, Eq.(75)_, contain _both C_:auchy singular and hypersingular
integrals(cubic singularity, which need to be evaluated. Erdogan
8.3 Chebyshev Polynomial Expansion. The approximation et al.[31,32 have presented formulas for evaluating Cauchy sin-
of g(s) in Eq. (68) is accomplished by means of Chebyshev polygular integrals, and Chan et #B4] have presented formulas for
nomial expansions. Either Chebyshev polynomials of the firaialuating a broad class of hypersingular integrals, which gener-
kind Tp(s), or of the second kintl,(s), may be employed in the alizes previous derivationg31,32,33, in the literature. Here,
approximation, i.e., such integrals are interpreted in the finite-part sense, and listed in
Appendix B(Eg. (93) to (95)).

9= a,To(5) or g(s)=2 AULS).  (69) 8.7 Evaluation of Nonsingular Integral. Combining all
n=0 n=0 the results obtained so far in the numerical approximation, one
The coefficientsa,s or A,s are determined numerically by themay rewrite Eq(75) in the following form:

collocation method. As shown by Chan et[&3], the two expan- 72 =
sions should lead to the same numerical results. In this paper, the — 2 )
expansion usindJ ,(s) is adopted, i.e., 2(1—r2) n; Al ("M Up (1) = (2074 3n+2)Up-4(r)]
i 02=2 DI 71\ 2] @
B(s)= V153, AUy(s), (70) 22 O S AT,
n=0 4 22; =
whereU ,(s) is defined, as usual, by "
A (1
sif(n+1)cos (s + —nf 1-s?U d
Un(s)= rtn+1) (5)] n=0,1,2,.... (71) n; )1 SUn(9K(r.s)ds

sifcos X(s)]

Satisfaction of the single-valuedness conditi@), or equiva- T +20%y

P(r)
Iently,f1_1<l>(s) ds=0, requires that the following relation holds: - o J1—r2 ngl An(N+1)Thq(r)= G rj<1.

8.4 Evaluation of the Derivative of the Density Function. Thus the last step for applying the collocation method consists of

The term®’(r) in Eq. (66) is evaluated using the expansi(f0) evaluating théregulay integral in(76), which is actually a double
and the fact that integral, i.e.,
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1 1 Q) S
j 1\/11:,2Un(s)lC(r,s)ds xf (sf%r;ds' (r>1). (82)
— -1
1 After cancellation of the common terms, E&2) can be contin-
:j JV1-s?U,(s)ak(ar,as)ds ued by introducing formula98), and using the representation
-1 (70), i.e.,
1 % N
=f_1\/1—szun(8) fo aN(é)siMaé(s—r)]déds. K, (a)=2y27a _:{5)60 lim (r—1)3’22 —(r;+ D
r—1* n=0

The integral alond0, «) is a Fourier sine transform, and can be
efficiently evaluated by applying fast Fourier transfoffFT)
[36]. The integral alond —1,1] can be readily obtained by the

_ 2
Irl " Ir]
Gaussian quadrature meth¢a7]. X\ =+ Jri-1 ni1- o
i r
9 Stress Intensity Factors(SIFs) B u Nz
Since the(macroscopitpropagation of a crack starts around its T r A
tips, it is very important to study and determine the SIFs at both Jré—13 "

crack tips. In classical linear elastic fracture mechaidsFM), .
the stressr, ,(x,0) has 1{x—a singularity axx—a* (or 1//x+a,
yz Y
asx— —a ), and thus SIFs are defined and can be calculated by =vma (£/a)Go IZJO (N+1)A,. (83)

K@= lim y27(x—a)a,(x,0), (x>a), (77)  Similarly,

x—a’t
o

and Ku(—a)=yma (€/2)Gy > (~1)"(n+1)A,.  (84)
Kuy(—a)= lim \2m(—a—x)oy(x0), (x<-a). n=0
X —a~ Formulas(83) and (84) will be used to obtain numerical results

(78) for SIFs.

However, the same definition may not hold for strain-gradient ) )
elasticity becauser,,(x,0) may have a stronger singularif,3]. 10 Results and Discussion

Thus SIFs will be redefined in the development below. The boundary value problem illustrated in Fig. 2 is considered
First, note that the limit in Eq477) and(78) is taken from the ¢ )| the examples in this paper. To validate the present formu-
region outside the crack surfaces toward both tips, and the integtg|on consider the case whefe ¢’ —0 in a certain special limit
Eq.(64) is the expression far,(x,0) which is valid forlx|>a as  gonggsee Fannjiang et al8]), so that the classical elasticity so-
well as[x|<a, i, lution is represented. The results for classical stress intensity fac-
G (2 —262 5€2y%8+('yl4+1—(€'1€¢)%4  tors(SIFs (Egs.(77) and(78)) are given in Table 3. It is clearly
ayAx,0)= —f {(t_x)g + T—x seen from Table 3 that the present results are in agreement with
mJ-a those of Erdogan and OztufR8]. Note that the SIFs decrease
G monotonically asy increases. Moreover, it is interesting to inves-
+k(x,t)} S()dt+ —(£'+2€2y) ¢’ (x), |x|>a. tigate the asymptotic behavior of the SIFsjas + <. As y—o
2 the stiffness of the medium increases indefinitely and, under finite
(79) loading (pg), the crack-opening displacement and the SIFs
Ku(a) tend to zero. Similarly, agy— —« the stiffness of the

Second, after normalization and with the density functib(t)
expanded by Chebyshev polynomials of the second kind
some integral formulas, which are useful for deriving SIFs, ne
to be developed fofr|>1 (Chan et al[34]), and are listed in
Appendix B(see Eqs(96) to (98)). Notice that the highest singu-

eI%ble 3 Variation of classical (normalized ) stress intensity
factors (SIFs) with the material gradation parameter  y=+v/a

larity in the Eqs.(96) to (98) appears in the last term in E(8), K,jcf’ —
and it has singularityr®—1)"%? asr—1" or r——1". Moti- 5 | Present Study | Erdogan and Ozturk [28]
vated by such asymptotic behavior, we generalize the SIFs for -2.0 1.476 1.481
strain gradient elasticity from those of classical LEFM. Thus -1.6 1.381 1.397
. -1.2 1.293 1.308
€K|“(a): lim 2\ 27T(X_a)(x_a) G'yz(X,O), (80) 08 1.204 1.214
x—a’ 04 1117 1113
(Ky(—a)= lim 2\2=(x+a)(x+a)o,(x,0). (81 -0.2 1.061 1.059
m ) o m( )( )O'yz( ) (81) 0.0 1000 1000
. . 0.2 0.934 0.934
Therefore, the following formulas for the normalized mode Il 04 0.566 0.869
SIFs in the strain-gradient elasticity theory may be derived: 0.6 0.807 G810
= |i 0.8 0.755 0.758
= N — - >
€Ky (a) XIIT+ 2V2m(x—a)(x—a)oyx,0), (x>a) o 5700 5715
B 12 0.669 0.671
= lim 2y2m(ar—a)(ar—a)o,/(ar,0, (r>1) 1.6 0.602 0.604
r—1" 2.0 0.556 0.550
o2 3.0 0.458 0.457
=2avma G Iim V2(r—=1)(r—1 5.0 0.359 0.356
o I V2 s 6.0 0.329 0.324
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Fig. 4 Full crack displacement profile in an infinite medium of
homogeneous material (y=0) under uniform crack surface
shear Ioadi~ng o,,(x,00=—p, with choice of (normalized ) 4
=0.2and ¢'=0

Fig. 6 Crack surface displacement under uniform crack sur-
face shear loading o,,(x,0)=—p, and shear modulus G(y)
=G,e?” with choice of (normalized ) €=0.2, £'=0.04, and vari-
ous ¥. The dashed line stands for the homogeneous material
(9=0) in a gradient elastic medium.

medium decreases indefinitely, and consequeiifiy(a) tend to The solutions obtained in this study for a nonhomogeneous

infinity. These physically expected trends can be observed fjg!f-plane having shear modul@=G(y), y>0, is also valid for
Table 3. the corresponding infinite medium in whigh=0 is a plane of

Once the slope function is found numerically using the repréymmetry(see Fig. 2, i.e.,
sentation(68), the crack displacement profile(r,0) can be ob- G(—y)=G(y)

tained as

Unless otherwise stated, uniform loading is considered on the
crack face, i.e.g,,(x,0)= —py, and the normalizatiop, /G, has
been employed.

Further normalized crack displacement profiles for various
Figure 4 shows the normalized crack displacement profile in &@Mmbinations of the gradient parametefs{(') and material gra-
infinite medium of homogeneous material=0) under uniform dation parametery) are presented in Fig. 5 to Fig. 8. Figures 5
crack surface loading fof = 0.2 andf’ =0. Notice that the crack and 6 show crack displacement profiles for selected valués of
tips form a cusp with zero enclosed angle and zero first derivati¥é, and variousy. Figure 5 considerg =0.05, {'=0 and thus
of the displacement at the crack tifsee(65)). This crack shape is p=¢'/€=0; while Fig. 6 considerg =0.20, ¢'=0.04 and thus
similar to the one obtained by Barenbl§88] using “cohesive p=+¢'/¢=0.2. In both graphs, the broken lines stand for the ho-

zone theory,” but without the assumption regarding existence pfogeneous materialf=0) in a gradient elastic medium. A com-
interatomic forces.

r r N
w(r,0)=filtb(s)ds= J,l‘/lfsznzo A,U.(s)ds. (85)

O 4

1.8

1.6

14 =

(DO

Ao 1.2} :-O
(0] ©
~ 1.0 =
g S
= z
6: 0.8 =
X
z 06

©
»

o
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02 . , [ ]

-1 -0.8 -06 -04 -0.2 0
x/a

02 04 06 08 1

x/a

Fig. 5 Crack surface displacement under uniform crack sur-
face shear loading o,,(x,00=—p, and shear modulus G(y)
=G,e?” with choice of (normalized ) £=0.05, ¢'=0, and various
y. The dashed line stands for the homogeneous material case
(y=0).

Journal of Applied Mechanics

Fig. 7 Crack surface displacement profiles under uniform
crack surface shear loading  o,(x,0)= —Pq and shear modulus
G(y)=Gye?” with choice of (normalized ) ¢'=0.05, #=0.1, and
various €. The values of ¢ are listed in the same order as the
solid-line curves.

JULY 2003, Vol. 70 / 539



121 LEFM . 1.2
10t 1.0
Ec 0.8} & 08
D.o \O 0 6
S 06 Z0.0375 g
S -0.0250 =
£ 04r =0:0100 S 04
= 0.0000 E1 !
0.2l ..0.0100 ) 0.2l
0.0250 : 0.50
0.0495
0 : 0.0
-02L. . e ; : S : Co —02L ‘ ‘ . . . : ‘ . ; i
-1 -0.8 -0.6 -04 -0.2 0 02 04 06 08 10 1 o 1
x/a x/a
Fig. 8 Crack surface displacement profiles under uniform Fig. 9 Crack surface displacement profiles under discontinu-

crack surface shear loading  o,(x, 0)——p0 and shear modulus ous loading p(x/a)=—1+0.5sgn(x/a) and shear modulus
G(y)= Goe’/y with choice of (normalized ) £=0.05, #=0.1, and G(y)=Gye?” with choice of (normalized ) £=0.05, $=0.2, and
various {'. The values of €' (and p=¢/¢') are listed in the same various p={/¢'. The values of p are listed in the same order as
order as the solid-line and dashed-line (p=0) curves repre- the solid-line and dashed-line  (p=0) curves representing the
senting the strain gradient results. strain gradient results.

parison between Figs. 5 and 6 permits to assess the influence dfigure 8 shows crack displacement profiles for0.05,
the gradient parameterst,(¢') on the displacement solution. =0.10 and varioug’. As is apparent from this figure, by main-
Moreover, asy increases the displacement magnitude decreastaining the values of the relative volume energy paraméteon-
which is consistent with similar results by Erdogan and Ozturitant, the crack stiffening effect becomes more pronounced as the
[28] using classical elasticity to model mode 1l cracks in funcrelative surface energy parametérincreases in the rang@®.¢).
tionally graded material6FGMs). It is worth mentioning that, from energy considerations, the pa-
Figure 7 shows crack displacement profiles T6r=0.05, % rameter{’ can take negative valueg39]. Note from Fig. 8 that
=0.10 and variou$. As? increases, the displacement diminishethe effect of a negativé’ leads to a more compliant crack. In
monotonically, or alternatively the crack becomes stiffer, in congeneral, this is a desirable property of the mathematical model in
parison to the classical elasticity theory. regards to describing experimental results and data.

Table 4 Convergence of (normalized ) generalized stress intensity factors (SIFs) for a mode Il crack

5=0, =005 5=10.30, {=0.05

7 =0,p=0 7 =10.01; p=0.20 £=0,p=0 7 =0.01; p=0.20

Krri(~a Kiir(—a Kutg—al Krrr(-a
N Wl Cond. Num. _;()J\/ﬁl Cond. Num. W Cond. Num. po/7E Cond. Num.

11 || 0.97292 9.888 0.99640 17.018 0.89258 15.223 0.90773 15.142

21 || 0.97467 83.559 0.97375 | 1.669e+02 || 0.88381 | 1.509e¢+02 | 0.88337 [ 1.478e+02
31 || 0.97467 | 3.555e+02 {| 0.97355 | 7.131e+02 || 0.88376 | 6.437e402 || 0.88287 | 6.314e+02
41 || 0.97467 | 1.032e+03 | 0.972256 | 2.059¢+03 {| 0.88336 | 1.859¢+03 || 0.88133 | 1.823e+03
51 || 0.97467 | 2.395e+03 || 0.97109 | 4.754e+03 {| 0.88301 | 4.293e+03 || 0.87999 | 4.206e+03
61 || 0.97467 | 4.802e+03 || 0.97113 | 9.501e+03 || 0.88301 | 8.577e+03 || 0.87996 | 8.406e+03

Table 5 Normalized generalized stress intensity factors (SIFs) for a mode Il crack
at various values of [/, /', and ¥

§=005 ¢=0|i=005 #=001|F=02 &=0]7=02 &=004

g i v e v
-2.00 1.42126 1.41617 1.28917 1.26783
-1.00 1.21749 1.21301 1.10392 1.08610
-0.50 1.10374 1.09965 1.00377 0.98768
-0.10 1.00271 0.99903 0.91696 0.90236
0.00 0.97467 0.97113 0.89338 0.87921
0.10 0.94423 0.94086 0.86819 0.85450
0.50 0.82566 0.82282 0.76878 0.75671
1.00 0.70597 0.70324 0.66261 0.65160
2.00 0.54916 0.54592 0.50894 0.49937
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Figure 9 shows crack displacement profiles considering discodMS-9713798 from the Mechanics & Materials Program, and

tinuous loading DMS-9600119 from the Applied Mathematics Program. The first

_ author would like to thank Prof. Y. F. Dafalias, form the Univer-

p(x)=—1+0.5sgrix) sity of California at Davis, for his encouragement and valuable

and€=0.05,%=0.2, and varioup={'/¢. Similar comments to Suggestions to this work.

those regarding Fig. 8 can be made with respect to Fig. 9. More-

over, qualitatively the results displayed in Figs. 7 to 9 are in agree-

ment with those of Vardoulakis et a[11] for homogeneous

materials.

Table 4 shows a convergence study foormalized general-  The Regular Kernel. The regular kerneN(£,0) described in
ized SIFs(see Eqs(80), (81), and(83), (84)) involving nongraded Eq. (60) can be expressed as the fractiBé)/Q(£). Q(&) is
(¥=0) and graded¥+0) gradient elastic materials consideringbiven by
both€¢’'=0 and¢'#0 (¢'>0). Note that as the number of col-
location points N) increases, the generalized SIF results con-  Q(¢&)= —i&(VEX+ Y2IA+ 1162+ &2+ 24+ y+ €' 1¢?).
verge for both materialéi.e., nongraded and gradedHowever, (86)
the convergence is worse for the caSe~0 than for the case
7’ =0. The condition number for all the examples investigated ,E’S(f) can be expressed as
always satisfactory. —

Table 5 lists the generalized SlFsee Eqs(80), (81)) for gra- PE=Pa(§) T P3(£)+P2(6) +Pa(§)+Po(¢) ®7)
dient elastic materials considering various values of the materialwhich
parametery and usingN=61 collocation points in the numerical

Appendix A

solution. Notice that the SIF monotonically decreasesyds- P(&)= 22X (VE+ y2IA+ 1IEP\E2+ 214+ &2
creases, which is in full agreement with the early results for clas- — 5 SR

sical elasticity considering nonhomogeneous matetiss Table —|E|VE+ 1A+ 1~ [ENE+14),  (88)
3). Consider, for example, the ca$e=0. In this case, the c~rack L 02 s D > SR
stiffening is due to the characteristic material lengthand ¢’ P3(£)=3(yE2+ € ) E(VE+ y2Ia+ L2+ e+ y214)
(€'>0) of the structured medium which are responsible for lower —(y?+ )€’ (89)

generalized SIFs<1.0) and, consequently, lower energy release
rates during crack propagation. The results indicate that a higher  p,(g)=[1+ y(y02+ ¢')]VE+ y24+ 1/E2\E+ 24
external load, as compared to that of the classical case, must be

applied on the crack surfacéer on the remote boundarieto 1.,, 1 ¢'\? 1 oo

propagate it in a material with microstructure. 1+ 27 U 2\ EW 3
A few comments about the determination of characteristic

lengths in continua with microstructure are in order. Shi ef4] 5,, ¢'\? 1 ,

have presented a brief discussion on determination of such lengths —| 1+ R4 - 20 + 4 4

in the context of Fleck and Hutchinson3] strain gradient theory,
which is a generalization of Mindlin’s higher-order continuum X |E|(NE+ YA+ 112+ E2+ y214), (90)
theory, [41,42. Experimental work in the field include, for ex-

ample, micro-torsion by Fleck et d43], microbending by Stolk- 1 . " >

ens and Evanp44], and microindentation by Nik45]. The char- P1(§)= 5 y(1+y T+ yl")NE+ yTA+ 1N

acterization of actual materials, with respect to strain gradient

length-scalés), is an ongoing research topic of much interest and v N

impact in the field of applied mechanics. +5(1+ YOyl + 2 VE+ %A

11 Concluding Remarks . ' . 5 202 ( ' 2+ 1 €’}| | (o
This paper has presented a theoretical framework and corre- L2 g7 2¢ 47 ¢, (41

sponding computational implementation for modeling antiplane

shear cracks in functionally graded materi@&Ms) using strain 1,3, 1 Lyt

gradient elasticityCasal’s continuum which includes both volu- Po(§)= 7y + v+ g vti+ 5747 (92)

metric and surface energy terms. The characteristic ler{gthad

€', respectively associated to these terms are assumed to be C‘Nﬁpendix B

stant, and the material shear modulus is assumed to vary exponeh-

tially (see Eq.(18)). In this study, the crack is considered to be Singular and Hypersingular Integrals. Closed-form solu-
perpendicular to the material gradient. The present hypersinguiians for evaluating singular and hypersingular integrals are pro-
integrodifferential equation approach leads to a numerically tragided here and can also be found in Chan ef24]. Those inte-
table solution of the fracture problem, and relevant fracture pgrals are interpreted in the finite-part sense.

rameters have been investigated. These results include, for exThe solution of the crack boundary value problem requires the
ample, crack displacement profiles and generalized stress intenfitjowing formulas. Thus fofr|<1, we have

factors. A parametric study including various gradation parameters

(v) and strain gradient parametes ') has been conducted and L[V Uy(s)V1 =52

discussed. A natural extension of this work is the solution of an P . — =r ds=—T,.,(r), n=0,
antiplane shear crack where the crack is parallel to the material

gradation. Another potential extension consists of investigating (93)

the mode | fracture problem.
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1 j£1 U, (s)y1—s? -1, n=0,
1

T (s—r)? 5= [(n2+n)U, (r)—(2n2+3n+2)U,_(N]/[4(1—r?)], n=1.

WV

(95)

The calculation of stress intensity factors requires the following€l hCAa”!|'O-ZHZia“éO'f)-lM-bCafpeCteﬂ R& RI-’ glasl{g”% G.t'H., ﬁibg”“gv j'cc" and
unir, Z. A, , “Dense Layere 08I Si unctionally Graded Com-
formulas. Thus, fOIfI’ | >1, we have posites Formed by Field-Activated Synthesis,” J. Am. Ceram. S5), pp.

/ 2 n+1 962-968.

i ! Un(S) 1-s ds=—|r— M rz_ 1 n=0 [17] Jin, Z.-H., and Paulino, G. H., 2001, “Transient Thermal Stress Analysis of an

I S—r ! - Edge Crack in a Functionally Graded Material,” Int. J. Fradi07(1), pp.

73-98.
(96) [18] Carrillo-Heian, E. M., Unuvar, C., Gibeling, J. C., Paulino, G. H., and Munir,
5 Z. A., 2001, “Simultaneous Synthesis and Densification of Niobium Silicide/
1 (1 Uy(s)VYl-s |r| Niobium Composites,” Scr. Mater45(4), pp. 405-412.

; wds: - (n+ 1) 1- \/? [19] Carpenter, R. D., Liang, W. W., Paulino, G. H., Gibeling, J. C., and Munir, Z.
-1 re—1 A., 1999, “Fracture Testing and Analysis of a Layered Functionally Graded

n Ti/TiB Beam in 3-Point Bending,” Mater. Sci. ForurB37-842, pp. 971-976.

||'| [20] Markworth, A. J., Ramesh, K. S., and Parks, Jr., W. P., 1995, “Review Mod-
X \/rzf 1) n

r— T =0 elling Studies Applied to Functionally Graded Materials,” J. Mater. 0,

pp. 2183-2193.
(97) [21] Erdogan, F., 1995, “Fracture Mechanics of Functionally Graded Materials,”
Composites Eng5(7), pp. 753-770.
12 [22] Hirai, T., 1996, “Functional Gradient MaterialsMaterials Science and Tech-
1 1 Un(S) 1-s d nology (Vol. 17B of Processing of Ceramics, Par},2R. J. Brook, ed., VCH
_ (S— I’)3 S Verlagsgesellschaft mbH, Weinheim, Germany, pp. 292—-341.
-1 [23] Suresh, S., and Mortensen, A., 19%8)ndamentals of Functionally Graded
-1
=—(n+1)
2

w

n—1 Materials ASM International and the Institute of Materials, IOM Communi-
|r| cations Ltd., London.
1 [24] Casal, P., 1961, “La Capillarite Interne,” Cah. Groupe Fr. Etud. Rhé(B),
pp. 31-37.
[25] Casal, P., 1963, “Capillarite Interne en Mecanique,” C.R. Acad. 2&6, pp.
> 3820-3822.
2 r——nre—1 [26] Casal, P., 1972, “La tharie du second gradient et la capillarit€.R. Acad.
Ir] r Sci. Paris Se A, 274, pp. 1571-1574.
X| nl1- > + s , nh=0. [27] Chan, Y.-S., Paulino, G. H., and Fannjiang, A. C., 2003, “Change of Consti-
re—1 Vre—1 tutive Relations due to Interaction Between Strain Gradient Effect and Mate-
rial Gradation,” to be submitted.
(98) [28] Erdogan, F., and Ozturk, M., 1992, “Diffusion Problems in Bonded Nonho-
mogeneous Materials With an Interface Cut,” Int. J. Eng. S80(10), pp.
1507-1523.
References [29] Sneddon, I. N., 1972The Use of Integral Transform#icGraw-Hill, New
[1] Eringen, A. C., 1999Microcontinuum Field Theories I. Foundations and Sol- York.
ids, Springer-Verlag, New York. [30] Martin, P. A., 1991, “End-Point Behavior of Solutions to Hypersingular Inte-
[2] Wu, C. H., 1992, “Cohesive Elasticity and Surface Phenomena,” Q. Appl. gral Equations,” Proc. R. Soc. London, Ser. 4321885, pp. 301-320.
Math., 50(1), pp. 73-103. [31] Erdogan, F., and Gupta, G. D., 1972, “On the Numerical Solution of Singular
[3] Fleck, N. A., and Hutchinson, J. W., 1997, “Strain Gradient Plasticity,” Adv. Integral Equations,” Q. Appl. Math.30, pp. 525-534.
Appl. Mech.,33, pp. 295-361. [32] Erdogan, F., Gupta, G. D., and Cook, T. S., 1973, “Numerical Solution of
[4] Lakes, R. S., 1983, “Size Effects and Micromechanics of a Porous Solid,” J. Singular Integral Equations,Mechanics of FractureG. C. Sih, Ed., Vol. 1,
Mater. Sci.,18, pp. 2572—-2580. Noordhoff, Leyden, The Netherlands, pp. 368—425.
[5] Lakes, R. S., 1986, “Experimental Microelasticity of Two Porous Solids,” Int. [33] Chan, Y.-S., Paulino, G. H., and Fannjiang, A. C., 2001, “The Crack Problem
J. Solids Struct.22, pp. 55-63. for Nonhomogeneous Materials Under Antiplane Shear Loading—A Displace-
[6] Smyshlyaev, V. P., and Fleck, N. A., 1996, “The Role of Strain Gradients in ment Based Formulation,” Int. J. Solids Stru@®8(17), pp. 2989—3005.
the Grain Size Effect for Polycrystals,” J. Mech. Phys. Solidé(4), pp. [34] Chan, Y.-S., Fannjiang, A. C., and Paulino, G. H., 2003, “Integral Equations
465-495. With Hypersingular Kernels—Theory and Applications to Fracture Mechan-
[7] Van Vliet, M. R. A., and Van Mier, J. G. M., 1999, “Effect of Strain Gradients ics,” Int. J. Eng. Sci.A1(7), pp. 683—720.
on the Size Effect of Concrete in Uniaxial Tension,” Int. J. Fraé6, pp. [35] Kaya, A. C., and Erdogan, F., 1987, “On the Solution of Integral Equations
195-219. With Strongly Singular Kernels,” Q. Appl. Math45(1), pp. 105-122.
[8] Fannjiang, A. C., Chan, Y.-S., and Paulino, G. H., 2001, “Strain Gradient{36] Folland, G. B., 1992Fourier Analysis and Its ApplicationdVadsworth &
Elasticity for Antiplane Shear Cracks: A Hypersingular Integrodifferential Brooks/Cole Advanced Books & Software, Pacific Grove, CA.
Equation Approach,” SIAM(Soc. Ind. Appl. Math.J. Appl. Math.,62(3), pp. [37] Stroud, A. H., and Secrest, D., 1996aussian Qudrature Formula®rentice-
1066-1091. Hall, New York.
[9] Paulino, G. H., Fannjiang, A. C., and Chan, Y.-S., 1999, “Gradient Elasticity[38] Barenblatt, G. 1., 1962, “The Mathematical Theory of Equilibrium Cracks in
Theory for a Mode Ill Crack in a Functionally Graded Material,” Mater. Sci. Brittle Fracture,” Adv. Appl. Mech.,7, pp. 55—-129.
Forum,308-311, pp. 971-976. [39] Vardoulakis, I., and Sulem, J., 199Bjfurcation Analysis in Geomechanijcs
[10] Exadaktylos, G., Vardoulakis, I., and Aifantis, E., 1996, “Cracks in Gradient Blackie Academic and Professional, Glasgow.
Elastic Bodies With Surface Energy,” Int. J. Fracty(2), pp. 107-119. [40] Shi, M. X., Huang, Y., and Hwang, K. C., 2000, “Fracture in a Higher-Order
[11] Vardoulakis, I., Exadaktylos, G., and Aifantis, E., 1996, “Gradient Elasticity Elastic Continuum,” J. Mech. Phys. Solid$§(12), pp. 2513-2538.
With Surface Energy: Mode-IIl Crack Problem,” Int. J. Solids Strug830), [41] Mindlin, R. D., 1964, “Micro-Structure in Linear Elasticity,” Arch. Ration.

pp. 4531-4559. Mech. Anal.,16, pp. 51-78.

[12] Aifantis, E., 1992, “On the Role of Gradients in the Localization of Deforma- [42] Mindlin, R. D., 1965, “Second Gradient of Strain and Surface-Tension in
tion and Fracture,” Int. J. Eng. Sci30, pp. 1279-1299. Linear Elasticity,” Int. J. Solids Structl, pp. 417—438.

[13] Zhang, L., Huang, Y., Chen, J. Y., and Hwang, K. C., 1998, “The Mode Il [43] Fleck, N. A., Muller, G. M., Asby, M. F., and Hutchinson, J. W., 1994, “Strain
Full-Field Solution in Elastic Materials With Strain Gradient Effects,” Int. J. Gradient Plasticity: Theory and Experiments,” Acta Metall. Matd2, pp.
Fract.,92(4), pp. 325-348. 475-487.

[14] Hwang, K. C., Cuo, T. F,, Huang, Y., and Chen, J. Y., 1998, “Fracture in Strain44] Stolken, J. S., and Evans, A. G., 1998, “A Microbend Test Method for the
Gradient Elasticity,” Met. Mater.4(4), pp. 593—600. Plasticity Length Scale,” Acta Mater46, pp. 5109-5115.

[15] Hutchinson, J. W., and Evans, A. G., 2000, “Mechanics of Materials: Top-[45] Nix, W. D., 1997, “Elastic and Plastic Properties of Thin Films on Substrates:
Down Approaches to Fracture,” Acta Mate48, pp. 125-135. Nanoindentation Techniques,” Mater. Sci. Eng., 284236, pp. 37—44.

542 / Vol. 70, JULY 2003 Transactions of the ASME



L. J. Gray
T. Kaplan

ey | Green’s Functions and Boundary
P.0. Box 2008, Building 6012,

wrse o | Ntegral Analysis for Exponentially
s.o.ricarsson | Graded Materials: Heat

Department of Mechanical Engineering, -
Tennessee Technological University, c d t
D | Lonauction
Cookeville, TN 38505

Free space Green's functions are derived for graded materials in which the thermal
conductivity varies exponentially in one coordinate. Closed-form expressions are obtained

G. H. PauImo‘ for the steady-state diffusion equation, in two and three dimensions. The corresponding

Department of Civil and Environmental boundary integral equation formulations for these problems are derived, and the three-

Engineering, dimensional case is solved numerically using a Galerkin approximation. The results of

University of lllinois at Urbana-Champaign, test calculations are in excellent agreement with exact solutions and finite element
Newmark Laboratory, simulations.[DOI: 10.1115/1.1485753

205 North Mathews Avenue,
Urbana, IL 61801

g-mail: paulino@uiuc.edu
Mem. ASME

1 Introduction driving force is applied. Derivations for some of the basic Green’s

Functionally graded material&GMs) are an important area of fgnctpns can b_e_found 'E5:6]' Thgre has also been work in the
ﬂl_rectlon of deriving Green’s functions for a general nonhomoge-

materials science research, with potentially many important app us material[7—11]). Steady-state heat conduction with an ar-

cations, e.g., super-heat resistance materials for thermal bar A ! = . .
coatings and furnace liners, vehicle and personal body arm rary spatially varying conductivity has recently been investi-

electromagnetic sensors, and graded refractive index materials ed([12,13) and has generated slome d?bate in the Iltera_ture
4,15). In most cases, exact Green’s functions are only obtained

optical applications. In an ideal FGM, the material properties m . "
nder certain restrictions.

vary smoothly in one dimensiofe.g., are constant ifx, y) but ) )
vary with 2). As an example, having a smooth transition region In the present paper, we derive free space fundamental solutions

between a pure metal and pure ceramic would result in a materig oth the two-dimensional and three-dimensional FGM Laplace
that combines the desirable high temperature properties and tHfgfdation, assuming that the thermal conductivity varies exponen-
mal resistance of a ceramic, with the fracture toughness oftig!ly: The corresponding boundary integral equation formulation,
metal. Comprehensive reviews of current FGM research may W&Ich turns out to be somewhat different from the homogeneous
found in the articles by Hirdil], Markworth et al[2] and Paulino Media case, is also obtained, and numerical results based upon a
et al.[3], and the book by Suresh and Mortengéh Galerkin approximation are presented. Relatlvely little attention
Computational analysis can be an effective method for desigias been paid to obtaining Green’s functions for the special case
ing specific FGM systems, and for understanding FGM behavié graded materials: A Green’s function for a special type of elas-
For homogeneous media, boundary integral equation methd@gynamics problem was obtained by Vret{d$], and exponen-
(e.g.,[5]) have been used extensively. However, the reformulatidi#l grading was also considered ji1]. The two-dimensional
in terms of integral equations relies upon having, as either @een’s function results have appeared in conjunction with a con-
closed form or a computable expression, a fundamental solutig@ctive heat transfer problem in #&omogeneousmaterial
(Green’s functioh of the partial differential equation. Application ([17,18)), and moreover{19] essentially contains the Green’s
of the boundary integral technique has therefore been limitdginctions derived hereiobtained in a different mannerHow-
almost exclusively, to homogeneous, or piecewise homogeneogger, the analysis employed in this paper for heat conduction in an
media. exponential FGM will carry over to the important case of elastic-
The fundamental solutions traditionally employed in boundargy ([20]), and thus it is deemed useful to present this alternate
integral analysis for homogeneous materials are “free spacdeérivation in detail.
Green’s functions: They satisfy the appropriate differential equa-This paper is organized as follows. The three-dimensional
tion everywhere in space, except at the site where a point loedplace equation is treated in Section 2.1, and the two-
dimensional case in Section 2.2. Section 3 discusses some test
To whom correspondence should be addressed. results from a Galerkin numerical implementation of the boundary
e e wasox ooz, Inlegral formulaion, and Section 4 contans some concluding re-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Dec. 14['_narks. Finally, in the APpe”d'x Itis Sh‘?W” that th_e_ integral equa-
2000; final revision, Oct. 30, 2001. Associate Editor: M.-J. Pindera. Discussion &©ns and Green’s functions can be suitably modified to allow for
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, DepagtSymmetric-Galerkin implementation. Complete formulas for the
ment of Mechanical and Environmental Enginegring University of‘California—SanEﬁree_dimensiona| reformulated fundamental solutions and their
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months after s
final publication of the paper itself in the ASMEOURNAL OF APPLIED MECHAN- irst and second derivatives, for the case that the thermal conduc-
ICS. tivity is real, are also given in this Appendix.
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2 Green’s Functions

Steady-state isotropic heat conduction in a solid is governed by
the equation

V-(kV¢)=0. 1

Here ¢=d¢(Xx,y,z) is the temperature function, and we
assume the functionally graded material is defined by the thermal
conductivity

k(x,y,2)=k(z)=koe ™27, @

where« is real. This assumption of a purely imaginary exponent
is apparently necessary for the derivation that follows. However,
once the solution is obtained, it is readily seen to be valid for any
complexa. Substituting Eq(2) into Eq. (1), one obtains that the
temperature satisfies

Fig. 1 Spherical coordinate system for evaluating the ®
integral

V2¢p—2ia¢,=0, (3)

where ¢, denotes the derivative with respectzo
The Green’s function equation can be derived by constructi%erewz

the integral equation corresponding to Egj. Following the stan- = w-. Applying the inverse transform, one obtains

dard procedure, Eq(3) is multiplied by an arbitrary function 1 gl @(Q-P)
f(x,y,2)=1(Q) and integrated over a bounded voluie Inte- G(P,Q)= B )3f 775 dw, 9)
grating by parts, and denoting the boundaryMoby X, one ob- R a0z
tains wheredw is shorthand for the three-dimensional differential ele-
ment, i.e..dw=do,dw,dw,. Changing variables
0= fvf(QxVZ«b(Q)—zia¢Z<Q>>va. 0y a (10)

g g and settingR=Q—P, R,=Q,—P,, we obtain
=L[f(Q)a—n¢(Q)—¢(Q)ﬁ—nf(Q)

1 eiw-R
— —iaR,
G(P,Q)= (277)3e waz_azdw, (11)
—2ian,(Q)p(Q)f(Q) dQ+f d(Q)(V?H(Q) which can be conveniently split into two terms,
v —iaR, eiw-R eiw-R
. e e o €t
+2iaf,(Q))dVqy, 4) G(P,Q) 2 fRS - do+a Lﬁwz(wziaz) dw}.
where n(Q)=(n,,ny,n,) is the unit outward normal fok. If (12)
f(Q)=G(P,Q) satisfies the Green’s function equati¢the ad- _ . . ) )
joint to Eq. (3)) The first integral is Eq(9) with =0, and is therefore recognized
as the Green’s function for the Laplace equatioonstant k, the
V2G(P,Q)+2iaG,(P,Q)=—8(Q—P), (5) point source potential:
wheredis the Dirac delta function, the remaining volume integral e iR, gleR e iR,
becomes simply- ¢(P). Thus we obtain the governing boundary 2n) f o de= 7 (13)
R

integral equation
5 wherer =||R||=|/Q—P| is the distance between the source point
7 ; P and the field poinQ.
¢(P)+L¢(Q)((9n G(P.Q)+2ian,G(P.Q)|dQ To evaluate the second term in E@.2), it is convenient to
employ spherical coordinatép,6,), with, however, the axis de-
_ dJ fining the poley=0 taken as the directioR/r instead of the
—LG(P,Q)&—nqS(Q)dQ, ®) 2 axis (see Fig. 1 The integration limits are @p<w, 0<y
<1, and 0< #<21r; however, for the residue calculations to fol-
which differs in form from the usual integral statements by thkw, it will be much more convenient to havex<p<w and 0
presence of the additional term multiplyirg(Q). With obvious < <m/2. With the standard limits, the residue calculation must
changege.g., line integrals instead of surface integratise above shift half-planes depending upon the sign of @)sfnore impor-
equations are equally valid for two dimensions. We first derive thantly, starting ato=0 would force consideration of contours
Green'’s function for three dimensions. along the imaginary axis, necessary to work with the imaginary
part of the exponential. In comparison gifvaries over the entire

2.1 Three Dimensions. Let f(w) denote the Fourier trans- yq) axis, a simple semicircle in the upper half-plane suffices. To

form of a functionH(Q), this end,if the functionf satisfiesf (p, ) = f(—p,m— ), then
f(w)= f FlQedQ U] J f “f(p.p)dudp
R 0oJo

wherew= (w0, ,w,) is the transform variable and the dot rep- w [l v fa
resents the inner product. Transforming ES). and solving for :f f f(p,l!,)dl/,derf f f(p,y)dydp
G(w) (the transform ofG with respect toQ), yields 0oJo 0 Jar

. e*iw'P % (/2 o (72

G(w)= o 2awm,’ (8) = jo Jo f(p,¢)dydp+ Jo fo f(p,m—¢)dydp
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Imp @Bolr +Ry)

G(P‘Q):W

(21)
as the Green’s function fdt(z) = e?#0?,

In the derivation of the boundary integral equation, a splsere
of radiuse centered at the interior poiRtwould be removed from
V, and the integration ove¥, would include the surface of this
sphere. The limit ag— 0 of the integral

J J
— L f [G(P,Q)&—n¢(Q)—¢(Q)5—nG(P,Q)
. s
o o Rep ¢
—2ia(¢(Q)G(P,Q))n,1dQ (22)
must therefore be considered. However, ifes 0,
Fig. 2 Contour in the complex plane used to compute the p
integration iG(P Q)~ 9 1 23)
an ’ an 4ar

and thes =0 limit does indeed produce the correct value(P).

% a2 0 w2 Finally, it is useful to note that Eq18) can, from the point of

= f f f(p,yp)dydp+ f f f(—p,m— )dydp view of the singularity at =0, be considered as a remainder term.
oJo -=Jo That is, the singularity for the FGM Green’s function is entirely
o (mi2 contained within Eq(13), the homogeneous steady-state solution,

:f J f(p,p)dydp. (14) as Eq.(18) is regular atr =0.

—»J0

2.2 Two Dimensions. The Green’s function
It will turn out that the function to be integrated satisfies the abov®(Xq ,2q ;Xp ,Zp) for the two-dimensional equation,
constraint, and thus the modified limits of integration foand )
can be employed. As mentioned above, this greatly simplifies the Pxxt o~ 2iap,=0, (24)
residu_e procedures for theintegration. . is expected to behave as log(and as this function does not die
. Notlng_ thatm-Rf_pr COS(’/'). and t?at’ ot_her than this EXPONEN-5¢t o infinity, the above Fourier transform approach is doomed to
tial, the integrand is a function ab“ and independent of, this fail. However, this fundamental solution can be viewed as the
second term therefore becomes response seen at the poiniy(0,25) to a uniform distribution of
ale iR, (a2 = gipr cogy) charge along theg-axis. This response should be the result of
Wf sin( lﬁ)dlﬁf Tazdp. (15) integrating the three-dimensional Green’s function over this axis,
—= P which for the homogeneous case takes the form
Using the contour shown in Fig. 2, the integration is a 1 (= d

straightforward exercise in residue calculus, yielding _f ZyP ) (25)

4m —x((XQ_XP)2+yP+(ZQ_ZP)Z)l/Z

o eipl’ cog i)
wa p’—a? dp=-— Esm(ar cody)). (16)  The fact that the integral doesn't exist is a minor inconvenience
o _ that is remedied by doing the analysis #@G/dxq ([21]). The
The final integration, integral of this function with respect tgp, does exist, and fol-
o [ lowed by an integration ovexg, the correct log( result is ob-
— _f sin( ) sin( ar cog ))d, (17) tained, where is now the two-dimensional distance.
@ Jo With this framework in mind, we observe that the three-
Hnensional functionally graded materigfGM) Green's func-
on, in the form of Eq.(20), is e '*Rz times the fundamental
_ solution for the Helmholtz Eq3). Since this prefactor is indepen-
zcoar) e 'R dent of yp, integrating out this coordinate as in E@5), we
ype yp—. (18)  expect that the two-dimensional EGM Green’s function is given

by

follows from a simple change of variables, and thus the secoﬁ
term is seen to be :

e*iaR

Including Eq.(13), we find the simple result

e "*Rzcoqar
6(p.)= g

Although this result was derived assuming thats real, it is a Here,Hg is the zeroth-order first kind Hankel functi¢i22]), well
simple matter to check by direct calculation that Etp) satisfies Known to be the solution of the Helmholtz equation in two dimen-
Eq. (5) for any complexa. It is useful, especially for the discus-Sions. This expectation can be established simply by differentiat-
sion of the two-dimensional case that follows, to observe that iNg Ed.(26) and checking that

e ' (20) Oxxt 9z, +2i@g,=0, (27)
4y

i )
(19) 9(XqZgiXp Zp)= 7€ FeHg(ar). (26)

G(P,Q)=e 'R

for Q# P (this is the two-dimensional analogue of the Green’s
is an equally valid solution of Eq(5) for « real. Moreover, the function equation, Eq(5)). That this differentiation also yields a
added singr)/r term is regular as— 0, and thus does not alter thedelta function atQ=P follows from the known behavior df-l(l)
delta function aQ=P. Replacinga by i B, wherepg, is real, we for the Helmholtz equation. Finally, it should be noted that the
obtain two-dimensional boundary integral equation becomes
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9 It should also be noted that, unlike the Green’s function
¢(P)+J ¢(Q)(%Q(P,Q)+2ianzg(P,Q) dQ 1/(4mr) for the Laplace equatiothomogeneous problemnei-
2 ther Eq.(20) nor Eq.(26) is a symmetric function oP andQ. It
p would therefore appear impossible to have a symmetric-Galerkin
:f g(P,Q) — ¢(Q)dQ, (28) approximation([24—28§), as this formulation demands a symmet-

) an ric Green’s function. However, as shown in the Appendix, a slight
reworking of the equations and the kernel functions restores all of
the necessary symmetry properties. This Appendix also provides
formulas for all of the kernel functions: temperature and flux

2.3 Extensions. As it may be useful to have the materialequations in two and three dimensions.
properties vary in more than one compon@#3)), it is worth
noting that the above analysis extends to a more general expongn-
tial variation for k,

which corresponds to Eq6) with G(P,Q) (three-dimensional
case replaced byg(P,Q) (two-dimensional case

Numerical Examples
The three-dimensional steady-state fundamental solution has

K(x,y,z)=koe 2'*%, (29)  been incorporated into a boundary element mett®EM) algo-
where a=(ay @, ,a,). The three-dimensional Green's function/ithm. As noted above, the integral B) is numerically approxi-
is now given by mated via the(nonsymmetrig Galerkin method(see Eq.(39)),
) together with standard six-node isoparametric quadratic triangular
e '“Recog(a-a)r) elements to interpolate the boundary and boundary functions. For
CxydP.Q)= At ' (30)  the numerical examples, the conservation @gwill be taken as

energy conservation in a functionally graded media under the con-
dition of steady-state heat conduction without volumetric genera-
tion. To validate the numerical implementation, solutions to two

test problems are presented below: In the first, the domain is a

P simple cube and the exact solution is known; the second involves

OxAXq:2qiXp,Zp) = Ze"“'RHé((wa)r). (31) a curved geometry which may be more representative of an actual

systems component.
2.4 Galerkin Approximation. The numerical results pre- 31  Unit Cube: Linear Heat Flux.

sented in the next section utilize the Galerkin approximaiél)  hroplem, the geometry is a unit cube with the origin of a Cartesian
to reduce the integral equation to a finite system of equationg,siem fixed at one corner. The thermal conductivity in this ex-
Here we briefly review this technique, starting by rewriting anmple is taken to be

(6) as

Comparing this with Eq(19), it is not surprising that the two-
dimensional result in this casdagain dropping out the
y-coordinaté becomes

For the first example

k(z) =kqe?F?=5e%, (36)

J
P(P)E¢(P)+J ¢(Q)(%G(P,Q)+2ianZG(P,Q))dQ The cube is insulated on the facg=0] and [y=1], while
= uniform heat fluxes of 500)POWER/AREA| are added and re-
P moved, respectively, at tHex=1] and[x=0] faces. In addition,
_f G(P,Q) — ¢(Q)dQ=0. (32) the[z=0] face is specified to have andependent temperature
s an distribution T=1000x deg and afz=1] a normal heat flux of

As is usual, basis shape functio{Q) are used to interpolate g=15000x is removed. The analytic solution for this problem is
the boundary from the element nodal coordinates, and to approxi- T=100ke™ %
mate the surface potential and flux in terms of nodal values, i.e., R .
g=—5000 + 15000k 37)

2(77'§):2. (X}2Y,2) i(7,€) wherei is a unit vector in the-direction.
. The results of the numerical simulations for the temperature
distributions along an edge are shown in Fig. 3. The plot also
#(Q)= 2 ¢i¢;(Q) (33) includes the results obtained from a finite element metiFdM)
! simulation using a commercial package. In the FEM simulation,
dep dep
(=2 (an)jlm(Q).

The numerical results reported herein employ a six-noded qua- 10000 ¢
dratic triangular element, defined using the right triangle param- -‘g:_
eter s%ace(n, &), n=0, £=0, »+ é<1. The shape functions are 8000 -
given by E | '\( _—
(7,6 =(1=n=8(1-27-28) a(n,&)=4n(1-n—§) g o000 - FEM
Yol(7,6)=n(27—1) Us(n.o)=4nt (34 B ' BEM
= 4000 -
(7, €)=£(26—-1) (1, £)=4E(1—n—§). ' _
In a Galerkin approximation, these shape functions are employed 6o | ﬂ-_\\
as weighting functions for enforcing E(B2) “on average,” i.e., = S,
L %'“""M !
gy
— i1y L i . . L i L . !
L'ﬁk(P)LP(P)dP 0. (35) 0.1) 0.2 4 .6 iR 1.0

. . . . . . z
When the approximations in E433) are incorporated into this
equation, the resulting finite system of equations can be disy. 3 Temperature distribution in the functionally graded
cretized and solved numerically. material (FGM) unit cube along the edge [x=1,y=1]
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Fig. 4 Geometry of the functionally graded rotor

40 homogeneous layers were used to approximate the continu {
grading; the conductivity of each layer was computed from Ei /N
(36) wherez was taken as thecoordinate of the layer’s centroid. /] \
The FEM elements used were 20-node quadratic brick eleme K
and each of the 40 layers contained 400 brick elements, result (] K
in a total of 69,720 nodes. In the boundary element methc ' P‘V
(BEM) solution, a uniform grid consisting of isosceles right tri- AR )
angles, with each leg having length 0.1, was employed, resulti

in a total of 1200 elements and 2646 nodes. \\Vy&gssﬂh%i&

3.2 Functionally Graded Material (FGM) Rotor. The z QQ&X%&%‘AA"

second numerical example is a rotor with eight mountin§
holes. Due to the eightfold symmetry, only one-eighth of th
rotor is modeled, as drawn in Fig. 4. The grading direction for t )
rotor is parallel to its line of symmetry, which is taken a é?éj Surface mesh employed on the functionally graded
the zaxis, and the thermal conductivity for the rotor varies

according to T T T T T T T
W AA%ANAAVAAVAANAAV
k(z)= 20633°ZW. (38) 2000 - fay 1
4
A schematic for the thermal boundary conditions is shown i | g R
Fig. 5. The temperature is specified along the inner and outer r _ o
and a uniform heat flux of §10° W/m? is added on the bottom £ ~
surface where=0. All other surfaces are insulated as shown. g 1500 [ °®° o, % 1
The BEM solution is compared with an FEM solution obtaine: £ con e,
from the same package used in the previous example using tg L A .
L OO
& > FEM (graded) ‘o N
Insulated 1000 F © BEM (graded) e |
surfaces A FEM (homogeneous) %,
v BEM (homogeneous) © o R
o o
T=150+1.25x10 (z-.01)°
50.0 : : : ' ! : !
0 n/4 /2 3n/4 n
0

interior corner
Fig. 8 Temperature distribution around the hole on the
z=0.01 surface

node tetrahedral elements to handle the geometric complexity of
the rotor. Due to resource limitations, the FEM model was limited
to 12 layers which resulted in the rather crude conductivity profile
Fig. 5 Thermal boundary conditions on the rotor shown in Fig. 6. Even so, the FEM mesh required 95,880 nodes,
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' ' : ' individual elements, as demonstrated recently by Kim and Paulino
1.0e+06 - . [29] using a generalized isoparametric formulation.

As a final test, Fig. 10 displays a comparison between the FEM
interior temperature values, and corresponding values computed
from the BEM solution(in a post-processing calculatipnThe
values are shown for a line of points on the rzidz=0.005)

. plane in the radial direction, passing through the middle of the
hole. Again, the BEM and FEM results agree quite well.

-1.0e+06
-3.0e+06

-5.0e+06 .
4 Conclusions

—7.00406 — o BEM N The _primary conclusion _of _this work i§ that bo_undar_y integral
® analysis, for the most part limited to applications involving homo-
geneous or piecewise homogeneous media, can be successfully
—9.0e+06 O — applied to exponentially graded materials. Although the simplest
0.000 0002  0.004 0006 0.008 0010 case, namely the Laplace equation, has been treated herein, it is
z (m) expected that other applications, including transient diffusion
([30]) and elasticity([20]), can also be addressed. Note that a
specific elastodynamics problem has already been addressed by
Vrettos[16].
The numerical results presented in this paper have shown that it
o8° is simple to implement the functionally graded matefaGM)
o@@)wo@doo Green’s function in a standard boundary integi@hlerkin ap-
proximation, and that accurate results are obtained. For graded
1500 ¢ o FEM 1 materials, this offers the possibility of efficient and accurate solu-
o BEM (interior) tion of those types of problems for which a boundary integral
analysis is particularly advantageous, such as shape optimization,
moving boundaries, and small-scale structures.

Radial Heat Flux (W/m’)

Fi

g. 9 Radial heat flux along the inside corner

200.0 T T T T

100.0 R

Temperature ‘c)
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Appendix

ymmetric Kernels. The symmetric-Galerkin metho@25—

) is a highly effective numerical technique for boundary inte-
gral analysis. As the name implies, it utilizes the Galerkin ap-
cR'roximation to induce a symmetric coefficient matrix. The

symmetry for the geometry and the center line of the hole. Thou Mmmetry comes about_ because of the symmetry properties of the
surface nodal positions in the two models were not coincident rnel functions in the integral equations for surface temperature

general, the plot shows a strong agreement in the two solutiogd for surface flux. Note that for the homogeneous Laplace equa-

whereas the BEM mesh employed 3252. The mesh employed
the boundary integral analysis is shown in Fig. 7.

The temperature distribution around the hole is shown in Fig.
The angled is measured from a line passing through the line

To see the effects of the grading upon the solution, the cor on, the funqlamental solution is symmetr@(P,Q):G(_Q,P),
sponding results for themg%aded?oto? B=0 (k(z)=20), are Put the functionally graded materigfGM) Green’s function, Eqg.
also shown ! ! (21), is not. Thus it would appear that a symmetric-Galerkin ap-

The radial heat flux along the line shown as the interior com@foximation is not possible. . .
in Fig. 5 is plotted in Fig. 9. The negative sign indicates that t In this section, the FGM bou_ndary mt_egra_l equations are re-
flow of heat is toward the interior of the rotor. A limitation on the OV”?F“ated to allow a symmetric ”“me“ca' |mplementat|or_1. In
use of piecewise constant conductivities in FEM models may dition, formulas for all of the required FGM kernel functions
evident in the plot where the FEM nodal valuezat0.01 seems or k(2) real,
to fall out of line with the other values on the curve. The behavior k(z) = koe?$?, (39)
should be fully expected, however, given the local error associated . .
with the piecewise constant approximation seen mea.01 in &€ conveniently summarized. . .
Fig. 6. As should also be expected, the nodal flux values from the 10 Obtain a symmetric matrix, the equations have to be written
BEM solution seem to fall onto a single curve even in the regioh t€rms of the surface flux,
of the steepest conductivity gradient. Thisist to say that BEM 9
is necessarily better than FEM for graded analysis: The finite el- FHQ)=—k(z0) %db(Q) (40)
ement method is not restricted to using the discontinuous piece-
wise constant approximation presently available in existing pactather than the normal derivative. The equation for surface tem-
ages. It is possible to incorporate continuous grading withiperatureg(P) is therefore
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+.vo | Dual-Species Transport Subject to
c.o.ng' | Sorptive Exchange in Pipe Flow

Mem. ASME

e-mail: cong@hku.hk The transport in pipe flow of a chemical species can be materially affected by the pres-

ence of solid suspension if the species is capable of partitioning into a solute phase and
a solid phase sorbed onto the suspended particles. An asymptotic analysis is used in this
work to deduce the effective transport equations for the two phases, with kinetic sorptive
exchange taken into account. The effects of sorption on the advection and dispersion of a

Department of Mechanical Engineering,
The University of Hong Kong,
Pokfulam Road,

Hong Kong sorbing chemical are discussed and illustrated with a numerical example.
[DOI: 10.1115/1.1576805
1 Introduction turbulent flow laden with suspended particles. To this end, we

. . N . employ an asymptotic method to deduce the effectiie.,
The concept of dispersion, first introduced by Taylbr2], is section-averagedransport equations for the solute and the sorbed

required to account for _the Iongltudlnal_spr_eadlng of substanc Rases. The starting point is the conventional advection-diffusion
such as pollutants in a pipe. The spreading is at a rate much fa Sﬂation, in which the diffusive flux is assumed to be linearly

?ﬁ: _I\_’;O:Jcl)? drﬁssLg:;rgr:nmdéiﬁzr?gmoiga%ﬂgrir?rv\fﬁi?huﬁgtat‘lrgﬂg\'/e roportional to the concentration gradient. The turbulent diffusion
> lay Persic - e 8efficient, or eddy diffusivity, is a function of the flow. Despite
variation of longitudinal velocity and transverse diffusion intera eing phenomenological, such a classical approach in modeling

to result in an overall longitudinal mixing process that appeafy i e ot : : : ;
L . . . h rbulent mixing is still greatly favored in engineering applica-
Fickian. This enables the effective transport in a pipe to be dgs 9 9 y 9 9 anp

ibed b di ional advection-di . i ons nowadays. More advanced methods, such as the Monte
scribed by a one-dimensional advection-dispersion equation, @, techniques based on the statistical theory, have met some
Yiccess in some specific applications. These techniques are how-

. )ass| : Sifects.
investigations have studied the phase change effects on the trangy, o previous works by the authors provide the basis for the

port processes. Some authéesg., Smith{3,4] and PurnamaS)) resent study. In Ng and Yipg], the transport in open-channel
have demonstrated the boundary absorption/retention effectslp of a che>r/’nical s%ecies utrﬁjér the influgnce of kFi)netic sorptive

dispersion in shea_r flow. Here we intend to S_h_OW that the prese hange was investigated. It was demonstrated that the sorption
of suspended particles also can have nontrivial effects on the qisetics can have nontrivial effects on the advection and disper-
pe;smnt_of a sorblhng S.OHTte in turbltJrI]er:t plpeJIO\_N. the f ¢ 5§00 of a solute cloud, which are found to be functions of space
(}rp |onh|s ac e?uca.proceshs a maybe mt' € I(t)r'm O' 88n4 time depending on the local concentration of solid suspension.
sorption, cheémisorption, 1on exchange, or absorption. ILIS a regen 4 17] the classical problem of longitudinal dispersion of pas-
tion by which a chemical species is partitioned into a solute phzﬁle heavy particles in turbulent pipe flow was re-examined. On

that is miscible with the fluid and a solid phase that is sorbed oniQyiing out that Elder's8], theory is defective, a formal expres-
some solid matter in contact with the fluid. The phase exchang fon for the dispersion coefficient has been deduced with a sys-

than the fluid, such phase partitioning will lead to a diminishe orks.

advection speed, or retardation, of the chemical in the flow. Other
processes like biodegradation, radioactive decay, and precipitation
will reduce the concentration but may not slow down the move Problem Formulation
ment of the chemical as effectively as sorption. In this connection

so_rpt_ion is acc_ounte_tble for the separatio_n of the c_Io_u_ds of pe of radiusa. Cylindrical coordinatesx;r, #) are defined such
miscible chemicals if they have vastly different affinities for hatx points downstream along the pipé f;m'sjs the radial dis-
particular type of solid matter, which may exist on the pipe wall %Ynce from the axis, and is the angle measured clockwise,

suspended particles. As multispecies transport is very COMMON{a,eq downstream, from the vertical. The flow carries a chemi-
practice, it is of practical value to look into this and other effect

; e X Cal species as well as solid particles in suspension. The chemical
of sorption on the transport; this motivates the present study. gyiqts primarily as a solute phase miscible with the fluid, and a
Our specific objective here is to study the effects of SOrptiv€yij phase sorbed onto the particles. The particle radius is de-
exchange on the transport of a sorbing solute in a pipe caryifgeq hyqa, wherea<1 is the ratio of the radius of the particles

—ewn g hould be add g to that of the pipe. Because of their small yet finite size, the
0 whom correspondence should be addressed. ; ; ;
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF par.tlcles can have. access Only to a cross section of the p!pe of
MECHANICAL ENGINEERSfor publication in the ASME GURNAL oF AppLIEDME-  Fadius (1-a)a. It is assumed that the presence of the particles
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Sept. 6and the solute do not materially affect the flow. The solid particles
2001; final revision, Oct. 24, 2002. Associate Editor: D. A. Siginer. Discussion on thgattle under gravity. The fall velocity; is assumed to be con-

paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departmen f ; f _
Mechanical and Environmental Engineering University of California—Santa Barbagl?ént' Turbulence in the flow is strong enoth to entrain any de

Santa Barbara, CA 93106-5070, and will be accepted until four months after fifdPSited particles, and the particles stay in suspension mostly all
publication of the paper itself in the ASMEDURNAL OF APPLIED MECHANICS. the time. The particles are also assumed to contain high amounts

'Consider radially symmetric steady flow in a horizontal circular
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of sorbents, which are materials such as organic matter providiogthe rate of change of the sorbate concentration is linearly pro-
a site onto which the chemical can be sorbed. The fractions pdrtional to the departure from local equilibrium. The backward
mass of the chemical in the two phases can therefore be compte constank will be simply referred to as the sorption rate
rable with each other. For analytical simplicity, we further introeonstant.

duce the approximation that the eddy diffusivity is constant and For the perturbation analysis, the order of magnitude of indi-

isotropic, and is the same for the particles and the solute. vidual terms in the governing equations and boundary conditions
Conservation of mass gives the following transport equation f¢t), (2), (4), (5), and(9) need be estimated. A similar exercise has
the suspended particles: been carried out previously by Ng and Yif] for transport of a
sorbing solute in open-channel flow. Citing their results, we may
% +u &_{_ E i(rwf cosf?) + E i(wf sin6¢) express these e_qugtions below,_with a small ordering parameter
at ax rar rae e<1 inserted to indicate the relative order of the terms. The small

parametere can be taken as the ratio of the turbulent diffusivity

_9 (g% + EJ ra_§ n E ﬁ 1) and longitudinal dispersion coefficient.
X\ " ax) rar\ ar] (2 592’ Now, the particle transport equation is
wheret is the time,{(x,r, 8,t) is the particle concentratiofmass aL 9 14 19 )
of suspended particles per bulk volumei(r) is the time- e teu Ty ﬁ(rwf cosof)+ %(Wf sin6¢)
smoothed fluid velocity in the axial direction, afidis the eddy
diffusivity. The net flux vanishes on the pipe wall, so the boundary ) Pe E o da\ E ¥
iti = —+——lr—=|+—=— in 0<r<(1-
conditions are € 2 T ( ar 2 in 0<r<(1-a)a,
24
wicosg{+E—-=0 atr=(1-a)a. 2 0<h<2m, —o<x<®o, t>0, (10)
For the chemical that is partitioned between a dissolved phadih the boundary condition
and a sorbed phase, the total mass concentr&jgfx,r,6,t) (total J
mass of chemical per bulk volumés Wy cos&§+E_§:0 atr=(1—a)a. (11)
ar
Cior=C+Csl, (3) The chemical .
whereC(x,r, 6,t) is the solute concentratiofmass of dissolved e chemical transport equation Is
phase per bulk volumeandCq(x,r, 6,t) is the sorbate concentra-  5C,, 3Cor

19 190 .
— — —(rw; cosfCy{) + T ﬁ(wf sin 6C4{)

tion (mass of solid phase sorbed onto unit mass of suspendedT%su ox T

particles. The transport of the chemical is governed by

2 2
a;:tm‘ +u ﬁgzm— % &ir(er cosfC{) + % %(Wf sin 9C{) =€’E %;Ot-i' ; % r ﬁ;‘m) + rEZ %
:i(E&CtO‘)JFEi racmt) Eﬁzctot @ in 0<r<(l—-a)a, 0<6<2m, —wo<x<w, t>0,
ox ax ror\ or 12 gg2 " (12)
and the zero-flux boundary conditions with the boundary condition
Wi cosﬂCS§+E&Ct°t:0 atr=(1-a)a. (5) Wi cos&Cs§+EﬁCt0t=O atr=(1-a)a. (13)

ar ar

The range &¢<2m for one period of phase angle is considThe sorption kinetics equation is
ered. By continuity, all concentrations and their derivatives have

the same values at the two limits 6f that is, dCyq
e—— =k(K4C—Cy). (14)

(§1C1 ---)0=0=(§:C. -")92277' (6) o
Sorption is a reversible reaction between the dissolved andTwo pertinent time scales are to be accounted for in the present
sorbed phases of the chemical. The overall sorption rate cangseblem: T;=L/u for advection along the pipe, art,=L%D

described by a linear kinetic sorption model =0(e T,) for longitudinal dispersion along the pipe, whare
JC the discharge velocity the eddy diffusivity, andD the dispersion

S:ka—kCS, @) coefficient. It is noted that the longitudinal dispersion is effective

at only at a time scale one order of magnitude longer than that for

: : the advection.
wherek; andk are, respectively, the forwarfgdorption and back- X . . .
ward (desorption rate constants for the sorption reaction. When Perturbation equations are now obtainable when the following

the steady state is attained or the reaction is fast compared Mﬂ%ltlpllefcale expansions of the variables are substituted into Egs.
other processes, the two phases will be in chemical equilibriunt. )—(14):

Then the ratio of their concentrations will be given by (£,C,Cd—(£o,Co,Cap)+ €(£1,C1,Ca) + €X(£2,C»,Con)
(Cs/C) equiib= ki k=K, (8) +0(s%), (15)

whereK, defined as the sorption partition coefficient, is a ratio

of the forward and backward rate constants for the processes. The dl 9t— dl oty + &l ot,. (16)

value of this coefficient tends to be large for a chemical which has
a strong affinity for the solid matter. On substituting E8). into
Eq. (7), the first-order kinetics can be written as

dCq _ 1 fzwf(l—ma
S - =—" rdrdé. 17
at k(KaC=Cy), ©) m(1-a)?a?Jo Jo J ()

In the following sections, we will denote the cross-sectional
average by an overbar. For example, for any funcgon, 6),
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3 Transport of Suspended Particles I_t follows from_Eqs.(27) and(2_3) that the following form for the
The leading-ordeD(1) particle concentratioti, can be writ- first-order particle concentratiofy(x,r,6,t) can be suggested:
ten as e (7?
X

Lo, 0,0 =F(r,0)Z(x.1), (18) LnBO=NZ =NT7

where( is the cross-sectional-average particle concentration, awéiere N=N(r,6) is a cell function that describes the cross-
f(r,6) is the probability density function or particle distributionsectional variation for th@(e) correction to the particle concen-

(28)

function given by tration and is governed by
Wi f 1Y 6’fN+EafN ;19 inofN
f(r,0)="fyex — g rcosd), (19) f(u US)_FE r\ wgcos Zr || T 39| ~Wisin
which results from a balance between turbulent mixing and par- E ofN| |
ticle settling. The constarft, is determined by the condition that tr g | In 0<r<(l-a)a, 0<f<2m, (29)
the average of the distribution functidrover the effective cross
section of radius (* @)a is equal to unity(i.e., f=1): with the boundary conditions
1- dfN
O:(S(—a), (20) W; COSOfN+E——=0 atr=(1—a)a, (30)
214[6(1-a)] ar
where N is finite atr=0. (31)
o=wsalE, (21) At O(€?), the perturbation equation is

is a form of the suspension number dnds the modified Bessel FYORNrYs il
function of the first kind of order one. The particles will be fine —2 4 21, =21
enough to stay in suspension largely all the time; this is realistic oty
when § is sufficiently small(Sumer[9]).

J 190
+ -— +—-— i
ot u X r(9r(rwf cosf{q) r(m(wfsmegl)

2 2
At O(e), the perturbation equation after substituting Ek) is —E 9"%o + E i r ‘9_52 T E az (32)
gx2 ror or r2 962’
o g 19 19 ,
oty HU— 7 o (TWr€0S0Z)+ = — (Wi Sin64y) and the boundary condition is
E o daf\ E ¢ 9 _ _
e +__1 (22) Wi 0050§2+E——0 atr=(1—a)a. (33)
ror\ o) p2 g2 or

Using the boundary condition@3) and (6), the cross-sectional

and the boundary condition is average of Eq(32) gives

28! I _
W cos8{;+E—=0 atr=(l—a)a. (23) a9 J &
' Yoo %+%’1 u§:E—§. (34)
On taking an average over the cross section and using the bound- 2 ! x

ary conditions(23) and (6), Eq. (22) yields the leading order gy ther substituting28) for ¢; and (24) for [92/(%1, the O(€?)

transport equation for the suspended particles effective equation becomes
i R
—— tus—=0, (24) 9 _p 7 (35)
atq ox at, SﬁXZ )

where

where the diffusion coefficierby is

us=fu (25) D.=E+Dr., (36)
is the effective advection velocity of the particles, which is a ) ) ) o o
cross-sectional-average velocity weighted by the particle distribti-Which the first component is the longitudinal eddy diffusiviy
tion factorf. As expected, only advection appears in this leading"d the second component is a Taylor dispersion coeffidigt
order equation. ormally given by
One can easily show that Dro= —N(u—uy), (37)
U=us=—(f=1)(u-u). (26)  \which will be determined in Section 5. Typicall;E, or the
The difference between the discharge velocity and the effectidispersion dominates over the turbulent mixing in controlling the
advection speed of the particles is related to the cross-sectiopateading of the particles along the pipe.
covariance between the particle concentration and the fluid velocFinally, we may combine Eq$24) and(35) to get the effective
ity, which in general is negative. Hence, the particles are advectednsport equation for the particle concentratit{®,t), which is

at a speed slower than the discharge velocity. correct toO(e):
On eliminating the unsteady term from E@24) and (22), we _ _ _
get a4
_ — tUgT—= Ds_z . (38)
i 14 FYa g Tx Tox
f(u_US)ﬂ_FE T(WfC050§1+E&—r

4 Transport of a Sorbing Chemical Species

19 E o i ; ;
+ 25— | —wsin0,+ — ﬂ ' @7) The preceding prpcedures'of dedyctlon are now applied to the
rae r d6 transport of a sorbing chemical. Without repeating the steps in
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detail, only the key results are presented below. From(E¢), the Now, we may obtain from Eq$28), (39), (43), (44), and(47) the
phase partitioning between the dissolved and sorbed phases ifoitowing expressions for th®(e) correction to the sorbate con-

local equilibrium only at the leading order: centration and the total chemical concentration:
Cso=K4Co, 39 uc\ d9C
oo ) Ca(x,1,0,)=Kq| P+ ?)—° (51)
whereCg, andC,, are, respectively, the leading-order sorbate and 2
solute concentrations. Hence tlé1) total solute concentration and
can be written as —
KgUc dCqp a¢
Crot0= Co(1+Kylo) =RGCy, (40) Ciot1=| RP+ — — o == +Kde500. (52)
where In order to ensure thal,, o andZ, are correct td(e), or their
RX,T,0,0)=1+Kylo=1+ KdZ(x,t)f(r,a)zl (41) Ilk:z‘f[-order corrections are zerG,,, 1= {,=0, we add the condition
is the retardation factor resulting from the phase partitioning. _—
Physically the retardation factor is the ratio of the total concentra- Ctot1=0, (53)

tion to the solute concentration, and reflects the extent of sorptiaghich can be satisfied if, evident from EG2),
TheO(1) solute transport Eq12) and boundary conditiofiL3) - —
give thatC, is independent of and 6, or RP+Kgfouc/k=0 and Nf=0. (54)
Co=Co(x,t) and Cg=Cgx(X,t)=KyCo(x,t). (42) ﬁ:ﬂc;??lltllt])'nznzm':‘llga; rt]?j(iéilzigfve been applied by Chatw[r0],
At the leading order, the solute and sorbate concentrations areSubsequently, th®(e?) solute transport equation becomes
locally uniformly distributed across the section of pipe.

; JC JC J JC
At O(e), Eq.(14) gives T2 =0 T p 20
at, Ye™ox x| Tax | (55)
dCg
a7t =Kk(K4C1—Cg1). (43) where
o , Kqg i
Hence the rate of change of tl&(1) sorbate concentration is uL(x,t)=— ﬁ(DﬁDe)& (56)

driven by the departure from local equilibrium between @)
concentrations. The leading-order transport equation for the solig&he O(¢) correction to the advection velocity in whidby is the

is obtained after taking the cross-sectional average off) dispersion coefficient for the particles as given by B§), and
terms of Eq.(12):

De(X,t)=E+Dye+ Dy (57)
‘9_C° uca_CO =0, (44) s the effective dispersion coefficient for the solute. Similabtg
aty X the first component oD, is the longitudinal eddy diffusivityE,
whereCy(x,t) is the leading-order solute concentration, and ~ the second component is the Taylor dlspirsmn coefficient
Drox,t)=—=RP(u—uy)/R, (58)

u(x,t)=RUR (45)
d the third componen , is the sorption-kinetics-induced
is the leading-order effective advection velocity for the disso"’eagpersion Icoefficiepnt forrﬂr?glcly é?ven b?/ Pl netics-indu

phase. This is essentially an average velocity weighted by the _
retardation factoR. One may infer from Eqs(24) and (44) that Kglug ———
the particles and the solute are in general advected at different Dye(x,t)=— ——= (f=1)(u—u), (59)
speeds because

which is first obtained by N§12].

Uc=Ug+ (U—Ug)/R=u—(R—1)(U—Ug)/R. (46) On combining Eqs(44) and(55), we get an effective transport
The above relations give that the solute moves effectively fasguation for the chemical with an error 6f(e?):
than the particles, but will be slower than the discharge velocity aCo dCo 0 aCq
under the influence of sorption. If the chemical is nonsorbing or 7+(uc+ uy) o &( °W)' (60)

the particle concentration is zer®,becomes unity and.=u.
Similar to Z; in Eqg. (28), the following form for C; can be It is remarkable that despite the strictly uniform flow both the

suggested: advection velocity and dispersion coefficient are functions< of
aC and t through dependence on the local particle concentration.
Cy(x,r,0,)=P a_xo (47) They are also functions of the hydrodynamic and sorption effects.

5 Taylor Dispersion Coefficients

The function P(x,r, 6,t), which is theO(€) correction of the The Taylor dispersion coefficient;, andD-., formally given

solute concentration, is given by by Egs.(37) and(58), rely on the functions\ and P, which are
E o P\ 1 9 ([ERIP governed by the boundary value problef29)—(31) and (48)—
— a—(r (9—) +— ﬁ(_ %) (50). These two problems can be solved, at least numerically, for
ror r r r any given velocity profileu(r).
=R(u-u,) in 0<r<(l—a)a, 0<@#<2m, The problem(29—(31) can be simplified to
(48) §.(19N) 19 (“faN)Jr 19 ( aN)
. =x—=|(Il —= _—— —_—
with the boundary conditions ra ar) f2ad0\ 96
JaP fa . . .
R&_rzo' atr=(1-a)a, (49) :—E(u—us) in 0<r<l-ea, 0<6<2m,
P is finite atr=0. (50) (61)
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1d/[. dN,] 4N,
— = atr=1-—a, 62 = Ll
or (62) rdr[rodr} 72
and 2|2(A i 1 dHZI dNO+(| " )le
== (U-Ug)— = 5=|TI P 1 3) =
- d d d
N is finite atf=0, (63) E rar ' '
where the following normalized quantitigslistinguished by a +|1d_'>l3) +é[2(|l—|3)Nl+ 611N3], (71)
care} have been introduced: dr r
. N A and
r=r/a, u=ulu,, E=Elu,a, (64)
) ) . . . 1d|. dNz| 9lgNg
in which u,, is the shear velocity, which equals the square root of = aF lo T =2
the wall shear stress divided by the fluid density. The funchion rar r r
can be called a cell function, since it governs the cross-sectional 21 1 d dN dN dN
variations for the first-order correction to the mean concentration. = _,_3(0_05)_ - _A{f( 21, 2 Iy L 1_}”
Using Egs.(61) and(62), one can show that the dispersion coef- E rdr dr d dr

ficient Dy is always positive:

Dr=Drslu,a=—Nf(i—0g)/a=Ef|[VN|2/a2>0. (65)

To seek a solution foN, we first expand the particle distribu-

tion function f, defined by Eq.(19), into the following series
(Abramowitz and Steguf{13], p. 376):

f="foexp(— of cosh)=fo| Io(—F)+2>, I (—aF)coska|,
k=1
(66)
wheref, and § are, respectively, given by EqR0) and(21), and

I (k=0,1,2 ...) is the nodified Bessel function of the first kind

1
+3[3I2N1+6I1N2]. (72)
r

The problem(61)—(63) admits an arbjtrary constant of integration.
For simplicity, we letN equal zero at =0. Then the above equa-
tions are subject to the boundary conditions

N(0)=0, Ni(1-a)=0 k=0,1,2,3. (73)

Equations(69)—(72) are linear but coupled second-order ordi-

nary differential equations, in which, «, andE are the param-
eters. As in Elde(8], the following defect law for the velocity
distribution is adopted:

u(0)—u(r)=F(r), (74)

of order k. For simplicity, we shall from here on unless stated

otherwise write the modified Bessel functions without specifyin

their argument, which is understood to be §r). If the function
N(r,8), which should also be an even function @fis repre-
sented by its Fourier series:

0

N(F,0)=a, Ny(P)coske, (67)
k=0
the dispersion coefficient can then be found from &&):
. 2f 1-af & e
DTS=——OJ (2 LN | (G—09fdF.  (68)
(1-a)?Jo \k=0

A differential equation for the functioN,(f') can be derived by
plugging Egs(66) and(67) into (61) followed by matching terms

of the k-harmonics. For this work, we shall be content with a
solution containing up to the third harmonics. Hence, omitting %.(Rﬁp)z

terms of higher harmonics, one may get after some algebra

1d ‘) dNo| 1o . .
Far|flogr |- g%
Ldiof, dN | dNo | dNs 69
Far|\lvgr Hagr Hlogr || (69
1 d N le (|o_|2)N1
e o G -0
,2|1A“ 1dA2|dN°|I 2
__’EF(U_US)_?E r aF +(11+13) dr
dN,
Flog || 52017 19N2+31Ns], - (70)
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yhereF is a universal distribution function for smooth or rough
urbulent flow in a straight pipe of circular cross-section. Empiri-
cal data for this function have been derived by Tay[@i, Table

1]. With Eq. (74), the velocity deviation from the mean can be
computed as follows:

A(F)—0g(F)=0(F)—fa=FfF—F (7). (75)

An iterative numerical scheme has been used to obtain solu-
tions of (69)—(72). In each cycle of iteration, these equations are
solved by finite differences, one after the other, iy through
N3, respectively, where on the right-hand side of each equation
the most recently updated values for the other functions are used.
Convergence to the solutions is achieved within typically ten
cycles of iteration.

In terms of normalized quantities introduced earlier in &),
the problem(48)—(50) can be written as

19 AR&P N 19 JP
Tar |\ T rza0\ " a0
Ra . . . R
=—E(u—uc) in 0<r<l—ea, 0<60<2m,
(76)
i tr=1 77
i atr=1-—a, (77)
and
P is finite atf=0. (78)

As for N, we solve the problem foP(7,#) by first expanding

this function andR(T, ) into Fourier series

P(f,0)=a, P(7)coske, (79)
k=0
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R(F,0)=1+KyZf(r,6) chemical can be sorbed are released ahead of the pollutant front.
' ' The particles move slower than the flow and hence will be over-

N ” . taken by the chemical front. As the chemical front passes through
=[1+,B§folo]+22 [BLfoli] the particle cloud, sorption takes effect and will affect the break-
k=1 through characteristics of the chemical.
% We definex=0 andt=0 as the point and the time at which the
=Mo(—8F)+2>, [My(— &F)coske], (80) particles are released. By virtue of the particle transport(&8).
k=1 which has constant coefficients, the particle concentration can be

described by a Gaussian distribution in the frange=k—ugt)
i which moves at the speed of the center of mass of the particle

(=17, ,B=Kdz, (81) Cloud:

where

andz is a characteristic scale for the particle concentration.— 2

m

The parameteg is the bulk solid-fluid distribution ratio of the {(&n= (477Dst)1’2exi{ - 4Dst) for —o<f<oe, t>0,
chemical. A (84)

Clearly, the function®,(r) for k=0,1,2,3 can bsolved using
the same set of Eqg69)—(73) where Ny(7), 1, (—4F) and @@ wheremis the total mass of particle divided by the cross-sectional
—Ug) are replaced byP,(f), M, (—éF) and U—1U,), respec- area of the pipe, which by conservation of mass is the area under
tively. One should note that, whils, , 1,., and(g are pure func- the concentration distribution curve at any time:
tions off, their counterpart®,, M,, andl, are functions ok .
andt as well because they depend &fx,t). f tdé=m for all t>0. (85)

The Taylor dispersion coefficient for the solute can then be —w
evaluated using the following integral:

Transforming from %,t) to (£,t) and using Eq(46), the solute

- RP(0—U,) 2 1-af & R transport Eq(60) becomes
Dre=— S f 2 MiPy | (@ —
Ra R(1-a%) Jo k=0 aC [u-us ]oC 4 (D ﬁC) (86)
—+ +ul|==—=—=|Dc—=]|,
—Qp)fdf. (82) at R Clog  og\ Tt
Also, using Egs(76) and(77), one may show thach is always Where the leading order subscript has been suppressed. This is the
positive: rate of change of solute concentration as observed from the center
. — of the particle cloud. Because of the apparent advediioside
Dr.=ER|VP|?/a?>0. (83) the square brackatsvhich is mostly positive, the solute front will

o - ) catch up and eventually pass the particle cloud.
As noted above, whil®r is a constantPr. can vary withxand - gor 4 continuous discharge from upstream, the boundary con-

t . . . . . ditions are
Recall that a positivé means settling particles while a negative
one means rising particles. Sinkgandl, are even functions and C(¢,t)—C_, . =constant asé¢— —, (87)
I, andl; are odd functions and therefol, and M, are even
functions andM,; and M5 are odd functions correspondingly, it C(§,1)—0 as é—o  for finite t, (88)

can be deduced that with respectdd®,, andP, are even func- d
tions while P, and P5 are odd functions as well. Consequentlyf'jln

the dispersion coefficierfor. is also an even function af, which C(&t)—C_,, for finite & as t—oo. (89)
confirms that the solute dispersion is symmetrical with respect to ) o o
the falling and rising of the particles. The chemical concentration is maintained at a constant alue

As remarked earlier, the retardation factor and hence the adv&&-upstream. Further suppose that when the particles are released,
tion speed and dispersion coefficient for the solute depend on fieatt=0, the chemical source has been operating for a period of
local particle concentration, which varies in general with the axidMme tc. An initial chemical concentration distribution satisfying
distance and time. By contrast, the advection speed and disperdii§- (86)—(89) can then be obtained as follows:
coefficient for the particles are independent of these variables. The
solution sequence is to first find the particle distribution as a func- C(£0) = §—&o
tion of time, by which the advection speed and dispersion coeffi- ' (4D t)Y?)"
cient for the solute can be evaluated, and then the chemical con-
centration can be solved also as a function of space and timewhere erfc is the complementary error function, afdis the
numerical example is presented in the next section. initial position of the center of the front &t 0, which is the point

where the concentration is half the maximum value. The front is
) ] . initially far upstream from the particle discharge poxst 0, and
6 Numerical Example—A Continuous Discharge of a thereforeg,<0.

Sorbing Chemical With a Pulse Input of Particles Let us recall Eq.64) and introduce the following additional

To illustrate our theory, we consider an example of transport nprmallzed quantitiesdistinguished by a cargt
pipe flow of two phases subject to the effects of sorptive ex- 1 (72 (2 T3 P P
change. This is a case in which a source discharges continuously(g’g‘)) L&), (Llo)=(LYua)tly), Z=(m/L)d,
and steadily a soluble sorbing chemical well upstream into a sec- _ ~ - _ S F
tion of long horizontal pipe carrying fully developed turbulent (C.Cuo)=C(C.Crads (D5, Pe) =y &(Ds, Do)
flow. Before the front of the chemical concentration is about to (U U, Ug ,ul) =, (4,05, 0,00),  B=Kgm/L, (91)
reach a point down gradient, a finite amount of particles is re-
leased as a pulse input into the flow at the point. Practically, thehereu,, is the shear velocity, andis a longitudinal length scale
continuous source of chemical may correspond to leakage frofor the transport. In terms of the normalized quantities, the equa-
for example, a chemical drum or a buried waste tank. Before thiens can be expressed as follows. The particle concentration dis-
polluted fluid reaches downstream, some particles onto which ttréution is

C—oc
——erfc

> (90)
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Fig. 1 Distributions of the particle concentration Z solute Taylor dispersion coefficient f)Tc,
sorption-kinetics-induced dispersion coefficient Dy, , and drifting velocity 4, for Case 1 (8=1)

soan ~ s &2 y=u, /ka (99)
(&) =(4nDst)” "“exp — —=], (92)
4Dt is the sorption kinetics parameter, which should be of order unity
while the particle distribution factdris or greater. .
PN o For convenience, we may choose that initiallgb(gic:l, and
f(r, 0)="fo exp(— or coso). (93) therefore the initial conditioi90) is simplified to
The retardation factoR is
~ ~ 2 — A A 2 aA A 1 ~ N
R(&r,0,t)=1+pf and R({t)=1+p(. (94) C(£,0)= serfd ¢~ &). (100)

Transport of the chemical is governed by
P P ( A aé) The integral in Eq(85) now becomes

(95)

— F+ Uy— = — —
q o og ag\ CoE

. rdi= >
whereuy is the drifting velocity given by f,fdé 1, for all t>0, (101)

0g(&DH=— L(f —1)(0-0)- E(@SJF D.) i{ (96) Which provides a check for computational accuracy.
aR R 9€ Equation(95) is solved numerically using a standard second-

which has been normalized with respectta, /L, and describes order implicit scheme of forward-time and central space differ-
how fast the dissolved phase of the chemical moves relative to t%r%rces. Approximation of the differential equation by implicit finite
particle cloud. Ignoring the components due to the longitudin frerences produces a tridiagonal linear system which can be

eddy diffusivity, the dispersion coefficients are computed usinﬁjlveqw'th a 5|mp.le routine. Th.e condition(i0) is checked by
- merical integration at each time step to ensure that mass con-
the formulas:Ds= Dy is given by Eq.(68), and

servation is observed throughout the computation. Sufficiently

De(€1)=Dye+ Die, (97) small spatial discretizationsA¢=0.01, A =0.0005) and time
A step At=0.002) have been used so that the maximum error is
whereDr(£,1) is given by Eq.(82), and kept below 1%. General consideratidiesg., numerical dispersion
R P N and artificial oscillation in applying a numerical scheme to this
Do(§:0) == BylUc (T=1)(U=U)/R, (98) kind of problem can be found in Wodd 4] and Zheng and Ben-
where nett[[15], Chap. 6.
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Fig. 2 As Fig. 1, but for Case 2 (B=5)

7 Discussion effect of the suspension numb&on the dispersion coefficiefis

To examine the effects of sorption, we have generated comgﬂﬁs been discussed by Migl. By and large, the dispersion coef-
tational results for three different values of the bulk solid-flui cient will increase W'th‘s. as Io_ng a35_<2 (|.e_., relatlv_el_y fme_
distribution ratio, which are3=1 (Case 1, 8=5 (Case 2, and particles, ar_1d _beyond_ this limit the _dlsper3|_on coefficient WI||
B=10 (Case 3. Cases 1 through 3 correspond to an increasing’ﬁgCrease with increasing To be consistent with the assumption
large fraction of mass of the chemical in the sorbed form. For t at the particles will remain in suspension mostly all the time, a

other parameters, the following values are chosen for all the thigig!! value 0fd=0.1 has been used for this numerical example.
~ S e calculated values far andug are, respectively, 17.74 and

cases:6=1, y=50, L/a=100, §,=—10, E=0.1, anda=0. The 17 53, sq the particle advection velocity is only 1% lower than
fairly large y=50 means a rather strong sorption kinetics or g,, discharge velocity.

small sorption rate constant. The vanishing particle-to-pipe radius_. P . ~
ratio, «=0, means that the particle size is negligibly small com. ©'9ures 1-3 show the spatial distributions(ofDrc, Dy, and
pared with the pipe radius. Uq at instantst=0.1, 1.0, 2.0, and 3.0 for the three values@f

Based on some empirical data for the eddy diffusivity as @N€ can see from these plots how the dispersion coefficients and
function of r, Taylor [2] evaluated that the dispersion coefficientn€ drifting velocity for the chemical, which are functions of the
for an inert solute in turbulent flow through a pipe was 10,06,  Particle concentration, vary with distance along the pipe and time.
However, should one use the classical logarithmic velocity defelet the absence of particles at largg, Dr. reduces to the value
law, one would obtain a value of 5.4da for the dispersion co- for an inert solute, whiléDy . drops to zero. In all case®), is
efficient. In this work, it has been assumed for the sake of analynly slightly increased by the presence of partiqled0%). The

ticity that the eddy diffusivity is constant. A value &=0.1, distribution and magnitude Py is much affected by the degree
which corresponds to the core value in a parabolic-constant dis-sorptive exchange, as is expected. We observe that for a suffi-
tribution for the eddy diffusivity, is chosen for the present exciently large value ofy and B, the sorption-kinetics-induced dis-

ample. This choice of eddy diffusivity yields a dispersion Coefﬁ'ersion coefficienD. . alwavs dominates over the Tavlor disper-
cient of 5.3@a for an inert solute, which is somewhat different’. ~ ;; long 3;3 the particle concentrat?/on is fiEite

from Taylor’s value, but close to the one obtained with the velo&'on coefficienDr. i
ity defect law. Anyhow, since our interest is in the relative changd® these three caseB). can be as much as one order of magni-
brought about by sorptive exchange to the dispersion and advagade larger tharD+. at the center of the particle cloud. It is also
tion processes, the absolute value for a dispersion coefficientwsrth noting that in Cases 2 and 3, there exist two local maxima

immaterial to the discussions here. _ _ ~ of Dy, at early interaction of the solute and particles. The particle

Also, the suspension numbér=0.1 yields a dispersion coeffi- concentration gradient leads to a distinct distribution of the drift-
cient D,=5.94u.a for the suspended particles, which is slightlying velocity Uy, which exhibits a maximum downstream and a
greater than that for a solutee., a neutrally buoyant phas@he minimum upstream of the center of the particle cloud. The mini-
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Fig. 3 As Fig. 1, but for Case 3 (B=10)

mum Uy can even be negative at early stages in Cases 2 and 3. 1 © dc\ .
Physically it means that the chemical is being advected at a faster = j (&— §C)3( - _.._) dé
rate if downstream from the particle cloud center, but a slower rate (62)¥pg J dé

(even in the opposite directipif upstream. This will effectively

cause additional dispersion on the spreading of the chemical front 1 M3, K1 M2 4o M_f (104)
as it passes through the particle .cloud.. o A . (02)32| o ~mo ko ud|

Snapshots of the concentration distributions fGr (solid L
curves and ¢ (dashed curvésare plotted in Fig. 4 for the three Wherep, is thenth integral moment of-dC/dé:
cases. This figure shows the changes in the profile of the chemical . A
concentration front in the course of the chemical overtaking the _ %n _ d_,c‘_ d:g“ (105)
particle cloud. It is obvious that in Cases 2 and 3 the chemical Kn . dé '

front changes its shape from concave down initially to concave up

as it passes through the particle cloud. In such cases, the sorpiiéa remark that the rate of increase of the varianéegives the

kinetics is strong while the sorption partition is high: The spreadate of broadening of the front. In particular, for an S-curve given

ing of the chemical front is greatly influenced by the presence apg the complementary error functi¢@0), &, is the location of the

the distribution of the particles. Of course, when the front hagenter where the function value is half the maximum value and

largely passed through the particle cloud, its profile recovers gk slope is the steepest. Also, the skew coefficieot this func-

S-shape. o ] ] tion is zero because of its symmetry in slope about the center.
The following statistical parametef® the location of the cen-  The three parameters are plotted as functions of time for the

ter of the fronté,, (i) the variancer?, and(iii) the skew coeffi- three cases in Fig. 5. For comparison, the corresponding values

cienty can be used to characterize the distribution of the chemidakr a nonsorbing chemical is also plotted. On comparing with this

concentration front. Their definitions are as follows: limiting case, one can readily observe that the sorptive exchange
can cause the following effects as soon as the chemical front
A M interacts with the suspension cloud. First, the rate of movement of

fc:%' (102)  the front is reduced. This would delay the arrival of the maximum

impact of the chemical at a certain point in the pipe downstream.

1 (= qc 2 Second, the rate of broad_ening of the front is increased..Tlhird,.the
ozz_f = éc)z( _ —.—)d%— Ha_ ﬂ’ (103) S-symmetry of the front is destroyed. The skew coefficient in-
Mo J - dé Mo ul creases from zero initially to a positive value as the leading part of
the front(i.e., the part ahead of the inflexion poidisperses more
and extensively than the trailing pafite., the part behind the inflexion
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concentrations

Fig. 4 Snapshots of the distributions of the solute concentration é‘(é, f) (solid lines )
and the particle concentration g(g,f) (dashed lines ) for Cases 1, 2, and 3. The dotted
lines represent the limiting case when the chemical is non-sorbing or the sorptive
exchange is nil.
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Fig. 5 The location of the center éc, the variance o2, and the skew coefficient x for
the chemical front as a function of time t for Cases 1, 2, and 3. The dotted lines

represent the limiting case when the chemical is nonsorbing or the sorptive exchange
is nil.
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point). The skew coefficient soon turns to negative as the inflexi@oon after interacting with the solid suspension cloud. In sum-
point of the front overtakes the suspension cloud center. Theary, the sorptive exchange can be very influential in governing
skewness then stays negative for some time before gradually gae advection speed, the rate of broadening and the extent of de-
ting back to zero, implying a long tail of concentration defect oparture from symmetry of the distribution of a sorbing solute, if
the trailing part of the front. The concentration does not reach tittee suspended particles are rich in sorbents or sites for sorption.
maximum level until the center of the front has long passed theThe use of the above-mentioned effects in controlling pollutant
particle cloud. All these above-mentioned effects are the mdsansport in pipe flow is of great potential value and deserves
extensive for Case 3, in which the sorption kinetics is the stromore in-depth future investigations including experiments. It is
gest and the mass fraction of chemical sorbed on the particlesalso worth extending the present analysis to the case when the

the largest. particles are so heavy that they fall out of suspension soon after
] release into the flow, and thereafter form a layer of immobile
8 Summary and Concluding Remarks reactive sediment on the pipe wall.

In this paper we have used an asymptotic method to obtain
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G. M. L. Gladwell

et | Stability Boundaries
Waterloo, Ontario N2L 3G1, Canada Of a CO nse r"ati"e Gvrosco p i c
M. M. Khonsari | System

Y. M. Ram Depending on the speed of rotation, a gyroscopic system may lose or gain stability. The
Mem. ASME paper characterizes the critical angular velocities at which a conservative gyroscopic
. o system may change from a stable to an unstable state, and vice versa, in terms of the
Department of Mechanical Engineering, eigenvalues of a high-order matrix pencil. A numerical method for evaluation of all
Louisiana State University, possible candidates for such critical velocities is develog&DI: 10.1115/1.1574062

Baton Rouge, LA 70806

1 Introduction The behavior of the eigenvalues of gyroscopic systems has been
Problems involving infinitesimal oscillations of particles and'SC Studied by Seyranian and Kliem[itl] and Seyranian et al.

bodies attached to rotating frames lead to the quadratic eigenvaftié12]- In an important work, Afolab[13] has characterized the
problem stability boundaries via explicit expansion of the characteristic

) 5 xn N polynomial. Afolabi found that the stability boundaries are deter-
MM+ orG+K—w'R)v=0, M,GK,ReR™", v#0eC" mined by the roots of the discriminant of the characteristic Eq.
@) (3), and by other values ab which cause the absolute term of the
whereM, K, andR are symmetric positive definite matriceS, characteristic equatiofi.e., the term which is independentofto
=—G' is a skew-symmetric matrixy is the angular velocity of vanish. However, explicit expansion of the characteristic polyno-
the rotating frame, andh denotes the number of degrees-ofmial (3) involves symbolic manipulations of the order f op-
freedom in the system. _ . ~ erations. The results presented here may be regarded as the matrix
The system is said to beveakly stableif there exist no initial  5n510gues of Afolabi's criteria. We characterize the possible sta-
fi?nnedl\;[\llic')[ﬂ(s)u(;abuosl;?]% tgeer:gtsep?hnesfwcc))f-vtgﬁasbﬁlesﬁrgtrtig mecnrcei?se "iifky boundary in terms of the eigenvalues of a certain matrix
: P eigenvalue problem, without requiring the expansion of the char-
P\, 0)=\°M+w\G+K— »?R, (2) acteristic polynomial. It is shown that evaluation of all possible
stability boundaries can be achieved by using numerical proce-
dures including polynomial fitting, interpolation, and eigenvalue
P(\i,w)2de(P(\;,w))=0. (3) extraction. We note that the reduction of the stability characteriza-
Then the systen(l) is stable if all of its eigenvalues are purelyf[ion problem into such p_aradigm_s .is intended for the sake of clar-
imaginary and distinct, i.e., ity rather than com.puta.tlonal eff|C|ency.. .
We remark that in this work we are interested only in the de-
ReN)=0, k=1.2,....,2; Nj#N\j for i#]. (4)  termination of possible stability boundaries. The other important
If at least one of the eigenvalues €f) has a nonvanishing real problem of determining whether, whi!e crossing the critical values
part, or if \, is a purely imaginary eigenvalue of multiplicity ~©f @, the system actually changes its nature from stable to un-
>1, and there are nqt linearly independent eigenvectors associstable and vice versa, is not studied here. Once the stability
ated with it, then the system is unstable. boundaries are found, determination of the system stability within
Note that this criterion gives no indication regarding the range particular stability interval is obtained using criteri¢f), ap-
of w for which the system is stable or not. The essential problepiied to a typical system within the stability interval.
treated in_this paper is the determination of the critical values of The motivation for the study is presented in Section 2. It is
w, for which the systen{1) may change from a stable state tqpown that, with certain simplifying assumptions, the motion of
unstable state and vice versa. These critical values are possl@icies and elastic bodies in rotating frames is characterized by

stability boundaries[1]. the quadratic eigenvalue problgih). Although the literature con-

There exists a wealth of literature associated with propertifg d book . i deling. th
and stability of gyroscopic systems containing various results i AINS many papers and bOokS on gyroscopic systeém modeling, the

volving necessary or sufficient conditions for stability, which arg@Pility analysis in some studies has been devoted to problems
based on matrix properties and inequalities, see, 2g.8]. Ve- involving generalization of the eigenvalue proble®. Such a
selic [9] and Hryniv and Lancastef10] have investigated the generalization may include for example an additional skew-
stability of gyroscopic system in the context of the two-parametsymmetric stiffness matrix ii). The materials presented in next
matrix pencil(2). They have determined conditions ensuring thatection demonstrate that the fundamental physical problem in-
gyroscopic systems are stable for all sufficiently large values. of volving rotation of rigid bodies with constant angular speed is
formulated by the eigenvalue probldi). It is also apparent from
ME%ﬁTLiE”ideﬂyGfSEQ”s”f"ed “{')?Ch?nics QLViSAO;]MOgﬁCF';"NEECOAFNASP(;E'E;IA%F the formulation that if the system rotates with variable angular
CHANICS. Manuscript rece?vre%ub;lcaleoggMEeAppIied Mechanics Division, Oct. 7§peed, then an add_'tlonal Sk_ew's_ymmem? S_tlﬁness matrix Is
2001; final revision, Apr. 29, 2002. Associate Editor: O. O’ Reilly. Discussion on thadded to the formulatiofil), but in this casew is time-dependent

paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departmentsfid the problem cannot be reduced to the f@tm In Section 3
Mechanical and Environmental Engineering University of California—Santa Barbara.

Santa Barbara, CA 93106-5070, and will be accepted until four months after fiﬁ%(le. show that the Stab”.'ty boundaries are d|St|ngL”.Shed. bY th.e
publication of the paper itself in the ASMEDURNAL OF APPLIED MECHANICS. existence of repeated eigenvalues. We then use this criterion in

and letn;, i=1,2,...,2, be the eigenvalues @1), satisfying
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Fig. 1 The position of P

Section 4 to obtain a numerical method, allowing numerical
evaluation of all possible stability boundaries. Examples demon-
strating the results are presented in Section 5.

Fig. 2 A particle in a rotating frame
2 Modeling of Gyroscopic Systems

Consider an inertial Cartesian coordinate sys@(xXY 2). Let
O(xy2) be a rotating coordinate system with the same origin, and The eigenvalue problerfi) is also associated with motion of a
let P be a moving particle of mass. Denote the position d? in  multidegree-of-freedom vibrating system attached to a frame,
the inertial and rotating coordinate systems by the vectarsdu, Wwhich rotates with constant angular velocity. It generalizes natu-
respectively, as shown in Fig. 1. Then rally to a distributed parameter rotating system whose motion is
governed by partial differential equations. Consider, for example,
r=u. ®) a rotating shaft with constant angular velocigy, such as that
Upon differentiating(5) with respect tat twice, we obtain shown in Fig. 8a). Using a rotating coordinate systéd{xyz) we
) obtain from Newton’s second layr) applied to an infinitesimal
ar ©) elementP of lengthdz
dt?

wherew is the angular velocity vector @d(xy2), time differen-
tiation in the inertial coordinate syste@(XY 2 is denoted by
d/dt, and dots represent time differentiation with respect to
observer in the rotating system. By virtue(6§, Newton’s second

=0+20X U+ oX(wXUu)+wXu,
f=(i+20X U+ wX(wXu))mdz (12)
where m is the mass per unit length of the shaft, ant)

ah 7 (Ug u,)" denotes the displacement of the element inxtend
y-direction. The free-body diagram shown in FigbBgives

law takes the form f=s'dz, (13)
f=m(U+ 20X U+ oX(®wXUu)+a®XUu) (7)  wheresis the shear force vector,
wheref is the resultant of forces applied By andu andi are the s=—(Elu")’, 14)

relative velocity and acceleration & with respectO(xy2). Let
1, ¥2, andys be the direction cosines @ in O(XY 2. Then

o=0(y1 V2 73)T, (8) X
wherew is the magnitude oés. Hence, X
O - 2m’)/3 zm’}/z Ul 601
omexXi=n| 2mys 0 —2my || 0, 2w, r‘//ﬂ\\“
—2my, 2my, 0 us 0 o A
9) o>y
%= nys |y, Y
Mo X (@XU)=Mmw? Y1Y2 _?’i_?’g Y273 Uz) (a)
Y173 Y273 - 7’%_ 7% Us
£ - w*Ruy, (10) s+—dz
with the obvious definition o andR.
If the forces applied td® are proportional to the displacement
of the particle relative to the moving frame, as shown in Fig. - M M+ dz
where the patrticle is supported by springs attached to the rotati
frame, then
f=—Ku (11)
whereK is a positive semi-definite symmetric stiffness matrix (b)

Hence provided that the angular velocity ©{xy2) is constant,

the eigenvalue problerfl) is obtained from(7) by virtue of (9), Fig. 3 A continuous gyroscopic system: (&) a rotating shatft,
(10), (1) andM =ml, wherel is the identity matrix. and (b) a free-body diagram for a typical element
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E is the modulus of elasticity, is the moment of inertia of the Im
shaft, and prime denotes differentiation with respecz.t@€om-
bining (12)—(14), wherew= (0 0 w)", gives the equations of mo-
tion for small oscillations of the rotating shaft ,12((0 + g) ﬂ,l(a) + g)
(Elu’l’ v (ul) o [0 —1(u1) ~w? 0 ul) AL oY
Eluy) "My Tl o la) T 0 w2l

0 Re

=lo/ (15)

Finite difference approximation of this equation leads to the ei- _
genvalue problentl). It is important in practical applications to /’[2((9 +&

be able to determine the range @ffor which the systen{l15) is
stable. This essential problem is studied here.

(a)
3 Characterization of the Stability Boundaries
Due to Duffin[5], Barkwell and Lancastgi], Lancaster and Im
Zizler [6], and many others, the properties of gyroscopic systems
are well understood. For the sake of completion and self-
sufficiency, we redevelop, state, and highlight in this section some /1,(60)
of the properties applicable to the quadratic eigenvalue problem /7-2(60)
(D).
Proposition 1. 1f X\ is a root of P(\,w) of multiplicity p=1 then ﬂ,z(a) + 8) ﬂ,l(a) + 8)
—\, A and —\ are roots ofP(\,w) of the same multiplicity, Re
where bar demotes complex conjugation.
Indeed, — -
2 2 L(w+ée)| L(w+e)
P(—\,w)=dei\"M —AwG+K - w’R) .,0*‘
—de(A2M —AwG+K - w?R)T=P(\,w), (16) 2, (@) 2 (@)
sinceM, K, andR are symmetric an= —G'. Moreover, given (b)
that w is real, the roots\; of P(\,w) must form a self-conjugate ) o
set, which completes the proof of the proposition. Fig. 4 Eigenvalue change due to a small perturbation in w

The stability criterion(4) follows from Proposition 1. More- near the stability boundaries: () losing stability, and  (b) gain-
over, since the eigenvalues are continuous functions, f fol- 9 Stability
lows from the double symmetry property expressed by Proposi-

tion 1 that _ y These multiple roots determine the stability boundaries via Propo-
Proposition 2. The system(3) may lose or gain stability only gjtion 2.
when\ is a root of P(\,w) of multiplicity p>1. By Proposition 3

Note that the condition in Proposition 2 is necessary but not
sufficient. The system will not necessarily lose or gain stability at .
a value ofw for which P(\,w) has a multiple root. Figure(d) PO\ @)=, Qu_i(@)\% (18)
shows schematically how the system may lose stability when, due k=0
to a small perturbation ir, two pairs of repeated eigenvaluesvhereQ,(w) is a polynomial inw of maximal degree &. We
separate and leave the imaginary axis. Figut® ghows how the differentiate(18) with respect tox and obtain

system may gain stability when two pairs of eigenvalues converge he1
to the imaginary axis. Near these values ®fthe equation P 2K
P(\,w)=0 has eigenvalues that are near each other. 572)‘;:0 (k+1)Qn-k-1(@)ATA2AS(N @), (19)

In light of Proposition 1 we may arrange the rootsR{i\, »), ) ) o o
for a fixed value ofw, such that;=—\,,; fori=1,2,...n, and With the obvious definition o8(\,w). A necessary and sufficient
obtain condition for\; to be a nonsimple root d? for a fixed value ofw,
N is that\; is a root of bothP anddP/d\. Since, independent @,
5 2 N=0 is a root ofdP/d\, we conclude that each that satisfies
P:aH (X*M)()\H\i):aﬂ (A=), (17)  P(0,w)=0 is a possible stability boundary. It thus follows from
"t - (2) and (3) that

Proposition 5. The positive eigenvalues; of K —\?R determine
possible stability boundaries 6f).

Note that sinceK and R are symmetric and positive definite
matrices, the roota? of det(K —\°R) are all positive. This crite-

n

where « is a constant. Moreover, siné&\,0)=P(\,— ), we
have the following:

Proposition 3. The polynomialP(\,w) contains only even pow-
ers ofw andA.

and JOTES B L . L
Proposition 4. If X\=0 is a root of P(\,w) then it is of even rion is in principle equivalent to that of Afolapi 3], requiring the
multiplicity ’ absolute term of the characteristic polynomial to vanish.

We now show how the other stability boundaries associated
with the multiple roots\;#0 of P(\,w) can be found. The prob-
. - . lem under consideration is essentially one of solving simulta-
4 Evaluation of the Stability Boundaries neously the two-variable polynomiaB(\,w)=0 and S(\,w)

We will now show how the values ab, for which the polyno- =0 for their common rootd; and w; .
mial P(\,w) has a root = \; of multiplicity p>1, can be found. = We denote the following bigradient matrix:
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[ Qo 0 Oy 1
Qo 0 0, n—1
. . . .. rows
B= o 0, ) o,
nQg (n—1)Q, Qn 1)
nQo (n—1)Q On-1 n
: rows
LnQo (n=1)Q, -+ 0y d)

(20)

Then, by elimination(see, e.g.[14]), A is a common root of k

P(\,w) and S(\,w) if and only if detB)=0. This condition al- Qk(w)zz qj('“wZi, (21)
lows evaluation of all values o that determine the other pos- j=0

sible stability boundaries associated with the repeated eigenvalues

N #0. and denotgg®) =0 whenm>k. ThenB can be written as
There are two remaining issues. One involves a method of de- n
termining Q;(w) for i=1,2, ... n. The other issue involves de- B*E 2. 22)
termining the values fow which render def)=0. We first ad- _j:(, @B
dress the second issue, assuming @d&w) are known.
We define the coefficients @, (w) as follows: whereB; are constant matrices
|
- qJ(O) qj(l) qj(n) -
qJ(O) qgl) qj(n)
qJ(O) qj(l) q}2) qj(n)
Bj= . . PNE (23)
an( ) (nfl)q} ) q}n )
ng® (n-1)q!" qi" Y
Lng® (n-1)gP - g ]

Note that the leading matrix i(22), I

w2n72V
| w2n74V
O :
- v
Bn—[ o o I (24) Bo
0 l 0" "%y o
(o) .. w2n74v o)
is singular. The values aob which lead to repeated eigenvalues - w? . . =
\i#0 of P are the finite eigenvalues of N ' ’
~B, —By -8, Y ©
(26)
(Bo+ w?Bi+ ...+ w?"B,)v=0, (25)

Hence, the stability boundaries are determined by finding the ei-
and we have the following. genvalues 0f26). SinceB,, is singular the systert?5) has some
Proposition 6. The positive eigenvalues be of the matrix pencil unbounded eigenvalues which can be eliminated by deflation.
(25) determine possible stability boundaries(@f. The problem of evaluating the polynomiaf@, will now be

A first-order realization of25) is given by addressed. We may choose an arbitrary valuefor o and solve
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(1) for its eigenvalues\{?, \$), ..., A§). These values deter- Im /
mine Q(\;), k=0,1, ... n, via the system of linear equations: ~C
()\g-i))ZHfZ ()\g-i))anél 1 a)=21033
()\(i))Zn—Z ()\(i))Zn—4 1 Ql(wl)
2 2 Qz(_w|) =0
: : : : : —~
()\g))ann ()\g))Zn74 o 1 Qn(wi) w=0.5685 ﬂ w=0.8985 RC
-0 =0
— (A\1))2nql0) ~
- Nk @0 2.1033
E w=2.
—(A)2ng(©

whereq{”’=det(M). Repeating this process+1 times for dif- ‘/—_-ﬂ

ferent values ofw; allows determination ofQ.(w;) for i
=1,2,... n+1. The polynomialQy(w), k=1,2,...n can be Fig. 5 Root loci for two nonconjugate eigenvalues
determined from these data by interpolation.
Note that the above method for determini@g(w) is intended

for the sake of clarity rather than computational accuracy. The
fairly direct problem of reconstructing the coefficients of the poly-
nomial (18) from its roots, which is expressed in terms of the;g
Vandermonde systef27), can be determined alternatively by say;ots for e namely.
the explicit Newton’s formulas ’ ’

0.5685, 0.8985, and 2.1033. (33)

Qu(w;) _

—o =D, k=1.2,...n, (28)  These are the stability boundaries of the system. Perhaps the
Yo most important implication of this result is that for no other value
whereN(" is the sum of alin!/(n—k)!k! products combininge Of w the system may lose or gain stability. _ -
factors\{" without repetition of subscripts. For large several _ RoOt loci for two nonconjugate eigenvalues associated with this
extreme coefficient;(w;) can be determined froi28) and then system are shown in Fig. 5. Inspection of this figure confirms that

; ; ; he system loses stability ab=0.5685, gains stability atw
27t th f the V. -
be used in(27) to reduce the dimension of the Vandermonde Sy§:0.8985, and again loses stability at-2.1033.

It thus follows from the analysis so far that the system of equa-
ns P(\,w)=0 and Q(\,w)=0 has three common positive

tem. : . .
em We now solve the problem again using the method proposed in
Section 4. By Proposition 5 the stability boundaries associated
with the multiple eigenvalua =0 are determined by the eigen-
5 Examples values of the penciK —AR. In our case the eigenvalues of
Example 5.1. Consider a two-degree-of-freedom gyroscopic 4 -2 5 -2
system with EY 34
y -2 4 -2 10 (34)
M :[1 O}, G:{O _5}1 K=[ 4 _2} are 0.3231 and 0.8073. Hence, two stability boundaries are
0 1 5 0 -2 4 0.3231=0.5685 and\0.8073=0.8985. These are the same as
5 _»o the first two boundaries if33).
and R= } (29) Next we illustrate how to determine the other stability boundary
-2 10 associated with a multiple eigenvalde: 0. The first stage in the

Jrocess requires evaluation of the polynomi&s(w) for i
ﬁé)_,l,Z. Note that by comparin@8) and (30) it becomes clear
at these polynomials are

The problem of evaluating the stability boundaries of this tw
degree-of-freedom system is elementary, and can be solved
lytically. We first solve the problem using basic principles, an
then apply the method described in Section 4. Qo(w)=1, Qi(w)=10w>+8,

It follows from Egs.(2) and(3) that
and Q,(w)=46w"—52w?+12. (35)

. § ( AN2—50?+4 —Sho+20?-2 ) ’ this solution is armived at usi viical on of
,w)=de owever, this solution is arrived at using analytical expansion o
( ) Shw+20w°—2 \?—100°+4 the determinant oP(\,w). It should be noted that analytical ex-
=N+ (1002+8)\2+ 460" — 52w?+ 12 (30) pansion of the determinant of arx n matrix involves an order of
' n! basic numerical operation8.e., multiplications and summa-
and hence by Eq.19) tions). Moreover, symbolic manipulation is required in our prob-
op lem since the matrix pencil depends on two variableand w.
ﬁ=27\(2>\2+10w2+8). (31) Consequently, such an approach cannot be applied for a practical

system possessing modest dimension of say20, for example.
In what follows we illustrate howQ;(w) can be found numeri-
cally using the approach presented in Section 4, where no sym-
bolic determinant expansion is required.

The zero-order polynomial is

It thus follows thatdP/J\=0 if either\=0, or \>= —5w?—4.
Supposer=0. Then P(\,0)=0 implies 46»*— 520>+ 12
=0, with the roots+0.5685, and+0.8985.
Suppose now that?= —5w?— 4. Substituting this relation in

(30) gives Qo=go=de(M)=1. (36)
P(\,0)=21lw*—92w?—4 (32) For w;=0 the eigenvalue probleifi) reduces to
which has the roots=2.1033 and+0.2075. (A°M+K)v=o, (37)
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with eigenvalues=v2i and *+Bi. It follows that w3=0, 2 0 0 46
(A\)2=-2 and ({”)2=—6. Equation(27) for i=1 is, there- B=S w¥B=0¥ 0 0 0
fore, k=0
s 0 0 O
A 1 — (a2
( 1 ) (Ql(o)):( (Ol%l))z) (38) 0 10 -52 1 8 12
(A2 11Q20)) | —(a3z”)
+0? 0 0 10(+|0 2 8,
or using numerical values 0 10 o 2 8 0
-2 1 (Ql(O))_( —4) (39) (50)
-6 1]1Q2(0)) \—36)" with the obvious definition oB,, B;, andB,. It thus follows
which yields from (26) that the third stability boundary is determine by the

finite positive eigenvalue of
Q,(0)=8 and Q,(0)=12. (40) [Is 0

0 [
—aﬂ[ B } (51)

For w,=1 the eigenvalue probleifi) is

0 BO Bz - Bl
(MM +AG+K—R)v=o0, (41) or explicitly
which has eigenvalues 0.5829 and +4.2024. It follows that (1 0 0 0 0 O]
w,=1, \?)?=~-0.3397 and {?)*= — 17.6603, and fron(27) 0100 0
we obtain
0 01 0 0 O
[l - o R
—17.6603 Qa(1) : 0000 2 8
which has the solution 000 2 8 |
Q1(1)=18 and Q,(1)=6. (43) o 0 0 1 O 0]
For w;=2 the eigenvalue problerti) is 0 0 0o 1 0
(N2 M +2\G+K—4R)v=0 (44) 00 0 0 O 1
—w? (52)
with eigenvalues+ (I8 and + 30i. Hence wz=2, (\{?)%= 0 0 —46 0 -10 52
—18 and ()%= —230, and Eq/(27) gives 00 O 0O 0 -10
-18 1 Ql(z)) —324 |10 0 0 0 —-10 O |
~-30 1 (Q2(2) :(7900)’ (45) The matrix pencil (52) has four finite eigenvaluesmi2
hich ai =4.4240 andv3 ,= —0.0431. Hence, as i83), the third stability
which gives boundary is\4.4240=2.1033.
Q,(2)=48 and Q,(2)=540. (46) Example 5.2.Consider the &6 system with
It is found by interpolation that the polynomi&,(») which M=le,

satisfies Q1(0)=8, Q4(1)=18, (and Q4(2)=48), is Q;(w)

g . . =5, i=1j=6
=10w?+8. The polynomialQ,(w) which satisfiesQ,(0)=12, ) J
Q,(1)=6, andQ,(2)=540, isQ,(w) =46w*—52w?+12. These G=[gj]={ 5 1i=6j=1
are the same results as obtained3B). _ _ 0, otherwise,
OnceQ;(w), i1=0,1,2, is found we may evaluate the bigradient
matrix B in (20). For our caseB is reduced to
Q Qi1 Qy Table 1 Stability boundaries
B=| 0 2Q, Qi], (47 Number of Poles
2Qy Q 0 Critical w Imaginary Real Complex
or using(35) 0
0.4592 12 0 0
1 100°+8 460*—520w?+12 0.6480 10 2 0
) 0.6627 8 4 0
B=|0 2 10w“+8 . (48)  0.7849 8 0 4
0.8234 8 4 0
2 1°+8 0 0.8240 10 2 0
. - . . - . 0.8911 6 2 4
The third stability boundary is determined by the posiiivehich  'ggsg 6 6 0
makesB in (48) singular. We note in passing that analytical ex- 0.8986 8 4 0
pansion of the determinant & gives 0.9260 4 4 4
0.9261 4 8 0
— 4_ 2_ 0.9283 6 6 0
deiB) 421w —92w°—4), (49) 09384 5 o a
ial i i ; 0.9391 6 6 0
a constant factor of the polynomial i82), which confirms the 1.0000 4 8 0
result. ) _ _ 2.3449 4 8 0
In order to determine numerically the values@wfvhich make o0 0 8 4

(48) singular we writeB, as in(22) and(23),
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(4, i=j,
-2, i=j—-1j=23,...,6
K=Tkil=) _5 icj+1j=12,. .5
0, otherwise,
and
(5 1i=j,j=12,...,5
-2, i=j—-1j=23,...,6
R=[r]=1{ -2, i=j+1j=12,...,6
10, i=j=6
L O otherwise.
For this case we have
Qo(w)=1

Qi(w)=—100?+24
Qy(w)=—20w*—260w2+ 220
Qs3(w)=180w8+1320w*— 238Qw%+ 960

Qu(w)=2021w%— 962408+ 14736w* — 9184w’ + 2016
Qs(w)=—11050w*%+ 403688 — 5793205 — 40608»*

—137920%+1792

Qe w)=122860"%— 473160+ 736760 — 589440°

+252960* — 5440°+ 448.
The critical values forw obtained from(26) are

servative gyroscopic system may change its nature from stable to
unstable and vice versa. Using this method one is able to deter-
mine all ranges of the angular speeds for which a gyroscopic
system is stable by considering the stability of the system for a
finite number of frequencies.

For ann degree-of-freedom gyroscopic system the process of
evaluating the stability boundaries associated with the multiple
eigenvalue\ =0 requires via Proposition 5 solving a generalized
eigenvalue problem of dimensiarfor its eigenvalues. Evaluation
of the other possible stability boundaries associated with a mul-
tiple eigenvaluex #0 requires via Proposition 6 solving arh
order matrix pencil of dimensionr2-1 for its finite positive ei-
genvalues. Numerical examples have demonstrated these results.
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Constraint Forces and the Method
of Auxiliary Generalized Speeds

S. Djerassi
This paper deals with noncontributing forces, usually called constraint forces or reaction
H. Bamberger forces, arising in simple, nonholonomic multibody systems. These forces are related to two
kinds of constraints, namely, kinematical constraints—derived from kinematical require-
Rafael, ments, and auxiliary constraints, introduced for the purpose of constraint forces determi-
P.0. Box 2250, nation. Here, the method of “auxiliary generalized speeds” is used to bring into evidence
Haifa, Israel constraint forces related to the two kinds of constraints. It is shown that auxiliary gener-
alized speeds can always be chosen in a way that gives rise to additional equations each
having one measure number of a constraint force as an unknown. Motion equations can
thus be generated and solved without regard to constraint forces determination; and
constraint forces can be determined with no matrix inversion, at a minimal computational
cost.[DOI: 10.1115/1.1572902
Introduction sinceu=m+M, the computational cost associated with the-

avoidable introduction of constraints of the first kind increases by
The introduction of constraints of the second kind. Many authors
; ) . : . accept the additional cost, recognizing the importance of the de-
simple, nonholonomic constraints be imposed on the moticR Of.termination of constraint forces—they are closely related to struc-
Also, letR,, ... R, be measure numbers of the related constraigji 5| |5ads, and form a basis for the analytical treatment of friction
forces. leem+,u differential-algebraic eq'uatllor(ﬁ)AE). govern  forces. Moreover, a number of authoié/ehage and Hauf2],
the motion of S the unknowns beinguy, ..., U, and pikravesh[11], and Amirouche et al[8]), recommend that sys-
Ry, ... \R,. Furthermore, ifu,_, .1, ... U, comprise a choice tems ofy rigid bodies are temporarily regarded as “totally” un-
of u generalized speeds regarded as dependeni on. . .Uy,  constrained, so thal =6v—n. One can then determine, in con-
thenU,_, .1, ... Uy @ndRy, ... R, can be eliminated, giving junction with DAE/ODE-related methodsm+M measure
rise to a minimal set ofhn—u ordinary differential equations numbers of constraint forces) associated with kinematical con-
(ODB) in Uy, ... U, , (see e.g., Shabarja], Secs. 5.8-5.90 straints andvl associated with the joints connecting the rigid bod-
Generally speaking, DAE/ODE solutions become m@m@mputa- jes to one another, making no distinction between the two kinds of
tionally) expensive as and u become larger. This is also trueconstraints. This approach underlies the majority of the multibody
when such techniques as LU decompositigvehage and Haug programs presented, e.g., by SchieHl&p). A number of authors
[2] and Nikravesh and Haug]), QR decompositioKim and deal with constraint forces with less conventional methods. Pa-
Vanderploeg4]), zero-eigenvalue theorefitamman and Hous- pastavridis, using Appell’'s equatiori4,3], and Maggi’'s equations,
ton[5] and Loduha and Ravaf$]), singular value decomposition [14], and Udvadia[15], using Gause’s principle, generate con-
(Singh and Likins[7]), Householder transformatiofAmirouche straint forces; however, from a computational point of view their
et al. [8]), or Graham-Schmidt orthogonalization procésmng approaches do not foretell a breakthrough.
and Lancd9]) are used, in connection with DAE formulations, to The purpose of this work is to address the above question,
deal with singular configurations through the introduction of thehowing that it is suffices to generate and sohaynamical equa-
orthogonal complement matrix ideéirst suggested by Hemami tions in conjunction withm constraint equations of the first kind
and Weimer[10]). Moreover, in accordance with the indicatedwithout regard to constraint forces determination, and use, for this
state-of-the-art techniques of analytical mechanicend u are  purpose, any technique helpful in avoiding singularities; and that
frequently increased for the sole purpose of constraint forces dameasure numbers of constraint forces of the first kind Mraf
termination, an observation raising the following question. Cdhe second kind can be exposed at a computational cost propor-
the determination of these forces be done without affecting ttienal tonm? andnM, respectively. This is done in the second and
computational cost of generation and solution of dynamical equigurth sections for constraint forces of the first kind, and in the
tions? third section for constraint forces of the second kind. Two ex-
This question can be addressed effectively after two kinds 8mples are used to illustrate the determination of a variety of
constraints are identified. One conceminematical constraints measure numbers of constraint forces.
such as constraints associated with the closure of kinematical
loops, constraints associated with specified motions and con-
straints associated with the motion of rolling elements. The oth€onstraint Forces of the First Kind—Preliminaries
kind c_oncernsM aqxiliary constraintscoming in_to play if the Consider a simple, nonholonomic syste&Srof » particles P;
associated constraint forces have to be determined. Examples@e1 . ;) of massm; possessingi generalized coordinates
constraints associated with joints and constraints eliminating rel@- .. g—andn (wheren<n) generalized speeds, . . . ,u, in
tive motions of particles of a rigid body. It may be concluded thaly, a Newtonian reference frameuy, ... ,u, comprise linear
- combination ofqq, ... Gy, the coefficients being functions of
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF Ay, - - - 07 and Umet) Suppose that the motion &fis definedas

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- ' e o Lo
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Mar. 7’unconstra|ned, and that the velooty of P, (i=1, ... ,») inNis

2001: final revision, Oct. 10, 2002. Associate Editor: A. A. Ferri. Discussion on th&Titten (Kane and Levinsoifi16], Sec. 2.14

paper should be addressed to the Editor, Prof. Robert M. McMeeking, Department of n

Mechanical and Environmental Engineering University of California—Santa Barbara, P. P. .

Santa Barbara, CA 93106-5070, and will be accepted until four months after final vPi= 2 v Uty (i=1,...) (1)
publication of the paper itself in the ASMEOURNAL OF APPLIED MECHANICS. r=1

Let Sbe a system possessingndependent generalized speed
uq, ...,U,, whose motion is defined as unconstrained, anglet
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where vfi and vfi (i=1,...»r=1,...n) are function of derivedfrom Egs(5). Alternatively, Eqs(9) can be used to elimi-

91, ... .G and timet. Then its governing dynamical equationd?@t€Up+1, - - ..U, from Egs.(8), leading to a minimal set of
are (Kane and Levinsofil6], Sec 6.1 dynamical equations iy, ... ,u, (ODE formulations.
Constraint forces do not appear in E¢R). However, they can
v v be determined at will. To this end, reconsider E&$.and suppose
FPi-vrP'+E FPiVii= |F+Ff=0 (r=1,...n) that m pairs of contact force®, and R, (k=p+1,...,n) are
i=1 i=1 D D

5 exerted byP, on P, and by P, on P,, respectively, in thei,
©) direction, and that the action of these forces validates Ef)s.
where FFi and F*Pi are, respectively, the resultant of all activel henRy can be defined aak_é Ry- &, so that, in accordance with
forces and the inertia force acting &, andF, andF? are the the law of action and reaction

rth generalized active force and thtéh generalized inertia force Re=Ra&., R=—Ra& (k=p+1,...n). (10)

for S
Let P, be a particle of5, and letP, be either a particle cor ~ These forces contribute to E¢®), which become
a particle ofRg, a set of particles with a prescribed motionNn n _
Let vPx andvPx be the velocities oP, and P, in N, respectively, F.+Ff+ 2 [(Rkék)-vf“r(— Rkék)-vrpk]=0
and suppos®, and P, are momentarily or continuously in con- k=p+1
tact with each other. If the motion @h pairs of particles can be (r=1,...n)
described similarly, thei$ is subject tom constraints of the first ] o
kind, indicating that (Kane and Levinsofi16], Sec. 4.4 or, in view of Eqgs.(6)
— n
(VPk_VPk)'ék:fk(qli tee ,qﬁ,t) (k:p+lv ce vn) (3) Fr+F:' + 2 AkrRk:O (r:]., . ’n). (11)
N ) k=p+1
where &, (k=p+1,...n) are unit vectorsf, (4, .- ..qn,t)
(k=p+1,...n) are known functions ofj;, . .. gy andt, and  Substitutions of,, ... ,u, obtained from Eqs(8) and(9) in the
m last Egs.(11) enable the determination &, ... ,R,. This
pAn—m. (4) involves the inversion of amxm matrix havingA,, (k,r=p
— +1,...n) as its entriegsee Eq(e) in the Appendiy. However,
Similarly to v® in Egs. (1), vPk andvPk are given by this inversion is required for the generation &, (k=p
" n +1,...nr=1,...p) in Egs.(7) and(8). It may thus be con-
P P 5 P, P, cluded that the determination &, ,, ... ,R, can be performed
Vpkzzl VUV Vpkzzl AUSA without matrix inversion. Alterne't)tively, Eq€¢11) and(9) can be
solved simultaneously fod, ...,0, andRy 4, ... ,R, (DAE
formulation.

(note that ifsk belongs taRg thenvf“:O (r=1,...)n)). Hence,

Constraints of the first kind can be holonomic and/or simple,
Egs.(3) become

nonholonomic. Simple, nonholonomic constraint equations are
n obtained by substitutions in Eq&). If constraint forces areho-
AU +B.=0 (k=p+1,...n 5) Sento be expressed as in Edq40), then bothf, in Egs.(3) andR,
,21 krlde B (k=p ) ®) in Egs. (10) comprise measure numbers of vectors aligned with
&, . This choice, called by Blajdd 9] “ideal,” underlies the use of

if Ay, andBy are defined Egs. (11 for the determination oR,, 4, ... R,. Under these
— —_— circumstances, the latter are identical g1, ... A,, M
AL (V 5=V )&, BraA (v =y 9 - ac— Ty Lagrange’s multipliersWhittaker, [20] and Parg[21]) that are
introduced when the associated mathematical metl@elfand
(k=p+1,...0n, r=1,...n). (6)  and Fomin[22] and Lanczo$23)) is applied to constrained sys-

Equations(5) comprisem independent linear relations betweer]SMS: By way of contrast, equations describing holonomic con-

uq, ...,u, called simple nonholonomic constraint equation traints atr_e lgua}lé/t!vgttegk(qlb. " ’QW’J)ZO; an(:, ;Ithough
(Kane and Levinsolil6], Sec. 2.1% These equations govern the" ¢ €quationsig,/at=1 are subsequently generated, no equa-
majority of cases in dynamics of constrained systépisblems tions similar to Eqs(3) are wrltten,_ and the |nd|_cated relation
discussed, e.g., by Sh&h7] and Kitzka[ 18] represent exceptions Petweenf, andR, (k=p+1,... n) is lost. Thus, ifR, andR

governed by nonlinear relations between . . . ,u,,). are chosen to be parallel & (&+#8&), thenAy, in Egs. (11
Supposely, ... Upandup, g, . .. U, are regarded as indepen-m st pe replaced with\,, , deﬁnedAI’(ré(VPk_vpk).a& (k=p

dent variables and as dependent variables, respectively. Then EJQ]::' nr=1 n Hence ’F_’En A’ R
(5) can be solved foup, 4, ... ,u,, yielding T ey )- ) r “k=p+1Tkrk
=2 pr1Akrhi (r=1,...n) and, with Ay, 1, ... N, having
P been evaluated, the exposition®f (k=p+1, ... n) would re-
U= 2:1 Ciur D=0 (k=p+1,...n). (7)  quire the inversion of an additionahx m matrix (having A, as

=

its entry in rowk, columnr). This inversion can be avoided if Egs.

It can be shown that, under these circumstances, the followifg) @nd (10) are also applied to holonomic constraints, a task
equations govern the motion of the constrained systéame and |_nvoIV|ng no ad;jltlonal e_fforl(the effort required to fc_)rm veloci-
Levinson[16], Secs. 4.4, 4.11, and 6:1 ties appearing in Eq¥3) is comparable to that required to form
the equationslg, /dt=0). One can thus benefit from Ed41) in
connection with both holonomic and simple, nonholonomic con-
FoAFf+ D Cu(Fy+FH)=0 (r=1,...p). (8) straints alike.

k=p+1

n

These equations can be solved fgr, . . . U, in conjunction with  Constraint Forces of the Second Kind

Suppose that constraint forcB and R, exerted byP, on P

n n
E Akrur+2 Agu,+B,=0 (k=p+1,...n), (9) @andbyP,on Py, respectively, have to be determined forn
=1 =1 +1,...n+M. Then, in accordance with the state-of-the-art
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technique of analytical dynamics, one has to reformulate the prodiso, R, 1, . . . R, contribute nothing to Eq21), since, by hy-
lem, introducing M additional motion variables—andM pothesis, constraints of the first kind have been imposed; Hepce
constraints—that bring into evidence the additional constrairg the only unknown in Eq(21).

forces. One then obtains equations structured as @Bgsnd (9) Equation(21) is valid fork=n+1, ... n+M; for, the proce-
with n+M replacingn. dure leading to Eq.21) can be used to determine each of
The central claim of this work is closely related to Kane'R,;;, ... ,Ry+y, one atatime. What remains to be shown, how-

method of auxiliary generalized speédane and Levinsorl16] ever, is thaR, andR, contribute only to Eq(21), the kth equa-
Sec. 4.9 used to determine constraint forces. The claim for conion. This can be done formally if the indicated procedure is ap-
straints of the second kind can be stated as follows. If constrairﬂjﬁed to particlesP; andP; (j #k). Then equations corresponding
of the first kind have been imposed, and if, in accordance with tlg Egs.(15—(22) can be written withj replacingk. Specifically,

law of action and reactiorR, andR, are expressed as equations corresponding to Eqg0) and (21) read
Ri=Ré& Re=—-Ra& (k=n+1,...n+M), (12 u;=0 (23)
then it is always possible to choodd auxiliary generalized Fj+R,—+F;‘ =0. (24)
speeddl,,q, ... Uy that give rise toM additional dynamical — ) ] ]
equations, each having one Bf (k=n+1,... n+M) as(the Now,P; andP; are in contact with one another momentarify (
only) unknown. With this choice, the additional constraint equa#0) or continually ;=0), therefore either botl”i andv"i, or
tions are none, are augmented hyg,, whereg, is a vector function of
— B d1, - - - .gn andt. In both eventR, &, and — R, &, contribute noth-
u=0 (k=n+1,...n+M) (13) ing to Eq.(24). By similarity, R;& and — R;& contribute nothing
and the associated dynamical equations are to Eq.(21). This conclusion, extended to any two pairs of particles
P;—P; andP—P, (j,k=n+1,... n+M,j#k), validates Egs.
F.+R+Ff=0 (r=n+1,...n+M). (14)  (13-(19.

Note thata™, defined asa”i=Nd/dt(v"), readsa”i=ali
+0,V, TV (wherea®i=Nd/dt(v")); hence the use of Egs.
(20) leads toa"i=a"i andvFi=VvFi. As a resultF" andF*"i, in
_ general functions 0" anda”, need not be reformulated follow-
Pk—vPh). 8= fi(dy, - . . O t) (15) ing the introduction ofi, due to the subsequent use of E(R0).

It may thus be concluded thef, in Egs.(19) is introduced for the

To show this, consideP, andEk, and note that the relations

betweervPk andvPk, the velocities ofP, andP,, can always be
written

(v

where, as in Eqs(3), fi(q;, . ...q5,t) is a known function of ; o P =n+

Ji, - . . gy andt. The determination oR, requires the removal of ioll\j ) p;J_LZOSSee a?ef nggtlgmggr';erétle é(ﬁl) ’l;/,ksurlj)stityjt.ic.)ﬁyri]n
the constraint implied by Eq.15). One way to accomplish the " o g. P. . yp. .
removal of this constraint is to add the componaph, to the €guations similar to Eqs2), with v, ' replacingv, ', thus leaving

velocity of P, which, denoted now with an overbar, becomes intact Egs.(2) (and, specificallyF™ andF*"i (i=1, ... v)) and
. » hence Eqs(8).
V=Pt U (V=2ay). (16) Also note that theM pairs of particles can include duplicates of
= _ _ the same physical particlgs.g., P, and P, k=n+1, n+2, n
vPK is left intact, that is +3), in which event the indicated conclusion holds if the associ-
S ated unit vectors, i.ed, (k=n+1,n+2,n+3), are mutually per-
VPk=vPe (v k=0), (17) pendicular. Finally note that Eq&l3) and(14) apply if subsets of

_ particles comprise rigid bodies. Thep may be a measure num-
so that Eq(15) becomes " «—Vv7«) - & ="f,(q;, ... gr.t) or ber of the angular velocity of a rigid body, am} would be the
— associated measure number of a constraint torque of a couple
(VPk+ T8, —vPR) - & =1 (qy, . . . Grst), (18) (Djerassi[24], Sec. 3.
Next it is shown that auxiliary generalized speeds can be de-

in agreement with Eq16) and (17). Thus, the velocity ofP, fined in connection with constraints of the first kind, which give

relative toPy in the §, direction(which is zero iff = 0) increases

- ; - . rise to expressions each of which contain on®gf,, ... R, as
by u,&, . Expressions for the velocities &; (i=1,... ) must 5, unknoI\C/)vn Pl "
be updated accordingly, i.e., ’

ViRt (i=1,... ) (19)
P . . i Constraint Forces of the First Kind Revisited
wherev, ' is a vector function ofjy, . . . gy andt. Equationg15),

(18), and (19) indicate that the motion of is restored if the Sgppose tham auxiliary variablesiy (k=p+1, ... n) are de-
constraint equation Ined as

=0 (20) WA —(VPk=VP)-a+fi(qr, .. amt)  (k=ptl,...n)
25
is imposed orf5, a step performedfter an additional equation of (23)
motion is formulatedKane and Levinsofil6] Sec. 4.9 and Djer- SO that

assil24). namely (VP TP 8= Ty, - At (K=p+1,...n),
Ft+Re+Fr=0. (21) (26)

F, and F} include contributions from all the active forces and €XPression resembling E$8). It follows, in view of Eqs.(6),

inertia forces associated with whereasR, is the contribution of

R, andRy; for, by virtue of Egs.(16) and (17) this contribution n

can be evaluated as follows: Ut >, AU, +B,=0 (k=p+1,...n), 27)
r=1

PR A\ —P, AN A
(Ri@) -V “+ (—Ri@) -V = (R&) - &~ 0=R¢.  (22) equations that can be solved fay (k=p+1, ... ), yielding
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P n
U=, Cl+D+ X Ely  (k=p+1,...0).
r=1 r=p+1
(28)

The manner in whiclC,, andE,, are related tdA,, can best be

described by a matrix representation, as in Egsof the Appen-
dix. Djerassi and Kane [25] show that, if
Ug, ... Up,Upsq, ... Uy replaceuy, ... Up,Upiqg, ... Uy @S

independent variables, then the associated equations of motion are

n

F+Ff+ > Cu(FtFE=0 (r=1,...p) (29)
k=p+1
n
> Eq(FtFi)=0 (r=p+1,...n).  (30)
k=p+1

Equations(30) are identical to equations obtained if the lasof

Egs.(11) are solved folR, 4, . . . ,R,. Moreover, Eqs(27) and

(5) lead to the equations
u=0

(k=p+1,...n) (31)

which play the role of constraint equations resembling E§3).

When these constraints are imposed on Eg8) and (30), then
the following results are obtained. Equatiq@29) become a mini-
mal set of dynamical equations munknownsu,, . .. ,u, (as are
Egs.(8)), and Eqs(30) are replaced with

n

> E(FtFP)+R=0 (r=p+1,...n).
k=p+1

(32)

These equations are identical to those obtained ifnthiast of
Egs.(11) are solved foRy. 4, ... ,R,. R, the only unknown in
therth of Egs.(32) (an equation associated with), is the con-
tribution of R, and R, (r=p+1,...n) defined in Eqgs.(10),

since, in connection with theth of Egs.(26),

Fig. 1 Tricycle

a linear combination afi,, .. . ,u,, and can be evaluated at a cost
proportional ton. One can thus generate and solve dynamical
equations irrespective of reaction forces evaluation, and evaluate
reaction forces at the minimum possible cost.

The steps required to form Eg&2) and (14) can be summa-
rized as follows:

1. Fork=p+1,... p+m(=n) (constraints of the first kind
1.1 Consider th particlesP, and P, with reference to Eq93)
and define h constraint forces in accordance with E¢s0);
1.2 Introduceuy as in Egs(27) and solve Eqs(27) for u, as in
Egs.(28);
1.3 Use Eqgs(28) to replaceu, with U, in expressions fowi
(i=1,...,), and obtainv®i (i=1, ... v) as in Eqs(34);
1.4 Generate Eq$32) usingv®i (i=1, ... ), vk andVvx;
1.5 Use Eqs(31) to eliminateu, and Gy from Egs.(32) and
solve the latter foRy .

2 Fork=n+1,... n+M (constraints of the second kind

2.1 Consider ® particlesP, andP, with reference to Eq15)
and define ®1 constraint forces in accordance with E¢s2);

2.2 Adduga, to vPx, obtainingv’k andv®k, as in Eqs(16) and

(R&)-V,*+(~R&)-V*=(R&)-&-0=R,, (33) (17)
— 2.3 Use Eqgs(16) and(17) to obtain corresponding expressions
whererk andei are given by expressions similar to those irfor VPi (i=1, ... v), as in Eqs(19);

Eqgs.(16) and(17) with r replacingk (an alternative proof of Egs.
(32) is given in the Appendix Equations(32) can be obtained

straightforwardly if the velocities oP; (i=1,... ) are ex-
pressed in terms af,, . . .. ,u, with the aid of Egs.
(28), namely

SUp Upig,

! P;
VP'=21 v U+
=

Lw). (34)

Then substitutions in the lash of Kane's equationgKane and
Levinson[16]) which, in the present context, read

v n _
> (FP Py D Re(V-V,9=0
i=1 k=p+1

(r=p+1,...n)

lead to equations identical with EqR2).

2.4 Generate Eq$14) usingvFi (i=1, ... v), V7 andvf,
2.5 Use Eqgs(13) to eliminateu, and G, from Egs.(14) and
solve the latter foRR .

The idea of auxiliary variables is not ne@amel [27] and
Shan[28]). However, the procedure just discussed becomes pos-
sible due to Kane’s unique method of auxiliary generalized speed.
It can be applied manually to simple problems; however its appli-
cation to larger systems requires multibody packages that permit
the introduction of auxiliary generalized speeds. One such pack-
age is Autolev(Kane and Levinso29]) used to generate the
following examples.

Examples

A Tricycle Moving on a Horizontal Plane. Figure 1 shows a
tricycle comprising a central body, two supporting wheelg and
F, and a steering whe& attached toA via fork B. The wheels

Each of Eqs(32) and(14) has one measure number of a conrotate freely about their respective ax&.(i=4,5,6) are points
straint force as the only unknown. Having obtained these equaf-E, F, and G, respectively, momentarily in contact wit®; (i

tions, one is free to solve Eq¥8) (or (29) and (9) for
Ul, ..

[5], Blajer et al.[26], and Singh and Likin$7]) the orthogonal
complement matrix techniquéThe latter is related to Eq$29)

and(32) in a manner presented in the AppengWith u,, ... ,u,

in hand, one can evaluat®,.,, ...,R, in Egs. (32) and
Rni1, -+ ,Rnrm in Egs.(14) at a cost proportional taM and
nm?, respectively. For, each d§,+FF (p+1,...n) in Egs.
(32) and of F, +F; (r=n+1,... n+M) in Egs.(14) comprises

Journal of Applied Mechanics

=4,5,6), points of a horizontal plarfe A is the midpoint of the

- Uy, disregarding constraint forces, and invoking, in th@entersE* andF* of E andF, A is the center of5 andA* is the
case of singular configuratiorisee, e.g., Kamman and Houstonmass center oA. a, b; andn; (i=1,2,3) are triads of dextral

mutually perpendicular unit vectors fixed & B, andN, respec-
tively, such thatas, bs, andns are all perpendicular t®. a, is
aligned with the axes dE andF andb, is aligned with the axis of
G. | andw are lengths of segments shown in Fig. 1, &nd the
height of A* aboveP. Finally, M 4 andl 45 are the mass oA and
its central moment of inertia foa;; andDa; is a driving force
exerted onA*.
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Defineu, (r=1,2,3) as
WAVA e, (r=1,2), usLawh n, (35)

where o and vA* are the angular velocity oA in N, and the

velocity of A* in N. Then w® and VA" related to motions ofA
defined as unconstrained are given by

*
o Lugng VA =uja;t+uya,. (36)

Assuming that the fork and the wheels are massless, one can
show, by substitutions in Eqél) (with n=3), that the following
equations govern unconstrained motionsAof

Fig. 2 Crank and slider mechanism

D_MA(Ul_Uzng):O, _MA(U2+U1U3):O, _IA3[‘I3:O'
(37) where tg=tan(g), s=tgu,/l and R=hF/2l—m,g/2+ muh(s?
—4u,/1)/8.

The following comment concerning the generation of E¢g)
proceeds such that*-a,=0 andv*-b,=0, wherev* andv* are s in order. First, it can be verified that Eqé2) give rise to Egs.
the velocities ofA andA, respectively. Substitutions give rise t0(41) if they are used in the following expressions:
the following two constraint equations, structured as E&S.

(with m=2), namely VP =" + X p*"'Pr (r=4,5,6), (44)

Up—lus=0, —UusSpt(Uzt+lug)cs=0 (38) where p”"/Pr is the position vector fromA* to P,. Second, it

wheres,zA Sin(8) andcgA Cos(8), and g is the steering angle. follows from Egs.(44) that o and V", the coefficients ofl
Next, letR, andR5 be const[aint forces exerted @nandA in  (r=4,5,6) in Eqs(42), are related to each other as

theb, anda, directions, so thaf andA play the roles ofP, and . .
P, respectively, anR,=R,b, and R3=R;a, (Step 1.1. Also, V=V + @l x ph P (r=4,5,6) (45)
let the vertical components of forces exerted By on P; (i . _ .
=4,5,6) beR;=Rins (i=4,5,6); henceR,=—Rins (i=4,5,6) Wherep* 'Pr (r=45,6)(Fig. 1) andv," (Eq.(41)) are known, as
angl\él =3 (Step 2.). Itis required to determinB,, R3, Ry, Rs,  gre thedirections of Vra* and Bf (r=45,6) (for r=6 pA*IPG
andRg.
__Equations(38) are satisfied iR, andR; are exerted o and

If E, F, and G roll without slip on P, then the motion ofS

A* /P

=la,— ha3, VEs=a, whla, andVi |[ha,—Iag, etc). Moreover,

A, respectively, in which event EqE7) give way to the follow- the vectors/'" _'? andw*x p”"/Pr appearing in Eqs45) are all
ing equations: perpend|cular tcmr . Hence, each of Eq$45) gives rise to two

D —RyS5— Ma(l;—U,U3)=0 scalar equations in two unknowns, namely, the magnitude® of

. ande! . The latter can thus be determined and used to form Egs.
R3+RyCs—Ma(Up+ U uz)=0 (39) (42).
_ N olla= This example is relatively complex. Usually, things are simpler,
R3l + Rolcg—153U3=0

_ _ pooATS R _ ~as in the next example.
in accordance with Eq$11). To avoid inversion associated with ] ) ]
the solutions of Eqs(39) for R, andR;, defineu, andus asu, Crank and Slider Mecha_nl_sm. Figure 2 shov_vs bara andB_
=—(up—lug) and Uz=—[—u;Sz+ (U +lug)cs] (Step 1.2 of lengthsa and b, comprising a crank-and-slider mechanism.
then Steps 1.3—1.5 lead to A andA, B andB, andP andP, are the endpoints oA andB

and points fixed inN, respectivelya;, b, andn; (i=1,2,3) are
(40) triads of dextral, mutually perpendicular unit vectors fixed\jrB,
. andN, respectively, such thak, bs, andn; are all perpendicular
Ral (Mg +mMaud/tgp+myBuy /c51/4=0 to P, the plane of motiona; andb, are aligned withA and B,
and n, is aligned withL, the line passing througlﬁ’ and P.
Finally, let self-explanatory notation stand for the inertial proper-
ties of A andB.

Defineq, andu, (r=1,2) as

Ro—[(Mpl; + maui/Ntg+myBuy /c51/(4c,) =0

wherem,=M—13/12 andm,=M+1,3/1%. Now, the identi-
fication of R;, Rs, andRg require a choice ofl,, Us, andug
leading, in accordance with Step 2.2, to

VPr=vPr+uin;  (r=4,5,6). (41) ,
. 0;2Cos H(a;-ny), qp2Cos Y(by-ny), U LG (r=1.2.
This is the case ilv® andv*" are expressed as (46)
"= Uzag+ Uy 1/(2w)a, + 1/(4l)a,] +ug[ — 1/(2w)ay Then w® and w®, the angular velocities o and B, can be ex-

+1/(41)ay]+ugl — 1/(21)ay] pressed

. w=un;, w®=u,n;. 47
VA" = Uy, + Uy, + Uy h/(41)a, — h/(2w)ay+ 1/das] - ve e 47
Suppose tha# coincides withP at all times and that, in this

+Ug[h/(4l)a;+h/(2w)a,+ 1/4ag]+ug —h/(21)a, configuration, the motion of the mechanism is defined as uncon-
+1/28,] (42) strained. Then the following equations
in accordance with Step 2.3. Then Steps 2.4—2.5 lead to —[Ia+ (M a/4+Mpg)a?] i, — abMgCysU,/2— abMgs;u3/2=0
R+ RI2+ mah/W[ 2u;(BIch+5) + 2t 4011)]/8=0 —0.5abMgC U, — [+ Mgh?/4]u,+ abMgs; u3/2=0,
. (48)
Rs+ R/2—mah/w[ 2uy(B/c5+8) + 2t 40,)]/8=0 (43
° ahiw(2uy(Bicy+s) gl “3) wheres;»2 Sin(gq;—(,) etc., govern unconstrained motions of the

Rg—mag—R=0 mechanism.
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Constrained motions require thatslides alond., i.e., thatv® Aprip+1 -+ Apiin
. n2:0, or

mxmA =
acu;+bcu,=0 (49) 5 Anpit oo A
wherec, 2 Cos(,), etc. _ _ T
Next, letR,, given by R,=R,n,, be a force exerted oB, anA(;|mXpA|meA|, mle(Il)|Rp+1 oo Ryl
which plays the role oP, (Step 1.]. Let Rz and Ry, given by
R3=R3n; and R;=Ryn,, be forces exerted oA, which plays mx1B=Bps1 ... B,|"
the roles ofP; andP,, by P, playing the roles oP5 andP,; and (@n
let Rs and Rg, given by Rs=Rsn; and Rg=Rgn,, _be forces F=|F,+F* Fo+FX|T
exerted byA—which plays the roles P andPg, on B, playing e L
the roles ofP5 andPg (Step 2.1. It is required to determing,,
Rs, R4, Rs, andRs. _ mx1F = [Fpr1tFpeq oo FotFRlT
Defining u,= —(acyu; +bcyu,) (Step 1.2 and carrying out (11)
Steps 1.3-1.5, one has
Ep+1,p+l t Ep-%—l,n
R,—ma( — Uy +asu?+t,ud) + Mga(cyail; +51u%)/(2¢,) =0, B
(50) m><mE - e ’
@ E ... E
where m= (15 /b?+ Mg/4)/c3. Moreover, choosingiz, Uy, Us, np+t nn
andug such that, in accordance with Step 2.2 Cp+11 -+ Cprip
EA: wA, VA=U3H1+U4I’12, mXpC = e ’
I (28) E E
VB=VB+Ugn, +Uyn,+Usgn; + Ugn, ntooo np

) - ) where lower left indices play the double role of matrix identifica-
one has, following Step 2.3 =V*+ &’ xa/2a,, etc. Finally tion and dimension indication, and where numbers under equal
one obtains, taking Steps 2.4-2.5, four additional equations wifyns refer to equations numbered correspondingly. Then Egs.
R3, R4, Rs, andRg as unknowns. The sixth of these reads  (27) can be written S 10+ o pApc .U+ macmAmx U+ myc 1B
Rs—a(Cim—s,t,Mp/2) U+ pm+acyt,Mgu2/2=0 (51) 0 and, solved fog,;u, they yield
wherep: 351U§+ bszug Note that mx1U=— (m>< mA)il(mX pAp>< U+ leB) - (meA)il mx lU( )
a
- B A ~/ The coefficients of,.u and ;U in Egs.(28) are the entries of
hencev* andV® do not includeus andUs, whereas/* and v® mxpC @ndmxmE, respectively, hence by comparison with Ea).
ﬁ](ghggm(%e% anduy, in agreement with the statement follow- mpC= (A "L A, mxmE= (AL (D)

V=vP(=0), VA=vA+Uuzn;+uyn, (52)

Them last of Egs.(11) can be cast in a matrix form, reading

Conclusions 2P+ (xnA) T s R=0, ©

A new methodology for the determination of noncontributin . .
constraint forces, based upon the idea of auxiliary generaliggae left-hand side of Eq(c) should replacg,.F in Egs.(30)
speeds, was presented. The methodology imposes uniformityV‘{He” written in a matrix form, so as to include contributions of
the formulation of constraint equations for both kinds of corconstraint forces, that is
straints (Egs. (3) and (15)), and in the definition of constraint T T _
forces(qu.(lo) and(12)) and auxiliary generalized speet&gs. (mxmE) Lmx1F + (mxcmA)* mx1R]=0 @
(26) and(18), and Egs(31) and(13)). It specifically requires that or, in view of Eq.(b),
constraints be defined as relationships between velocities of par-
ticles, and that constraints and constraint forces be colinear vec- (mxcmA) ™ T F+ mx1R=0, ©
tors. Finally, the methodology de-couples the generation of the ) . .
dynamical equations from that of reaction forces, enabling sol@-matrix form of Eqs(32). Also, the matrix form of Eqs(29) is,
tions of minimal-dimension sets of dynamical equatiGnsDAE/ N View of Egs.(b),
ODE formulationg;, and, avoiding matrix inversions, minimizes F—( A)T( AT F=0 o)
the computational effort required to identify reaction forces. px1 mxptt tmxm m>x1 '

Defining the following matrices

Appendix A 2 L0~ () T,
On the Relationships of Eqs.(28) and (31) With Other For- - T T
mulations. Let the following matrices be defined with the aid of nxpA” & |po| | = (mx pA) (mxmA) | (9

quantities used earlier: where,,,0 and,,,| are null and unit matrices, respectively, one

can replace Eqge) and (f) with

— T — T , ,
P><1u(7)|u1 s Up| ' leu(7)|uP+1 o Unl (nxmA )TnxlF_leR:Oy (nXpA’)T nx1F=0. ()
AT VA T ) These equations can equivalently be obtained by a pre-
27 P multiplication of the equationy1F + (mxnA) " mx1R=0, a matrix
A A form of Eqs.(11), with (,xmA")T and (,«,A”) T, respectively. The
p+11 p+lp columns of .. ,A’ span the same space as do rows,QfA,
mxpA=| .- , whereas (.,A”)" is an orthogonal complement of,{,A)"
5
Ol A 0 A
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A Dynamic Generalized

Self-Consistent Model for Wave

Propagation in Particulate
ns.vmg | COMpOSsites

Department of Aeronautical Engineering,

Feng Chia University, Wave propagations in an inhomogeneous medium (e.g., voids, particles, defects, inclu-
Taichung 40724, Taiwan sions) undergo multiple scattering which results in a frequency-dependent velocity and
e-mail: rbyang@fcu.edu.tw attenuation of coherent wave. The aim of this study is to analyses multiple scattering of

plane compressional and shear waves in a composite containing randomly distributed
spherical inclusions in a homogenous isotropic medium. To calculate effective wave num-
bers of ultrasonic waves propagating in the heterogeneous material, a generalized self-
consistent multiple scattering model is used in this study. Numerical results for the effec-
tive phase velocity and attenuation of both P and SV waves are calculated for a wide
range of frequencies and concentrations. The proposed dynamic generalized self-
consistent model for particulate composites recovers both well-known static effective
moduli in the static limit and the results at higher frequencies and concentrations agree
well with published experimental datfDOI: 10.1115/1.1576806

1 Introduction and attenuation of particulate composites. In these methods, the
ultiple scattering formulas yield the effective wave numbers of

Ultrasonic waves are widely used in the field of nondestructi e average wave in terms of the forward and backward scatterin
evaluation(NDE) of composite materials. Advances towards th . 9 . . ; 9
gpplltudes of an isolated inclusion. The results are accurate pro-

development of new ultrasonic quantitative NDE techniques ha! d th lati d int " betw individual incl

been made possible by the study of propagation and diffraction‘ﬂ?Ie € correlations and interactions between individual inciu-

elastic waves in such materials. Waves propagating in an inhoni2"S ¢an be |gnoreo_|. It seems to indicate th"?‘t these results are
valid at low frequencies and at low concentrations. However, an

geneous medium undergo multiple scattering which results in glid ¢ - . .
frequency-dependent velocity and attenuation of the coherdperimentally observed fact in the scattering of electromagnetic

waves. The overall dynamic response of the medium may be cAfgves by a dense distribution of discrete scatterers is that the
veniently modeled by means of the complex wave numger assumption of independent scattering leads to overestimation of

describing the coherent wave propagating in an equivalent honf§attering effects[7]). As it would be shown in this paper, the
geneous material given by zero-frequency limits of these estimates do not reduce to their

well-known static limits. Hence, it is not clear whether these pre-
0] . dicted results are very accurate at low frequencies.
(k)= m““(“’)f @) Mal and Bose[8] have studied analytically the scattering of
plane waves by spherical elastic inclusions which are arbitrarily
whereV(w) and a(w) denote the phase velocity and attenuatiogiistributed in an infinite matrix medium. The propagation charac-
of the average waves, respectively. This effective wave numbeFistics of the average wave were obtained by a statistical ap-
(k) is related to the overall elastodynamic constants which play @foach through the introduction of a pair-correlation function and
important role in ultrasonic nondestructive evaluation of COMpPOghe use of the quasicryst”ine approximation_ A similar approach
ite materials. For example, in order to determine the response\gds used by Datt&9], Willis [10,11, and Varadan et al.12].
the inhomogeneous medium that is subjected to transient loadsr@ese multiple scattering models reduce to the same form of the
incident ultrasonic waves, the information of the overall dynami|q:)ng wavelength limits which are identical to the lower bound of
properties are considered indispensable. Hashin and Shtrikmafi3]. However, at higher concentration, the
The problem of the propagation of multiple scattered waves {yrect pair-correlation function is difficult to obtain and the ef-
a random distribution of three-dimensional inclusions has begfive dynamic constants may be quite sensitive to the choice of
studied extensively in the literature. Folfy] and Waterman and e pair-correlation function. In general, multiple scattering theo-
Truell [2] studied the multiple scattering of waves by point scaljes can accurately predict the overall properties at low frequen-
terers and developed a statistical averaging procedure to estimal& 4nd concentrations.
the phase velocity and attenuation of the coherent waves in termsyy 4 -count for multiple scattering at high concentrations, a dy-
_of the microstructure_s and constituent material properties of tlﬂ%mic self-consistent scheme was used by Sabina and Wii[]s
inhomogeneous mediums. Sayers and SijhDatta et al[4], 5 kim et al.[15] for the approximate analysis of elastic waves
Shln.do et al.[5], and O'Neill et al.[6] have used.the similar in random particulate composites. The frequency-dependent effec-
multiple scattering approach to predict the ulirasonic wave speg phase velocity and coherent attenuation can be obtained by an
mributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF Iterat.lve method. AS. indicated by .Sabma a.nd Wlﬂﬂﬂ], t.he S.elf- .
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- consistent expression _Of dynamic effective properties is valid
CHANICS. Manuscript received by the Applied Mechanics Division, June 5, 2002vhen the relevant elastic waves have wavelengths at least as great
final revision, Dec. 17, 2002. Associate Editor: A. K. Mal. Discussion on the papeis 4a, where a is the radius of the spherical inclusions. Both

should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, Departmentﬁorementioned works based on the self-consistent scheme re-
Mechanics and Environmental Engineering, University of California—Santa Barbal

ra, . 8 . -
Santa Barbara, CA 93106-5070, and will be accepted until four months after fir@UC?d to the static properties given by Hill6] and Budiansky
publication in the paper itself in the ASMEDURNAL OF APPLIED MECHANICS. [17] in the static limit.
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alized self-consistent model, Mori-Tanaka methdldat can be

used to estimate the overall static elastic moduli of the composite

materials. Although all models recover dilute behavior adequately,

Christenser{18] have concluded that only the generalized self-

consistent model gives physically reasonable results at high con-

centrations and covers the full range of volume fractions,cl b a
=<1. Theoretical estimates of the effective dynamic moduli based

on homogenization and other methods have been found to be un- p
satisfactory at higher frequencies and particle concentrations. To Sphere
account for multiple scattering at high concentration, Yang and

There are several micromechanical modédsy., differential
method, composite spheres model, self-consistent method, gener- //

Mal [19,20 have developed a generalized self-consistent multiple )

scattering model, which combines the generalized self-consistent Matrix Effective
model(GSCM) together with the Waterman and Truell’s statistical ¢ Medium 7
approach to calculate the effective dynamic moduli of a fiber- / / /
reinforced composite. The comparison of theoretical prediction of _Z

this model with measured wave velocity data by Huang €24l p—
for a longitudinal wave in the SiC/Ti fiber/matrix composite
showed excellent agreement.

The aim of the present study is to analyses multiple scatteri%. 1
of plane longitudinal or shear waves due to a random distributigpgel
of elastic spherical inclusions in a homogenous elastic medium.
We consider a particulate composite, which consists of a homo-
geneous, isotropic matrix medium containing randomly distrib-
uted spherical particles of identical properties. The generaliz
self-consistent multiple scattering model is studied for the sphe
cal inclusion case. Unlike wave propagation in the fiber-reinforce
composites can be decoupled into antiplé8kl) and in-plang(P

Average P and S Waves

The generalized self-consistent multiple scattering

fantities in the effective medium will be identified by an angular
racket( ). The radius of the matrib is related to the volume
ction ¢ of inclusions by

and SV cases, the study of multiple scattering of elastic waves in asd
a particulate composite becomes relatively complicated by the in- == ?3)
herent coupling of plane longitudinal and shear waves in the dy- b

namic GSCM. In this study, a similar mathematical treatment Qljthough the effective density varied with frequency for compos-
wave diffraction by a single spherical inclusion developed byes with a strong density contrast in the constituents, it is appro-

Shindo et al.[5] was adopted and modified to the dynamigyiate to assume that the effective density is the mean density for
GSCM. Numerical results are presented for silicon carbidgfall density contrast and can be given by

aluminum and lead/epoxy particulate composites. The effective

phase velocity and attenuation of the coherent waves are then (py=cp1+(1—C)p,. (4)
calculated for a wide range of frequencies and concentrations. Th%
theoretical results of dispersion and attenuation are compared %
the experimental results of Kinra et 422,23 as well as the : ] et : : Py
theoretical results by Waterman and Trugl] and Sabina and gﬂﬁggggn Ir_}-htLT:X direction and propagating in the positive
Willis [14]. In the Raleigh limit, the proposed method recovers ' '
both well-known static effective moduli of particulate composites ul :W09i<k>z—iwtez+ uoei<K>Z‘i‘"tex, (5)
by Hashin’s composite sphere modg24]) and Christensen and

Lo's GSCM ([25]), which have not been obtained by other mulwhere a superscriptstands for the inci_dent waves, is th(_e ci(—
tiple scattering methods and formulations. cular frequency andy,, U, are the amplitudes of the longitudinal

and shear wavegk) and(K) are the average wave numbers of
. . ) the P and S waves in the effective medium, respectively. Then,
2 Scattering of P and S Waves in the Generalized Self- syppressing the time facter '“t and dropping the angular brack-
Consistent Model (GSCM) ets in the effective properties, i.e., replacifig by k and(K) by

We consider a random distribution of identical spherical inci$: the total displacement fields in the effective medium, matrix
sions of radius embedded in an isotropic and infinite matrix. Le@nd the spherical inclusion may be expressed in the forms:

uppose that a time-harmonic plane longitudif@l wave
pagating in the positive-direction and a plane sheé) wave

N1, u1, py be the Lameonstants and mass density of the inclu- ©
sion and\,, u,, p those of the matrix. The geometry is depicted u=u+ > D [Anak 3(kr)+ByM B (Kr)
in Fig. 1 where k,y,z) is the Cartesian coordinate system and n=0 m=-n
(r,6,¢) is the spherical coordinate system. Let the components of 3
the displacement vectar in ther, 6, ¢ directions be labeled by +CrnnNmn(Kr) ], r>b (6)
Ur, Uy, andu,. The displacement equation of motion is ®
#u U= 2 [Ahbim(ker)+BMim(Kar) +ClNSH(Kar)
()\+2,u)VV-u—,uV><V><u:pF. 2 n=0m=-n

+Dan£1}r)1(k2r)+EmnM£1}r)1(K2r)+anNgr}%(Kzr)],

The generalized self-consistent multiple scattering model is
also shown in Fig. 1. The spherical inclusion of radius em- a<r<b (7)
bedded in a shell of the matrix material of outer radius/hich in - n
turn is embedded in an infinite medium possessing the unknown 0 (1 0 1 0 (1
effective Lameconstants\), () and effective densityp). The u—z Z [ARaLinn(Kar) + BRugMina(Kar) + ConNing(Kar),
material properties and the field variables in the inclusion and
matrix will be identified by the indices 1 and 2. The corresponding r<a, (8)

n=0 m=-n
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Alns Bins C

mn? mn? mn? Dmnr Emnv an!
andC?nn are in general complex and must determine

where A, Bons Cins
A0 RO

mn? mn?

from the interface conditions. Spherical vector wave functions

LE, ME), andN$), are given by
1%
Li(kr)= er— hn(kr)PR(C0S6) +eshn(kr) — —Pm(cose)
+e i_mh (kr)P™(cos6) |e™* ©
“rsing " n
CYP I P i
MA(KT)=| ey (KPR coso)
a .
_egohn(Kr)%Pﬂ“(cow) eimé (10)
n(n+1
NEY(Kr)= e,%hn(Kr)P;”(cose)
1 m
te rﬂ—r[rhn(Krn—P (cos6)
e Cersing ar[rh (Kr)JPq (Cose)]eimd), 11)

whereh,, is the nth-order spherical Hankel function of the first

kind andP]' is the associated Legendre function of the first kind.

1
LGhs

M@

mn?

andN{" are obtained from Eqg9)—(11) by replac-

ing h,, with thenth-order spherical Bessel function of the first kind

Table 1 Substitution table

a

Substitute For
P2 Q(z) k, K ky, Ky
2), Q(z) h, in
k, K Ky, Ky
P, QW kb, Kb kia, Kia
PO, QW h, in
kb, Kb kia, K;a
PY, Q° kb, Kb koa, K,a
P11 P Qu Qp
= , = , (19)
Py Po Qx Q
where
P11=nh,(kb) —kbh 1(kb) (20)
Pi,=n(n+1)h,(Kb), Py=h,(kb) (21)
P2=(n+1)h,(Kb) —=Kbh, 1(Kb) (22)
Qu=(n?—n— 3K??)h,(kb)+2kbh,, 1(kb)  (23)
Qu=n(n+1)[(n—1)h,(Kb)—Kbh,,1(Kb)] (24)
Q21=(n—=1)hp(kb) —kbh, 1(kb) (25)
Qo= (n?—1— 3K?b?)h,(Kb)+Kbh,.1(Kb).  (26)

in- The boundary conditions require the displacement and stré&dse matriced andQ are obtained fronf? andQ by replacingh,
vector to vary continuously across the interfaces. The stress camith j,,. The other matrices in Eq6l5)—(18) may be obtained by
ponents may be found from the corresponding displacemettit® replacement as shown in Table 1. Th&B8matrix equation for

through the stress-displacement relations

o-rr )\ 1 0( 6)+(?( _0)+(9( )
— reu, sin ru,sin —(ru
& Kr?singld a0 "’ agp- 7
au,
2— (12)
o 1 0u du, u
Zre_ =7 _'9_ 4 (13)
" rae r
a 1 ou Ju u
e _ 5 45 tb. (14)
m o rsing ﬁqﬁ r

From the continuity conditions at=a andr =b, the relationships

?moggAT)n,, Crns Amns Cins Dy Frons Ay, @nd Cp are
ound to be
Amn) ~[q)mn] Ar,nn = Dmn
P +P =p2 +P? ,
{Cmn an Cmn an
at r=b (15)
A ~ (D, D
MQ{Cmn]JmQ[ X, ] Q(2>[ ]w Q<2>[ ]
mn mn
at r=>b (16)
Al ~. (D AY
P<1>[ o +P<1>[ '“”]=P°[ m”], atr=a 17
Chn Frnl " | Co n
Al Dy, A,
MzQ(l){ +M2Q(l){ ] 11Q (Co } atr=a.
mn
(18)

Here, we define the following matrices:

Journal of Applied Mechanics

the undetermined coefficients of the normal expansion solutions
for this problem is given by

rAmn\
~ C
—p2 _p2 mn ~
P P f 0 Al 5
o -pY —pb  _po Din | 0 Xmn)’
~ F 0
0 Q(l) Q(l) _IBQO 6“”
Agm
\ Cmn)

(27)

wherea= ulw,, B=u1!/um,. Also, the relationship among,,,,,
B!, Emn, andB?,, are

hn(Kb) an+ J n(Kb)Ymn= hn(KZb)Br,nn+ J n(KZb) Emn

(28)
u[(n=1)h,(Kb)—Kbhy1(Kb)]Bm,
T ul[(N=1)jn(Kb)=Kbjni1(Kb)]Ymn
= pal (Nn=1)hy(Kab) = Kabhy 1 (Kob) 1B,
1ol (N—1)j(Kzb) =Kabjp 1 (Kob)JEm,
(29)
ho(K22) Bt jn(Kz8) Emn=]n(K12)BR,  (30)
mal(n—1)h,(Kza) —Kzahy 1(Kza) 1By,
+ ol (N=1)jn(Kza) = Kaajn+1(Kza) JEmy
=pal(n=1D)jn(Kya) = Kiajs+1(K1a) [Bpyp.

In Egs. (15-(16) and (28)—(29), ®
pressed by

(31)

mns Xmn, and Y, are ex-
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jn-1 where|w,| and|ug| are the incident displacement amplitudes. The

d)mn=T(2n+ 1)6mo (32) functionf(#) denotes the scattering amplitude of the longitudinal
waves in the far-field, and the functiogs( 6, ¢) andg,(6,¢) are
i1 on+1 far-field scattering amplitudes of the shear waves in the directions
an=ﬁ m[éml—n(n+1)5my,l] (33) of g, ande,, respectively. The definitions of these equations are
given in Appendix A. The forward and backward scattering am-
i1 on+1 plitudes of longitudinal waves are representedff§) andf ()
Ymn:T m[émﬁ n(n+1)8y, 1], (34) which can be calculated from an isolated scatter contained in the

infinite matrix. Also, the forward and backward scattering ampli-
where 8y, Sm1, and 8, —, are the Kronecker delta. Thex4t tudes of shear waves are termed $§0) and g(w) which are
matrix equation for the undetermined coefficients of the normgiven by
expansion solutions is

9(0)=cos¢g1(0,¢) —sin $g,(0,¢) (48)
S ls 0(m)=cosgy(m.¢)~sindgy(m ). (49)
aén ~&n i Banl _ Y al , It can be further shown thaf(0) andg() are independent ap.
0 £p &3z —&34 || Emn o The scattering theory described above vyields propagation con-
0 Eu £is  —Btu Bon 0 stants(k) and(K) in terms of the far-field amplitude of the single

(35) scatter and is valid provided the effect of correlation in position of
the scatterers can be neglected. The approximation is valid only at
&11=hn(Kb), &1,=hn(Ksb), &13=]n(Ksb) (36) relatively low concentrations. If the inclusions are sufficiently
dense and closely spaced and the wavelength is comparable to the

&21=(n—1)hy(Kb) —Kbh, 1(Kb) @7 size of spheres, the spherical inclusions cannot be considered as
—(n_ _ independent scatters and a modified multiple scattering theory
€227 (N~ 1)hn(Kzb) =Kb My ;1 (K2b) (38) must be used. In addition, the solution of E¢#4) and (45) ex-
&= (N—1)j(Kyb)—Kobjns1(Koh) (39) hibits low-frequency velocity limits different from those predicted

] ] by the well-known static solutioiffor example, the generalized
E3=hp(Kpa),  §33=]n(Kza), §&34=jn(Kja)  (40) self-consistent mode(GSCM). To satisfy the low-frequency
limit and nondilute concentration, the Waterman-Truell model is

£a2= (n=Dhn(K22) —Kaahy1(Kza) 41)  modified by the implementation of GSCM.
£43=(N—1)jn(Kza) —Kaajn+1(Kza) (42)
éa=(n—1)j (Ksa)— Kyaj,.1(Kqa) (43) 3.1 Generalized Self-Consistent Multiple Scattering

Model. It is assumed that each inclusion is surrounded by a
(1=]n(Kb), &=(n—1)j,(Kb)—Kbj,,1(Kb). (44) shell of matrix and the composite is embedded in an effective
medium. Then, in the scattering formul&s,must be replaced by

3 Multiple Scattering Formulas (k) andK, must be replaced b{K) leading to the equations
The effective complex wave numbék) of the multiple scat- 2mn,f (0) 2 2mnof () 2

tered waves can be obtained in terms of the frequency of the 1= > - > (50)

waves and the microstructure of the composite. The averaging (k) (k)

technique developed by Waterman and Truell involves a configu- 2 2

rational averaging technique using the joint probability distribu- _ 2mNog(0) |~ | 27nog(m) (51)

tion for the occurrence of a given configuration of scatterers to (K)2 (K)2 ’

average the resulting wave over all configurations. For multiple
scattering by a random distribution of spherical scatters, watdfhere
man and Truell derived an expression for effective wave numbers * *
in terms of the number of scatters per unit volumgand the f(o):E (—)"Agn, f(ﬂ-):z (i)"Agn (52)
far-field amplitude for a single scatter. n=0 n=0

For longitudinal waves, the effective wave number is

5= n(n+1)
(K)]2 2mnof(0)]2 [ 2angf(m)]2 g(0)=>, n(n+1)Cyy—C_1p+ — B,
AN _ . (44) = 2 K
ko k5 K
For shear waves, the effective wave number is + e Bln} (53)
(K)]? 270g(0)]? [2mng(m)|? .
rals <2 - K2 (45) (iH" n(n+1) 1
2 2 2 g(m=2, ——|n(N+1)Cay=Co1pt —— Bigt By,
wherek,, K, denotes the wave numbers of the P waves and S =t (54)
waves in the matrix material, respectively. The number of scatters
per unit volumen, is related to concentration by The scattering coefficien®,,, Bpn, Cnn given by Egs(27)
and(35) are functions of the unknown effective wave numbers. It
3c should be noted that sinc&,,, Bn,, Cm, are transcendental
n0:47_ras' (46)  functions of the unknownék) and(K), explicit solutions cannot

be obtained from Eq$50)—(51). We use an iterative procedure to
The scattered field® at a large distance from an isolated scatter isolve them for(k) and (K). The iteration is started by taking
given by effective propertiek, K, and p in the dynamic GSCM model
oike aikr iKr fequal éo m;tgix I\(/aluvzﬂxz, K,, znd pzl,_ rzspectivelyl. Tlhenc,j thed A
S A A s orward and backward scattered amplitudes are calculated and the
U~ wolf(6) r &+[Uol91(. ¢) r €t |Uolg2(6,4) r % homogenization is carried out by using E¢4) and (45). Next,
(47) we substitute the corrected effective wave numKé&isand (K)
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Table 2 Properties of constituents 1.10

- L Present Theory
Density (g/cm?) A (GPa) n (GPa) st I Waterman & Truell [2]
SiC 3.181 98 188.1 1.08
Al 2.706 57.5 26.5 1.07 c=0.15
Epoxy 1.202 4.916 1.731
Lead 11.3 38.46 8357 %, 108
T 105 -
'3 Tl
1.04 -
for kandK and these procedures are repeated until convergence 103} c=005
obtained. Numerical results for specific type of particulate con 1 g “\\\:X
posites will be presented by the effective wave speed and atter | T e
ation in a later section. 1.01 1
3.2 The Static Limit. The static limits of the effective dy- 1‘0%0 ofs 1f0 1f5 2.0
namic constants obtained from Ed50) and (51) can be evalu- @ K
ated by using the asymptotic expansions of the spherical Bes: 2

and Hankel functions foka— 0. However, due to the complexity 0.05
of the system of equations, the closed-form expressions for tl Present Theory
static limits are difficult to be obtained. Using the present theor 004} Watreman & Truell [2] -
the numerical results in the low-frequency limit show that the
effective moduli of a particulate composite converge to the wel g3
known static formulas, namely the effective bulk modulus ob
tained by Hashin{24] and effective shear modulus derived by -
Christensen and L§25]. The expressions for the static effective =
elastic moduli of particulate composites in terms of their constitt £
ent properties are given in Appendix B. To the author’s knowl
edge, this seems to be the first time in the literature to be able
recover both well-known and rigorous static effective modul  0.00
which could cover a full range of volume fractions<@=<1) of
the particulate composites through an effective plane wave prog  -0.01 ! !
gation approach. 0.0 0.5 1.0 1.5 2.0
(b) k,a

c=0.15

0.02

0.01

4  Numerical Results

Numerical calculations are performed for two random particd=i9- 2 Plots of phase velocity ~ (a) and attenuation (b) of P
late composite: SiC-Almetal-matrix composites with ceramic re-waves with normalized frequency, calculated from the present
inf X -d lead- | triy. W that theory and from the Waterman-Truell method for concentra-
inforcemenj and lea _epox;(po ymer matrpl. We assume thal y,,o" -0 05 and ¢=0.15 in a SiC-Al particulate composite
both matrix and inclusion are elastic and isotropic. The properties
of the all the constituents taken from Shindo et[&]. and Kinra

et al.[21] are given in Table 2. .

For SiC-Al particulate composites, the density ratio contrafrqé'cﬁgac a_?ji érr]]ge (qeigg]c)tl\{%useigstﬁé ct;?c,ceog;‘la;d?gng)):e)::or?]r}d
(p1/p-) is not too high, it is appropriate to assume that the effec- q y-aep ) ! poxy

tive density is the mean density. Figures 2 and 3 show the ng2SItes: the dynamic effective density derived by Sabina and Wil-
malized pgase velocity and attgnua%ion of P and S waves calﬁ%[lﬂ'] as shown in Appendix C is used instead of mean density.
|

K e longitudinal wave speed obtained from the present theory
lated from the present theory and from the Waterman Trueﬁsing the dynamic GSCM is compared with the theoretical results

by Waterman and Truell, Sabina and Willis as well as with the
?perimental results by Kinra et §22,23 as shown in Figs. 7-9.

method for concentrations=0.05 andc=0.15 in a SiC-Al par-
ticulate composite. For low concentration=0.05), the phase
velocities obtained from both methods are close. As the conc

tration increases, the so-called condition of weak scattering d though these models gives reasonable agreement with the data

q{ 5% and 15% volume concentrations of lead spheres in epoxy,

sity is not satisfied and the discrepancies become significant. ) :
should be noted that only present theory converges the eﬁectié/ﬁse hc?l\(/v: v(\)/gele clyr(]aaerglscfcﬁi(i:l\fﬁl \%ﬁj%césfrgﬁisggrz%y tr'gﬂghcéfr_the
bulk modulus obtained by Hashj24] and effective shear modu- P 9 o

lus derived by Christensen and L@5] at the zero-frequency more% It can bel_se_en '? Fr:g. 9 th?t Fhe d|sczje_par(1jc3g arg_(;fng the
limit. The attenuation predicted by the Waterman-Truell formulgSro-requency limits of phase velocities predicted by different
appears to be significantly higher at lower frequency than th ethodg IS S'gr?'f'ca”t at h'gh VO'UT“e fraction. This is du.e to the
obtained from dynamic GSCM. Phase velocity and attenuation tual interactions among inclusions become predominant for

P and S waves calculated from the present theory for a concen ge'nS?opigzlg%h%fofcféifér& e';ﬁv(\)'%zrwteliak?wbﬁnsgtggg ;'Sﬁ}ti%?]g
tion c=0.3 in a SiC-Al particulate composite are shown in Fig. 4 prop y 9

Unlike the former case where phase velocities for P and S wa\fé%S.])’ Wh'cdh gives pEys;c(lalllly reasofnablle resfults at high concen-
decrease monotonously in the frequency range flga=0 to tations and covers the full range of volume fractiff&s]).
k,a=2.0, the phase velocity of P waves for 0.3 attains its local .
minimum atk,a=1.4. Figures 5 and 6 show the phase veIocit? Conclusions
and attenuation versus concentration in SiC-Al composites forWe have modeled the coherent wave field propagating in an
k,a=1.0. It is seen that, at any frequency, attenuation increasestropic medium with randomly distributed spherical inclusions
initially with concentration, attains a maximum and then declindsy the dynamic generalized self-consistent model. The phase ve-
to zero as concentration increases to 1. The maximum attenuatiocity and attenuation of compressional and shear waves are
for normalized frequenciek,a=1.0 occurs atc=0.17 for P strongly dependent on the normalized frequeneg, i.e., they
waves and at=0.20 for S waves. are dependent both on frequency and inclusion size. In the past,
For composites with high-density contrast ratio, the influence tieoretical predictions of the overall elastodynamic moduli have
density variations on the dynamic properties of composites is sigeen shown to be in good agreement with experimental results at
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Fig. 3 Plots of phase velocity (a) and attenuation (b) of S
waves with normalized frequency, calculated from the present
theory and from the Waterman-Truell method for concentra-
tions ¢=0.05 and ¢=0.15 in a SiC-Al particulate composite
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Fig. 4 Phase velocity (a) and attenuation (b) of P and S waves
calculated from the present theory for concentrations c=0.3in
a SiC-Al particulate composite

low volume concentration of the spherical inclusions. At the high
volume concentrations, the effect of multiple scattering by inclu-

sions becomes significant and the theoretical estimates are not
satisfactory. In addition, the overall dynamic elastic moduli calcu-
lated by Waterman and Truell’s formulations do not reduce to their
independently estimated static values in the limit of zero fre-
quency. The proposed dynamic generalized self-consistent model
which covers a full range of volume fractions€t=<1) can not

M Crn

m
s P, (cosh)

9(0.)=~ 2, ;n<—i>"*l

|mz/). (A3)

)|€e

only reproduce both well-known effective moduli of the particu-
late composites in the static but also appear to yield reasonable

results at higher concentrations and frequencies.
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Appendix A

The far-field scattering amplitude functions for both P and

waves are given by

f<a,¢>=go (—1)"Ag,PY(cosh)

91(6.9)= 2 :2 <—n>[ Crniis g PR(c0S6)

———P/(cosb) |e
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Fig. 5 Phase velocity versus concentration in SiC-Al compos-
ites for normalized frequency k,a=1.0
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Appendix B

Present Theory
Waterman & Truell [2]
-+ Willis & Sabina [14] .

1.0 b e Kim et al. [15) T
s+ experiment by Kinra et a/. [23] e

0.4 !
0.00 0.75

Fig. 9 P-wave phase velocity of lead /epoxy composites at a
concentration of ¢=0.52

Al p)?+2B(ul pp) +C=0, (B1)

Christensen and L§18] used the GSCM to obtain the staticyhere
effective shear and bulk modulus of a particulate composite. The 103 213 53
effective shear modulus is given by the solution of the quadratit=8M(4—>5v;) ;7= 2[63M 7, + 27, 3]c"+252M n,C

equation

Present Theory
————————— Waterman & Truell [2]
--------- Willis & Sabina [14]

0.85 4+ experiment by Kinra et al. [23]
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Fig. 7 P-wave phase velocity of lead /epoxy composites at a
concentration of ¢=0.05
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Fig. 8 P-wave phase velocity of lead /epoxy composites at a
concentration of ¢=0.15
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—50M (7 —12v,+8v3) 57,¢+ 4(7— 10v,) 77,773,
B=—2M(1—5v,) ¢+ 2[63M 7,+ 27, 73]c"?

(B2)

3
—252M 7,3+ 75M (3 — 1) 77,,C+ 5 (15v2=7) 273,

(B3)
C=4M(5v,—7) 7,C*%—2[63M 73, + 2 7, p3]c "+ 252M 2,53
+25M (v5=7) 720~ (7+5v2) na 73, (B4)
with
M= %— 1, (B5)
71=M(7—10v,)(7+5v,)+ 105 v, —vy), (B6)
72=M(7+5v;)+351—1y), (B7)
73=M(8—10v,)+15(1— 1,), (B8)

where v, and v, are the Poisson’s ratios of the inclusion and
matrix materials, respectively. The bulk modulus of the composite

was also obtained as

C(Kky1— K3)

(k1= K2)

K=Kyt (B9)

1+(1—c)

4
Kyt 3 M2

Appendix C

The effective properties derived by Sabina and W/llig] can
be expressed as

. cg(h)g(—h)(k1—«y)
2T 143k k)8 (3t 4p)

“ (C1)
R cg(h)g(—h)(um1—u2)
S 1+2(/“/17M)[2/U/8p+(3K+4/L)SS]/[5M(3K+4/Zé]2)

- cg(h)g(—h)(p1—p2)
PP T (01— p) (3= 2, 260)(3p)”

(C3)
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The functiong(h) for the spherical inclusion is
g(h)=3[sin(ha)—hacogha)]/(ha)?, ((eZ]

where the wave numbéris replaced withk for P-wave incidence
and withK for Swave incidence. The terms, ande are given
by

ep=3(1—ika)[sin(ka) —kacogka)](e*?)/(ka)® (C5)
es=3(1—iKa)[sin(Ka)—KacogKa)](e"?)/(Ka)®.
Equations(C1)—(C6) can be solved by iteration.
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The Analysis of Constrained
Impulsive Motion

L.-S. Wang Impulsive problems for mechanical systems subject to kinematic constraints are discussed
W.-T. Chou in this paper. In additi_on to _the applieo! impulses, th_ere may exist suddenly changt_ad

e constraints, or termed impulsive constraints. To describe the states of the system during
the impulsive motion, three different phases, i.e., prior motion, virtual motion, and pos-
terior motion, are defined which are subject to different sets of constraints, and thus have
different degrees-of-freedom. A fundamental principle, i.e., the principle of velocity varia-
tion, for the constrained impulsive motion is enunciated as a foundation to derive the
privileged impulse-momentum equations. It is shown that for a system with no applied
impulse, a conservation law can be stated as the conservation of the virtual-privileged
momenta. The proposed methodology provides a systematic scheme to deal with various
types of impulsive constraints, which is illustrated in the paper by solving the constrained
impulsive problems for the motion of a sleidiDOl: 10.1115/1.1577599

Institute of Applied Mechanics,
National Taiwan University,
Taipei, Taiwan R.0.C.

1 Introduction namics, which leads to a variational equation in terms of virtual
displacements. However, due to the special character of the im-
ulsive motion that the position of each particle is held fixed, the

tion, particularly the velocities, of the particles in the system a ariation on the position such as the virtual displacement seems to
changed so rapidly that the duration of the process may be 156 a little unnatural. On the other hand, in 1909 Jourdan

garded to be instantaneous. Such phenomenon occurs When'r‘\ duced the notion of variation on the velocity while keeping

sys:em IS subjggt t(l) aphplled (ljmpul(sjetsh or the c_otns(;ralntzlon time and the position fixed. This concept leads to the so-called
system are suddenly changed, an € associated problems iiyain's variational equatioh22], or the principle of virtual

ternt1_ed thefo_nstralnedd |mpltJIs_|v? ptroblergm colntrast t(t) thotse power [23—-2€ for dynamical problems, and the corresponding
continuously imposed constraints, termed tbgular constraints variational equation on théinite or infinitesima) velocity varia-

the suddenly varied constraints, called thgulsive constraints _tions is termed the second form of fundamental equatiof§Jin

mﬁyhsignificahnt% affect t?ef anglysis of tge in;pulsi\:je motion, "Since the position is not changed for such variations, it is deemed
which even the degree-of-freedom may be changed. HOW 10 SySai the fundamental equation in velocity variations is more ap-

t_ematicqlly pefform the analysis_of the _constraineq impulsive m ropriate to be used for dealing with constrained impulsive prob-
tion subject to various types of impulsive constraints is the Maldms, cf.[3,11]. However, in the application of the variational

theme Of.th's paper. . . equation, it is required to clearly identify the associated conditions

Impulsive problems occur frequently in the motion of a megy, the velocity variations. For the aforementioned different types
chanical system, and have been treated in many classical teglinnisive constraints, we thus have to indicate their relations
books, such al—6], or in some recent literatur¢g—12, among i the compatibility conditions on the velocity variations in the
others. They also appear in the study of the motion subject ey

” . =% Pasic principle.
one-sided constraints, c[fli_%—lﬂ and the references thefe"ﬁ' N In this paper, we shall separate the impulsive motion of the

. . > . . escystem into three phases. The prior motion and the posterior mo-
exist hybridly. Analysis of such hybrid systerfi,6,17, requires tion refer to the motion immediately before and after the instant at

an effective tool to deal with both the regular constraints and thehich the impulsive motion occurs, respectively. In addition to

'mPU'S'V‘? constraints. Acco_rdmg to their d_uratl_ons,_ the Iatter_ the regular constraints, the system is subject to live and released
further divided in this paper into four types, i.e. live, inert, elastiGonsiraints in the prior motion, while it is restricted by live and

and released. Similar classifications can be foundlip but in - e constraints in the posterior motion. To accommodate the
which the live 'mp“'s"’e constraints are not r_ne_ntloned and t astic constraints, which are imposed on the system during the
released constraints have different characteristics. On the ot E)ulsive motion, it is postulated that the system is in the state of

hand, while the live constraints, as well as the inert ones, wejg, hird phase, i.e., the so-callgittual motion in which live
discussed i13,8,18,19, the effects of released and elastic impuly,a4 “anq elastic constraints are active. We note that the compat-

: . : |
sive constraints have not been extensively analyzed. Although {igi -onditions on the velocity variations induced from the ki-

mathematical formulation for impulsive constraints has been at: : - ; : ; ;
. X ematic conditions in the virtual motion are those should be in-
tempted in[12,15,20,2], a synthesized approach to treat th%/

A mechanical system undergoes an impulsive motion if the m

- ) ! ! o uded in the fundamental variational equation. Accordingly,
above-mentioned four categories of impulsive constraints is s

ind 4T in thi | afund L orinciple for i alogous to the principle of virtual power for finite-force motion,
in demand. To attain this goal, a fundamental principle for Impuize h-onose the principle of velocity variations for the constrained
sive motion needs to be invoked.

In 1903 Appelll iated a basi inciole f ._impulsive motion of finite degree-of-freedom system as enunci-
n ~ ppet.[ ] enulnua € ta Da’lzllc prtl)nc;’p e for pelrcgsi:oréted in Section 4. This fundamental principle essentially says that
or impuisive motion analogous to D'Alemberts principie In dy-he applied impulses can be divided into the effective impulses
Comributed by the Abpiied Mechanics Division ofiE A . which generate the jumps of velocities, and the net applied im-
ontripute: Yy the Applie echanics Division O MERICAN CIETY OF H H
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- pulses, which cannot change the jumps. Her.lce the sum FOtal O.f the
CHANICS. Manuscript received by the ASME Applied Mechanics Division, May ZBPmdUCt of 'fhe Igtter an.d the Ve|9C|ty Val’latIODS Compatlble with
2001; final revision, Dec. 3, 2002. Associate Editor: N. C. Perkins. Discussion on ttae constraints in the virtual motion must vanish.
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Department ofFrom the fundamental principle, the basic variational equation
Mechanical and Environmental Engineering University of California—Santa Barba ; ; : ; : :
Santa Barbara, CA 93106-5070, and will be accepted until four montlﬁ)r |mpuIS|ye motion can be. Immedlatew d(_—',“l’lved. Th?. phase_ of
after final publication of the paper itself in the ASMBURNAL OF APPLIED ME- virtual m_0t|0n may be described by gen_erahzed vm_alocmes, Wh'Ch_
CHANICS. are obtained from the regular geometric constraints, and quasi-
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velocities, which may arise naturally for a given problem. Th@ Classification of Impulsive Motions
holonomic or nonholonomic relationships between these velou-.l.he impulsive motion of a mechanical system refers to a sud-

terms of the variations of the virtual-privileged velocities. Substjisive force over the short interval. If sudden changes of con-
tuting the expressions into the basic variational equation, the Sqraints occur, each particle in the system may be treated as being
calledprivileged impulse-momentum equations for impulsive Mgnposed by the impulsive constraint forces, or constraint im-
tion are deduced, from which it is observed that the differencggises. Similar to the notion of constraint force for a nonimpulsive
between the prior virtual-privileged momenta and the posterigiotion, or termedinite-force motionthe constraint impulses only
virtual-privileged momenta are balanced by the applied virtuahppear when the constraints exist. During the impulsive motion,
privileged impulses. The privileged impulse-momentum equaach particle in the system may be impressed by external impulses
tions, formulated in the virtual motion, can be then used to fingr the interactive impulses from the other particles. The total im-
the relation between the prior motion and the posterior motion. fjulses may be further grouped into the applied impulses and the
particular, the conservation law of the virtual-privileged momenteonstraint impulses. The problem associated with the impulsive
can be stated for the constrained impulsive problem if there is nwtion of a constrained mechanical system exerted by applied
applied impulse. However, if elastic constraints appear, the privinpulses is termed theonstrained impulsive problernthe kine-
leged impulse-momentum equations are insufficient to determinm@atic condition that restricts the motion in the whole process of
the states in the posterior motion from the prior motion, and athe impulsive motion is called gegular constraint On the other
ditional criteria, such as the law of impact, should be invoked. hand, the constraint that appears or vanishes during the impulsive
While the privileged impulse-momentum equations for impulmotion is named thémpulsive constraintEither regular con-
sive motion subject toegular constraints derived here are similarstraints or impulsive constraints may exert constraint impulses
to those obtained by using Kane's approddh27], the impulsive during the impulsive motion.
constraints and the notion of virtual motion were not discussed T0 illustrate these notions, we consider a ball rolling on a rough
there. The basic variational equation introduced here provides @gface. The ball rolls without sliding and thus is subject to some
more suitable scenario to deal with the impulsive constraints, aR@nholonomic constraints. If there is an external impulse acting
paves the way for further synthesis with other methodologies 8P the ball while the condition of pure rolling is not affected, these
either continuous motion or for body with infinite degree_of_nonholonomlc constraints are regular. !f the ball hits the yvall such
freedom. The privileged velocities mentioned before, called tﬁgat there are new constraints appearing, SL.’Ch constraints are the
generalized speeda [7], are systematically obtained here by us|_mpulslve constraints. According to the duration of their effective-

ing the active kinematic constraints and the expressions of tg§ss, the impulsive constraints may be further classified into the

quasi-velocities. For some problems associated with complex llowing categories:

chanical systems, Kane’s approach may be superior to the otheréd) Inert Impulsive Constraints

in deriving the equations of motion for finite-force problems, cfror an inelastic ball falling on the floor, the constraint occurs
[28]. The methodology proposed in this paper thus also have thofiging the impulsive motion, and holds after the motion. Such
advantages due to the similarity. impulsive constraints that appear during the impulsive motion and

On the other hand, from the geometric point of view, the priviare satisfied afterwards are called thert impulsive constraints
leged equations may be viewed as the balance of the projection

of the underlying quantities to some appropriate subspaces dete
mined by the constraints, c¢f20,29-31. In modern geometric If the ball is elastic and is dropped to the floor, the sudden con-
mechanics[32,33, the virtual displacement is regarded as thétraints imposed by the floor during the impulsive motion disap-
tangent vectors to the configuration space and the geometric fpgar afterwards. Such impulsive constraints are termeelttstic
mulation of Lagrangian mechanick34,35, is mainly based on impulsive constraints

the D’Alembert principle. Since the velocity variations are essen- (¢) Live Impulsive Constraints

tially the tangent vectors to the velocity space, it may be intereﬁ
ing to develop the geometric formulation for the principle of vir-
tual power or the principle of velocity variations. In particular, th({:z
treatments of the force as a 1-forf85], a horizontal 1-form,
[34], or a semibasic 1-forn],12], in geometric Lagrangian me-
chanics may not be appropriate in formulating the Jourdain vari
tional equation in modern geometric terminologies.

The rest of this paper is organized as follows. The classification
of impulsive constraints and the separation of different phases of
motion are discussed in Section 2. The kinematic constraints for . S .
various phases of motion and the notion of the privileged veloci- ye—agsino=y,, @
ties are described in Section 3. The fundamental principle famere .,y.) denotes the velocity of the center of the disk, and
impU'SiVe motion is then stated in Section 4, along with the del’iﬁ7 0 represent the Spin rate, the heading ang|e of the disk7 respec-
vation of the privileged impulse-momentum equations for imputively. If the plane is moved suddenly so thigs and y, have
sive motion. The application of the equations to solve the priogbrupt changes, the set of constraiflts (2) are varied accord-
value problems is discussed in Section 5. Section 6 describes fgly. Such impulsive constraints are grouped aditreimpulsive
application of the fundamental principle and the privileged equaonstraints
tions to a system including rigid bodies. A physical example, i.e., ) .
the sleigh under impulsive motion, is then given in Section 7 to (@) Released Impulsive Constraints
illustrate the proposed methodology, in which Newton’s methaeé contrast to the inert impulsive constraints, there may be
and Lagrange’s method are also used to solve the same probleradme constraints vanishing during the impulsive motion and
manifest their differences. Some concluding remarks are finalijterwards. Such impulsive constraints are termed réteased
given in Section 8. impulsive constraints

If:b) Elastic Impulsive Constraints

a ball rolls on a rough surface, and the surface is suddenly set to

ove, the form of the original constraints still holds, but some

rms may be changed due to the sudden motion of the surface. As

an example, consider a vertical disk with radasolling on a

g)ane moving with velocity X;,,¥,). The rolling-without-sliding
onstraints can be expressed as

X.—a¢ cosf=xX,, 1)
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Fig. 1 A ball rolls across the boundary between two surfaces

Although a live impulsive constraint may be divided into awith the discussion i12], where the analysis of motion subject
combination of a released constraint and an inert constraint, withimpulsive constraints based on modern geometric mechanics is
certain specific relationship, it is treated specially in one categopgrformed individually for different types, i.e., permanent non-
due to its frequent appearance and the distinct struci8te, holonomic(regulay, permanent impulsivénert), elastic, etc.

A similar scheme for the classification of the constraints occur- To specifically identify the action of various impulsive con-
ring in the impulsive motion was given by Appdll], in which straints, we shall divide the impulsive motion into three phases.
among the four types there the first one is essentially the aforene motion immediately before the instanat which the impul-
mentioned regular constraints, the second type is the inert cajive motion occurs is called thgrior motion during which live
straints, the fourth type corresponds to the elastic constraindg,d released constraints are active. Immediately aftéhe sys-
while the live constraints defined above is not mentioned. In cofem is in theposterior motionand is subject to inert and live
trast to the released constraint, Appell’s third type of constraints dgnstraints. In between the prior motion and the posterior motion,
regarded active during the impulsive motion. However, from somge system is influenced by live, inert, and elastic constraints, and
observations, the notion of released constraints introduced hgigy be postulated in the so-calleditual motion The classifica-
may be more appropriate to be adopted. Consider a ball beifigh of the impulsive constraints and the separation of three phases
grasped in hand, and suddenly releaset 4t is obvious that the during the impulsive motion pave the way to systematically treat
velocity of the ball will not change during the short interval of thehe constrained impulsive problems in the following sections.
impulsive motion and immediately after the instantThe con-
straint of grasping is suddenly released and is thus not acti§e Ki ti £l Isive Moti
during the impulsive motion. Inematics ot Impuisive Motions

Although the system undergoing released constraints will not Consider a systen$ of particles, whose number may be finite
experience a sudden change of velocity, the degree-of-freedonofinfinite, indexed by an index sét Each particleP; in S, i
its motion varies significantly. In fact, released constraints ofteal, with massm;, is located at the position € R®. The configu-
occur simultaneously along with other kinds of impulsive corration of S is specified by the positions of all particles $ The
straints or the imposition of applied impulses to result in impukystem is assumed to be fifite degree-of-freedopin the sense
sive motion. Consider a ball rolling on a rough horizontal surfacéhat there is a set dfl particles inS such that the positions of all
and suddenly bumping into an inclined rough surface such thaipiarticles can be determined from those of thearticles, i.e.,
may start to ascend, cf. Fig. 1. At the instant of impact, the con- .
straint from the horizontal surface is released, which should not M=riXe s Xana ), del,
provide any actiorfconstraint impulseon the ball except that the where @3]—2#3;—1,)(31) are the three components of i
degree-of-freedom of the system is increased. The suddenly apt--- N. A system consisting of particles of finite number or
peared constraint from the inclined surface, the inert constraifgid continua is in such a category. Although the methodology
can then be imposed on the motion. developed in this paper may be extended formally to systems with

The difference between the released constraints and Appelffinite degree-of-freedom, the finite degree-of-freedom is as-
third type of constraints affects the analysis of impulsive motiosumed here to avoid some technical difficulties and to enhance the
In fact, in[8], the constrained impulsive problems associated wilarity of later discussions.
the Appell’s first and the second types of constraints, termed per-f S is exerted by applied impulses or undergoes sudden change
sistent constraints, are described to be determinant, while for €constraints at instartt, the system may experience a sudden
third and the fourth type, the problems are claimed to be indet@fsange of motion betweert ¢,t+), i.e., the interval immedi-
minant, for which additional laws are required. From the observgte|y before and after the impulsive motion. Although it is more

tions made above, it is seen that the problems associated thegigssically realistic to regard the duration of the motion in a very

leased constraint are determinant, and only problems with ela Iort intervaI[T— 1t 7], the analysis of motion af is usually

constraint need more special treatment. However, it is noted t’?c%trformed by taking the limit as— 0. For each particl®, in S
i s : y
i

in the above-mentioned examples, the normal relative veloc ) velocity, which is finite during the motion, may have a discon-
between bodies before the impulsive motion subject to the re- . = S . o
ity at t, with the correspondingump of velocityAv;=v;

leased constraints vanishes. If it is nonzero, the correspondﬁ%“( ) =) (o ) ) - )
impulsive constraint should be treated as a combination of a re; ', Wherev;™’ (prior velocity) andv;™’ (posterior velocity
leased constraint and an elastic one. denote the velocities d?; att— andt+, respectively. The inte-
From the above discussions, the analysis of impulsive motigiation of the velocity;(t) with respect to time over the interval
should take into account the occurrences of the impulsive cdri— 7,t+ 7] is seen to be zero as—0, due to the fact that the
straints. Different classes of constraints may be active in differevglocity is finite in the interval. Accordingly, the position of each
stages during the impulsive motion. This observation matchparticle inS is unchanged during the impulsive motion, denoted
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byT;, iel, and only the jump of velocity may occur. The aboveining with the others, it is assumed that there are totajlym-

reasoning can be formalized by using the Dirac theory of dipulsive linear kinematic constraints in the form of

tributions as in[14] to show that the position is fixed during the

impulsive motion, which is essentially an a priori assumption "

in [9]. - , > By(a.0d;+by(q,=0, s=1:- L. ®)
Let the system be subject to independent regular constraints =1

including K geometric constraints and linear kinematic con-

straints. Due to the assumption of finite degree-of-freedom, tﬂ%

constraints on every particles ifi can be transformed into the”v

constraints on the selectdd particles. The regular constraints

may be then expressed as

According to the classification in the previous section, these
pulsive constraints are further divided into four groups, i.e.,
e, inert, elastic, and released, with numberd of I 7, ¢, 15,
respectively. For each group, the corresponding terms in the form
of Eq. (8) will be denoted by BZ;,b$), (BZ;,bd), (B;,bf), and
fo(X1, " X3y, t)=0, s=1;-- K, 3) (BZ- ,b?), respectively, in which the inhomogeneous terms of the
live constraintsbg, s=1,--,l., are different before and after
E A(Xe s+ Xy D)X+ adXe o Xa =0, S=Liee L As disc_ussed before, the prior_motion_sz_;\tisfigs live an_d released
g SN AT Gl R AN TR ST A constraints, the posterior motion satisfies live and inert con-
) straints, while live, inert, and elastic constraints are active in the
virtual motion. For each phase of the impulsive motion, the im-
respectively. By solving th& geometric constraints, the positionpulsive constraints and the regular constraif®sare combined
of each particle can be expressed parametrically by introduciitdo a set of active kinematic conditions on the motion. The cor-
n(=3N—K) number of generalized coordinatgs, - ,d,, as  responding degrees-of-freedom of the system are iifflisn— L
—ly;=lg, m*=n—L~-I,~I7, and m'=n—L—I,.~I;—1I for
prior motion, posterior motion, and virtual motion, respectively.
whereq denotes the ensemblgy(,--- ,q,). Differentiatingr; with ~Here, and in what follows, the superscripts,”* a,”and “ " are
respect to time, the velocities can be then written as used to indicate the validation of the corresponding termst for
<t—, t>t+, andte (t—,t+), respectively.
) af . of Recall that the motion is described by the aggregate gén-
ri:E TQJ'JF R iel, (5) eralized velocities angy quasi-velocities, which are related by
=109 different sets of constraints for the three phases. In particular, for
whereq;=dq;/dt, j=1,-,n, are thegeneralized velocitiesf the virtual motion, the generalized velocities and the quasi-
the system. Substituting the components of the velocities okitheVelocities satisfy the. +I .+ I+, equations of kinematic con-
particles in Eq.(5) into the linear kinematic constraintd), the Straint andp equations of quasi-velocitie). By solving these
constraints on the generalized velocities can be expressed as €quations, which are linear in velocities, we may setatinum-

3N

ri:fi(q,t), iEl,

n

N ber of independent velocitieéﬁi,-'- ,¢r’n,, called thevirtual-
R _ R _ _ privileged velocitiessuch that the generalized velocities and the
121 Bgi(a,0q;+bg(q,)=0, s=1,--,L. (6)  quasi-velocities compatible with the kinematic conditions can be

expressed as
For a constrained mechanical system, it is sometimes convenient
to describe the motion in terms pfquasi-velocitiesr,, defined

m’

by qj:;D{U(q.t)¢;+dj’(q,t), j=1;-.n, 9)
n
A _ .
& Y, Cy(aba+eat), k=1:-,p, (7) _ S
=N J wk=216kg(q,t)¢g+g,-(q,t), k=1,--,p. (10)

in which the right-hand side is nonintegrable. Since the regular o .

constraints are imposed during the whole process, the motibHrthermore, by substituting E¢P) into Eq. (5), one may express

of the system in all three phases can be then characterizedth§ Possible velocity of each particle &fin virtual motion as

the combined set o generalized velocities ang quasi- m

velocities. The configuration at is specified by the general- . , S .

ized coordinates);,---,q,, and the prior motion, the posterior ri_gl Bl dsyi(at), el

motion are described by the combined sets of veloci-

ties @7, --.q0), @) ’7'1.%—)), and @7, .q(", where

ait) - (D), respectively. e e a5
Other than the regular constraints, additional constraints may be Bl = 2 Rl D’ Yl = jdf + all

imposed on or released fror during the impulsive motion, = ¢ T = B¢ T R

which may include geometric ones. For example, consider the . . . . .
motion of two rigid balls rolling on a plane and colliding with &€ continuously differentiable functions of,(), but not ofq,

each other. At the instant of collision, there is an impulsive ge§iNce the kinematic constraints and the quasi-velocity equations
metric constraint that the distance between two centers equals @@ all linear in velocity. _ _ o

sum of their radii. However, unlike the regular geometric con- ~nalogous to the process of selecting the ylbrtual-prlvneged ve-
straints, the impulsive geometric constraints cannot be used!@§ities, the set ofprior-privileged velocities{¢,}, and that of
reduce the number of generalized coordinates, since they are apygterior-privileged velocitie§¢5} can be obtained for the prior
satisfied at the instant of impulsive motion. A configuration for thenotion and the posterior motion, respectively. Similar forms of
constrained impulsive motion is said to pessibleif these im- Egs.(9), (10), (11) are found for each phase to describe the mo-
pulsive geometric constraints are satisfied at the indtamthich ~ tion, with the corresponding notations summarized in Table 1. It is
may be described byqg ,--- ,q,,) that satisfies the impulsive geo-noted that the selection of privileged velocities basically depends
metric constraints. After determining the possible configuration an the coefficients of the velocity terms, i.a'sj, B;—, andCyj,

the instant of impulsive motion, these impulsive geometric comnd hence the discontinuity of the inhomogeneous terms arising
straints should be transformed into linear kinematic forms. Corfrom the live constraints does not affect the selection process.

(11)
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Table 1 Summary of the transformations

Prior Motion Virtual Motion Posterior Motion
Active Impulsive Released, Live Live, Elastic, Inert Live, Inert
Constraints
Privileged P o=1,....mP ¢, o=1,...,m' $2, o=1,...,m?
Coordinates
b, 1085 (9) (D}, .d) (D, df) (Df,dD)
¢, to Tk (10 (G rgll; (Gio »9K) (Glézy :gg)
¢, tof; (11) (Bio: 1) (Biy:vi) (Bie )

If all the kinematic constraints are regular, i.e., there is no inties, Eq.(11). By taking &§;-variation on(11), the velocity varia-
pulsive constraint, the kinematic conditions for the three phasestan &§,f; can be then expressed in terms of the variations of the
motion are the same, with the same degree-of-freedémm®  virtual-privileged velocitiess; ¢/, as
=m?=m=n—L. The same set of privileged velocities may be
selected as well to describe the motion for three phases;bi,’,e., m _
=¢2=¢p2=¢,, o=1,--,m. The problem is then simplified to Siti= >, Bl(q)dip,, iel. (13)
the classical problem of impulsive motion, and the method pre- o=1

sented in this paper is similar to the one usedi7h . . . o, . .
An impulsive problem that the prior motion is given and theoince the virtual-privileged velocities,, are independent, there is

posterior motion is to be determined is callegrior-value prob- NO constraint on the corresponding variatiofigh, . This fact

lem (analogous to the initial-value problem for differential equashall be used in the next section to establish the required equations
tions). For such problems, the posterior velocity of each particlef jumps from the variational equation.

P; in S can be expressed in terms of the posterior-privileged ve-

locities evaluated at+ as

’

ma 4 Kinetic Equations for Impulsive Motions
ViD= BAE DA +93(t+), el (12)  The dynamics of impulsive motion may be thought of as the
o=1 limiting case for a finite-force problem. In addition to the

From the previous equations, once the posterior-privileged velo&:Alembert-Lagrange equation and the Gauss-Gibbs equation,
ties are determined, the posterior velocity of each partict®éan Jourdain in 1909[22], established a variational equation for
be obtained subsequently. systems subject to linear kinematic constraints in terms of the
To solve the prior-value problem, fundamental principles in ménfinitesimal variation of velocities. Later, Paf8] extended the
chanics needs to be invoked. To deal with the systems subjece@uations to accommodate the finite variations of velocities,
constraints for finite-force problems, many variational principlegnd obtained the so-called second form of the fundamental equa-
have been developed, in which the concept of variations is intrdons as
duced to “test” the limitations from the constraints. These varia-
tions are essentially infinitesimal quantities imposed on the system
variables. As reviewed ifi25], there are basically three types of
variations. In the principle of virtual work or D’Alembert’s prin-
ciple in dynamics, the virtual displacement is an infinitesimal ar‘;%h

E (mif; =F™)- A4f; =0, (14)

iel

eref; is the actual acceleration of partidig, F{*) denotes the

instantaneous displacement imposed on the configuration of Sultant applied force acting ¢, andAf; is an arbitrary finite
system. In the principle of least constraint or the Gauss principig, infinitesimal variation of possible velocity compatible with the

[36], the variation is imposed on the acceleration of each particf nstraints
hile keeping the time, the position, and the velocity unchange ' . L . .
V(;n the other hand. in J’O rdain’s rin,cipﬂéz 23, or the principle "To extend the previous variational equation to deal with the
’ v P P PrINCIPIE  ¢onstrained impulsive problem, due to the appearance of the im-

gf virtual pohv.vehr,[.24.,26|, the var|at|on_|s on th de velqcny, denOtedpulsive constraints, the set of conditions from the constraints with
_yo)ﬁlvi » Which is instantaneousd{t=0) and stationary &ri  ypich the velocity variations must be compatible should be iden-
In.the literature, the term of virtual displacement and that {ffied. It may be envisioned that during the impulsive motion, the
virtual velocity are sometimes used interchangeably. This may éstem undergoes the stage of virtual motion, during which the
’ stem satisfies the kinematic conditions from the regular con-

due to the reason that in the original work of Bemo{7], the & ini and the impulsive constraints including the types of inert,
principle of v!rtual work is called the p_rlnC|pIe_ of virtual velocity. elastic, and live. As a result, the velocity variations for virtual
To tell the difference between the virtual displacement and trl)ﬁ ' '

o . . otion must be compatible with the conditions induced from
variation of_ve_lom_ty de_flned above, the latter shall l_)e termed .thﬁese kinematic conditions. Substituting EG3) into Eq. (14),
velocity variation in this paper. In modern geometric mechanics . . " .
the virtual displacement is viewed as a tangent vector to the cdipd noting the independency Ph1dg}o—1.. mr, We obtain
figuration space[38], due to its infinitesimal character. Analo-
gously, the velocity variation may be treated as a tangent vector to 2 (mii;—F™). 8! =0, o=1,--,m'
the velocity space, and is thus intrinsically different from the no- IR S o
tion of virtual displacement.

The velocity variation plays a central role in the fundamentalhere the acceleration of each parti®lemay be very large dur-
principle for impulsive motion presented in the next sectioring the impulsive motion, and leads to the jump of the correspond-
which requires that they must be compatible with the kinemating velocity.
conditions of constraints in the virtual motion. From the above To obtain the relation between the prior motion and the poste-
discussions, any possible velocity of each particle in virtual meior motion for the systens, the previous equations are further
tion can be represented in terms of the virtual-privileged veloogxpressed as
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d o S By, B
ﬁ(; miri'ﬁia)_lel mif- (Zl aq; LA
_2 Fi(A)'Bi,O'ZO’ o=1;--,m’. (15)

iel

Since B/, is continuous and the velocities;, i !, and Qj, |
=1,--,n are finite, the second term in the previous equation
finite for eacho=1,--,m’. Let the gth virtual-privileged mo-
mentunof S and theoth virtual-privileged applied forceacting on
S be defined as

L2, mii-Bl,(a), (16)

iel

FMVAY FA. B (at),
iel

respectively. Integrating Eq15) from t— 7 to t+ 7, and letting
7—0, the second term vanishes, and thevileged impulse-
momentum equationsan be established:

a7

L —-L)=PW, o=1,--,m’ (18)
where
L2 mvi) B, (19)
iel
L2 mvi™) gL, (20)

iel

denote theoth prior and posterior virtual-privileged momenta
respectively, and

P#“éjf F<A>dt—f El FI%- Blo(a,t)dt
t t— le

is the oth virtual-privileged applied impulse

(1)

puIsesPi(A) on particle B . These applied impulses would impart
to the free particles certain determinate jumps on their velocities.
However, due to the constraints, regular or impulsive, the actual
jumps are different from those on the free motions. Conceive that
the applied impulsePi(A) be resolved into the effective impulse
PE=mv{Y)—mv{7) and another component termed the net
applied impulse. Owing to the constraints, only the effective im-
Rulses generate the actual jumps. The net applied impulses are
incapable to change the jumps during the impulsive motion, and
the sum total of the product of the net applied impulses and the
velocity variations compatible with the constraints during the vir-
tual motion must vanish

This principle is an analog of the principle of virtual power for
finite-force motion stated if26], and the statements are similar to
the exposition of D’Alembert’s principle by Madi37]. It is noted
that Appell in[1] enunciated a fundamental principle for impul-
sive motion analogous to D’Alembert’s principle, and, based on
which, established the general variational equation in terms of
virtual displacements. However, as discussed before, a virtual dis-
placement refers to a variation of the position of the particle,
which is in fact not allowed during the impulsive motion. While
the variational equation corresponds to the previous principle has
similar characteristics as that derived by Appell, the notion of
velocity variation while keeping position fixed is more acceptable
for the impulsive motion.

Based on this fundamental principle, the corresponding varia-
tional equation for impulsive motion can be immediately ex-
pressed as

> My —myi T —PM). 6,#=0,

iel

(25)

for all §;f; compatible with the constraints specified during the
virtual motion at §,t). Substituting(13) into the previous varia-
tional equation and noting the independency of the variations of
the virtual-privileged velocities, the privileged impulse-
momentum Eqgs(23) immediately follow. This process may be
viewed as the projection from the space&f; to that of 5;¢.,

Again, by the continuity of3;, and the negligible change of through Eq(13), and is essentially the basic idea for the so-called
configuration and interval of time during the impulsive motionprojection method[29,30. Similar techniques were also used in
the virtual-privileged applied impulses can be further expressed[a® 31 to derive jump conditions from a variational equation

S w7,

iel

p-S

iel

( J“Fi(“dt) BLGD=
-

o=1,,m, (22)

wherePi(A)éfI{Fi(A)dt is the applied impulseacting on particle
P;, i el. Substituting the previous equation intb8), the privi-
leged impulse-momentum equations are rewritten as

> (mvi)—

iel

!

,m’.

(23)
From Eq.(22), given applied impulses acting o} the virtual-

myvi ) —P{Y)- B/,(q,1) =0,

0-:1’...

similar to (25) in virtual displacement without applied impulse.
There the projection is from the tangent bundle to the distribution
that annihilates the constraint submanifold. Since the velocity
variations should reside in the second tangent bundle, or the jet
space of order 2, the projection througf), should be regarded as
different from those in the tangent bundle.

Moreover, it is noted that the projection in E@.3) does not
depend on the velocity. This is due to the fact that only linear
kinematic constraints are treated in this paper. If the system is
subject  to nonlinear  ones in the  form of
P(Xq, XN, X1, Xan »t) =0, the projection or the transforma-
tion may depend on the velocities. For impulsive problems, the
discontinuity of the velocity then renders the transformation inde-
terminant. In[12], the impulsive constraints are associated with

privileged applied impulses can be determined, and the jumps @hetaev bundl€39], of reaction forces from the constraints, lin-

them’ virtual-privileged momenta defined as
AL, éLH)_L(*)’ o=1,--,m
are then obtained from E@23).

(24)

The above derivation of the privileged impulse- -momenturl'®
ko Prior-Value Problems

equations is based on the framework for finite-force problems.

gain more direct insight on the impulsive motion subject to co

ear or nonlinear. However, if the kinematic constraint is nonlinear,
it is not clear how to compute the corresponding impulse of these
Chetaev forces, which depends on the velocity in general. As a
result, more understandings on the mechanism for the impulsive
tion subject to nonlinear kinematic constraints are desired.

straints, and to avoid the technicalities in the transition from We are now ready to apply the privileged impulse-momentum
finite-force problems to impulsive problems, one may follow thequations to study constrained impulsive problems. In the absence
principle of velocity variations for constrained impulsive motiorof applied impulses, fronil8), we immediately have the follow-

as stated below:
Consider a system of particles; Pi el, connected with one
another in any way. The system may be subjected to applied

588 / Vol. 70, JULY 2003

ing conservation law for constrained impulsive motiothe
virtual-privileged momenta of the system are conserved if there is
ino- applied impulse.
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For the prior-value problem, the prior virtual-privileged mo+he virtual motion, and the coefficient correspondingktis 3;
?r:?c?tu? Ecar(]lg)e ?ﬁgﬁpgggrgﬁmr;hﬁ S:'at"lse Oédtr:ﬁor%rziaonrt %Ot_ié)ﬂex. The prior and posterior virtual-privileged momentum can be
u (19). ior virtual-privi um i - - - = A

then geterﬂﬂned from §1e privileged imSuIse-?nomentum(Eﬁ). found +t0 be I;(l = (mof )ei+ mo )ez)_-eX:mv§ SR

To find the posterior motion, the relation between tieposterior =(mv{Ne+mvie)-e=mv{"), respectively. The conserva-

virtual-privileged momenta and the?® posterior-privileged ve- tion of the virtual-privileged momentum leads td)=v{".

locities is constructed by substitutiri2) into (20), However, this equation is not sufficient to determine all the pos-
terior velocities. The additional condition from the law of impact,

a

m e o =— () - - -
— — .. — — — ie., v, '=—«kv; ’, is needed to obtain the posterior velocity
L'=2 (Z. miﬁi’a~ﬁf"(,) BT+ 2 mBl T el e O
o= € €
In contrast to the previous case for an impulsive motion without
m® o elastic constraint, we have the same number of unknowns and
= E M, d2(t+)+ Lff,g, o'=1,m, (26) e_quation_s _ir(26), and th_e coefficientsf‘l,_: Bi’(,_ if_ the same set of _
o=1 virtual-privileged velocities and posterior-privileged velocities is
where chosen. Accordingly, the matrix formed by the components
Moo 22 MiBl, Bl Lo 2 M, yi(t+), Myro= 2 MBl, Bl on0'=1io.m', (28)
€ € le

Here, and in what follows, the overbar of a continuous quantl% positive definite and shall be termed thévileged mass matrix

denotes its value ai(t), e.g.,ﬂ;”‘g=§f‘g(€t). Under this framework, the posterior-privileged velocities can be
The previous set o’ Egs. (26) is to be solved for then®  gptained from the following equations:

(=n—L—1,—1;) unknowns,$3(t+), o=1,--,m% The differ-

ence between the number of equations and that of unknowpgs is m’
which is the number of elastic constraints. As a result, it is not  ga(+)— 2 (MY, (L =Ly o=1,--.m', (29)
possible to determine the posterior motion without additidpal 7 o =1 7 o0

conditions if elastic constraints exist. Such conditions may be ob-
tained by invoking the law of impact, cf2,19], or [27,4Q for from which the posterior velocities can be determined fi@®.
more recent developments. For example, to determine the posteFor the treatment of released constraints, the above deduction
rior motion of a ball being dropped to the floor, the coefficient o6f determinacy is apparently different from that claimed[ &},
restitution « is needed to find the extend of rebound. The elastighich regards the third type of impulsive problem[i] as inde-
constraint isf-n=0, wheren is the normal vector correspondingterminant. To illustrate the difference, we consider again the prob-
the floor, and the posterior velocity is related to the prior velocitem of releasing a ball from hand grasping. As described in Sec-
as tion 2, the constraint of grasping is treated as a released constraint,
) =) Whic_h is efffective_ before but_ ineffe_ctive d_uring and_aft_er the im_—
vien=—evt . pulsive motion. Since there is no kinematic constraint imposed in
From the previous example, it may be conceived that for tHbBe vilrtual (;notign, :]heI;/irtual-priviIeged veflohcitilges of thel ball C?”h
; ; N REHN 4 W —1... e selected to be the three components of the linear velocity of the
elastic constraintsy | yBsg; +b.=0, s=1,-,l¢, there arel, ball, and the corresponding virtual-privileged momenta are noth-

generalized coefficients of restitutiony to bear the relationship ina but the three components of the linear momenkdmn If hand
between the “approaching” constraint functions and the “lead - po S
- ; ; does not provide additional applied impulse, from the conserva-
ing” constraint functions as . . L ) +)
tion law of virtual-privileged momenta, we hawv'™'=Mv

o _ o — =0 if the ball is released from rest. The posterior motion is then

E B4y +bi=— ks 2 BLg bS], s=1.- g, determined, and the motion of the ball bears no sudden change

=1 =1 during the impulsive motion, only experiences sudden increase of
where the coefficients and the inhomogeneous terms are assuffiéddegree-of-freedom. From this simple example, it is seen that
to be continuous. From the formula of the posterior generaliz&@® notion of released constraint introduced in this paper is more
velocities, with coefficients listed in Table 1, the previous equ&PPropriate to be adopted to treat the released constraints from
tions are further expressed as grasping. _ _ ) ) _

Now we consider the special case that there is neither inert

mon N constraints nor released constraints existing, while some live con-
Z 2 ngDJ?U PA(t+) straints appear. For such impulsive motion, as discussed in the
o=1\j=1 previous section, the same set of privileged velocities may be
n chosen for the prior motion and the posterior motig},= ¢2
_ . — _ —mb—
S B (0T 4l )~ (1 kbl s=1;0p.  Whereo=1;,mi(=m°=n-L~1,), and we have
j=1
(27) m
(—)— o8 gal—) .y . act
Equations(26), (27) can be then combined to obtain time? Vi _;1 Biobs T yi(t=), (30)

posterior-privileged velocities, as illustrated by the following
simple example.
Example 1 Consider a particle of mass being tossed to the floor
(z=0) with prior velocityv{e,+v{)e,. Assume that the sur-
face of the floor is ideally smooth, and the coefficient of restitu-
tion of the contact is«. It is desired to determine the posteriorThe privileged impulse-momentum Ed&3) then implies that
velocity of the particle.

The impulsive constraint provided by the floorzis 0, which is m?
an elastic constraint. Hence, the virtual motion can be expressed Z M, ,Ad,+AL,o—P%=0, o'=1;-.m', (32)
asf=xe,, wherek can be selected as the privileged velocity for = 7 o o

ma
W= 2 B i), el (31)
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whereA ¢, = ¢ — 42 andAL,. =L —L") . Moreover, WhereRpq denotes the vector from to Q at the reference con-
o o o ’ o'0 a'0 ao'0 " ’ . . . . . . . .
if there is no elastic constraint, we have’=mf=mP=n—L figuration. Taking the time-derivative of the previous equation, we

~1,, and the jumps on the privileged velocities can be four@Ptin

from rp:rQ+wx(I)RpQ:rQ‘FwX(rp*rQ) (38)

3\

. . A) 3 , Now let (q,, -+ ,g,) be a set of generalized coordinatesSofn
Ap,= : (M™% oe(=ALgotPg),  o=1:--,m". general, the rotation dyadi® may be written in terms of the
o'=1 33) generalized coordinates ab=®(q;, :-,q,,t), and its time-

) derivative is
With the prior quantitie&ﬁ‘;(‘) being determined from the prior

. n
motion, the posterior quantitiesX(*) are then computed from the b= Z P o+ P
ot

o —_—
previous equation, which, in turn, yield the posterior velocities of =
the system through E¢12).

After systematically discussing the impulsive motion associatédom the previous equation and E@&7), the expression of the
with various impulsive constraints, the special case that the syagular velocitye in terms of the generalized velocities can be
tem is subject to applied impulses with only regular constrainéerived from the following identity:
being active is considered next. Since the kinematic conditions are
the same for the prior, the virtual, and the posterior motion, the b\ 9P
same set of privileged velocities can be chosen, denote by ,9_qi'q) at W'q) '
¢4, ", dm, With the same degree-of-freedam=n—L. The cor-
responding coefficients for the velocity of each particle in thre@s
phases are thus the same, denotedB)y , vi}ici o=1... .m- Simi-

n
IXw=d-0C=

i=1

n
lar to the special treatment on the live constraints, the privileged _ - N
impulse-momentum equations become, cf. B%), ""_zl @;(Q,1)0;+ @o(0, ). (39)
m
oA b In general, the right-hand side in the previous equation is not
;1 MyroAdo=Pyr, o'=1;.m, (34) integrable, and the components@fwith respect to certain frame

. ) ) ) can be treated as quasi-velocities of the system, cf(Hq.
sinceAL,/o=0 due to the nonexistence of live constraints. By Consider the virtual motion af during a constrained impulsive
computing the privileged applied impulses from the formula  motion. With the appropriate selection of virtual-privileged ve-

locities, éﬁ[,, the velocities of the reference poiQ and each

PfrA,)=2 PAN. B, o'=1;-.m, (35) particleP in B can be expressed in the form @f1) with coeffi-
el cients (vo,B00): (Bpyssvp), o=1,--,m’, respectively, and the
and the privileged mass matrix from angular velocity of3 is further written as
Moo =2, MiBigBi '=1:-,m (36) il
00! T TiPiotPioty GO w= 21 @, h,t . (40)

the jumps on the privileged velocities can be determined from ILE:% o . ) )
(34), and the posterior velocities of the system can be found supubstituting these expressions into E8), it follows that
sequently from Eq(12). ,

2 (Bbo=Boo) byt (vh= ()
6 Impulsive Motion for a System Containing Rigid o=1
Bodies :

A finite degree-of-freedom mechanical systéhmay be com- =2, WX (Ip—rQ)d,+whX (Ip—Tg),
posed of many particles and rigid bodies. The physical quantities o=1
such as the virtual-privileged momenta and the virtual-privilegaghich leads to
applied impulses can be defined for each subsystem. Due to the
superposition property of the E¢23) with respect to the sub- Bpo—Bao=w,X(Ip=rq), ¥p— Yo=woX(Ip—Iq),
systems, a physical quantity for the systéhgsan be obtained by (41)
taking the summation of the corresponding ones of all subsystems. , . L

The motion of a rigid body3 in S may be described by the f(_)r 0:1,-_-: ,m’, by the_ |_ndependency and the arbitrariness of the
translational motion of some reference po@tin 3 and a rota- Virtual-privileged velocities. _ ) )
tion aboutQ, represented by the rotation dyadic The rotation | hese relations, which based on the kinematic properties of a
dyadic® changes the attitude of the rigid body from a referendddid body, are now applied to derive the prior and posterior

(initial) configuration to the current configuration, and satisfiedrtual-privileged momenta, and virtual-privileged applied im-
the property pulses for the rigid bodys as follows. From Eqs(19), (20), with

the index set being overP € B, we have

3

- d°=1, detd=1,

whered°® denotes the conjugate df and] is the identity dyadic. Lf(t)éf V6. Bh,dm(P)
It can be shown from the previous defining property that B

D=wxP, (37)

in dyadic notation[41], wherew is the angular velocity of the
rigid body. The position vector of any poifte 5 can be then = o
expressed as :LB(_>.560+ Hg(q,m;’ o=1,.m, (42)

= J’ fo)~[E’QU+E(’T>< (rp—rg)Jdm(P)
B
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Fig. 2 The impulsive motion of a sleigh with a knifeblade

Ng Ng
LB(t):J'BV(Pi)dm(P) (43) Lfft>:2 Lfi(i), PErA):E Pfi(A), (50)
i=1 i=1

are the prior and posterior linear momentahfrespectively, and respectively. With these formulas, the privileged impulse-
momentum equations developed in Section 4 can be invoked to
Hg(t)z f (rp—rQ)vaf)dm(P) (44) solve the cqnstralngd impulsive prqblems a.ssouated Wlthllnter-

B connected rigid bodies. An example is given in the next section to

] i illustrate the process.
are the prior and posterior angular momentaadibout the refer-

ence pointQ, respectively. LeC denote the center of mass of the

rigid body B, andM, |4 be the total mass and the moment of7 The Impulsive Motion of a Sleigh With a Knifeblade
inertia dyadic of the rigid body abo@, respectively. The linear
momenta and the angular momenta defined4i®), (44) can be
further expressed as

The proposed methodology discussed in the previous sections
is now applied to study the impulsive motion of a sleigh with
a knifeblade attached. Three possibilities of impulsive motions

LE®H =My, (45) due to applied impulse, inert constraint, and live constraint, re-
spectively, are discussed. Two alternative methods, namely, New-
Hg(i):IQ- w(t)+(rc—rQ)><(Mvg)), (46) ton's method and Lagrange's method, are used to solve the same
) problem for the case of inert constraint to describe the essential
respectively. ‘ . o differences.
On the other hand, the virtual-privileged applied impulses cor- Consider a sleigh with a knifeblade along its principle axis,
responding ta3 can be found to be, using E¢1), as depicted in Fig. 2. Let its mass and moment of inertia about its
center of mas€ be denoted by andl -, respectively. When the
pBas pA. gl — PA. TR 4+ & X(fo—r sleigh moves on a horizontal ice surfa8eit is assumed that the
v PZB P Pro Pzzs P LBortm X (rero)] knifeblade makes contact with the surface at pdintand it is

_ 5 possible for the sleigh to move freely in the direction along the
=PBn. B/Qﬁ‘ JQ‘A' ‘@, o=1:-,m’, (47) blade, and rotate freely abafit However, the motion of the sleigh
5 S _ in the direction perpendicular to the blade is prohibited. {Lef}
wherePB®), JQ(A) are the resultant applied linear impulse, and thee a fixed coordinate system, afe) ,ey} be a coordinate system

applied angular impulse acting dhaboutQ, defined as moving with B, wheree, is parallel to the direction of the blade,
which makes an anglé with respect to the axis. Due to the
pBa) = E plA) (48) physical condition of constraints, the velocity Afsatisfies
Peb Va-€,=0, (51)
JZ“*>= 2 (rp—ro) X P, (49) and may be expressed as
PeB Va=Uueg,, (52)
respectively. whereu is termed thdongitudinal velocityof /3. The sleigh may

After obtaining the formula for a single rigid body, the virtual-rotate about the vertical axis,(=e,x€,) with angular velocity

privileged momenta and applied impulses for the system consigk, . The velocity ofC may be then expressed as
ing many bodies can be constructed. Let the system be composed

of Ng rigid bodies, which may be expressed as vc=uex+lbey, (53)
Ng where| denotes the distance betwe€nand A. For this prob-
S=UB. lem, we may choose the coordinates@fi.e., (X¢,yc), and the
i=1 angle 6 as the generalized coordinates. The constraBits then
For each body,i=1, ...Ng, we may choose a reference poinpecomes

Qi, and denote the attitude dyadic dy. With the selection of —sin Xk +cosdyc—16=0, (54)
privileged velocities ofS in the virtual motion, the coefficients
(w!)B and '%i” for each body can be determined. The virtua
privileged momenta and the applied impulses of the system é)rree
then found from the following summation: U=CcosfXc+sinbyc,

jwhich is nonholonomic. The longitudinal velocity can be ex-
ssed as
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in which the right-hand side is not integrable, and thus should ligere, the set of velocitiesu(¢) may be chosen as the virtual-

treated as a quasi-velocity. i ) _ privileged velocities,;=u, ¢5= 6. However, they are not the
We are now ready to consider three cases of impulsive motiosyjleged velocities for the prior motion. Again, the poiGtis
for this system, which occur at the instanand at the configura- chosen as the reference point #r and the coefficients for the
tion of 0=0y. o o velocity of C and the angular velocity o corresponding to the
Case (i) As shown in Fig. &), the sleigh is suddenly exerted by,irtal-privileged velocities are the same as(86), with 8, @

an impulseP acting at the poinD at the instant. The longitu- paing replaced by’ &' respectively. The required quantities
dinal velocity of 3 and the angular velocity df about the vertical 5, %e fgund to bf @ P ¥ q q

axis at the instant— areu(~) and ("), respectively. It is desired

to determine these two quantities at the instaft L5=MoS cog ') = Bp)e+ Mot sin(y' ) — gy,
For this case, the impulsive motion is due to the imposition of 5 ) )
the applied impulsé, while the rigid bodyS is subject to the LPoO=Mu"e+MIb ey,

regular nonholonomic constraint, E4). One may choose the B, ()
o . - o H®=1c0e,.

longitudinal velocityu and the angular velocity as the privileged

velocities to represent the possible motionfin fact, the ve- The prior and the posterior virtual-privileged momenta corre-

locity of A andC can be written in terms of the privileged veloci-sponding respectively tg) , ¢} are then

ties as in Eqs(52) and(53), respectively. Since the prior and the

posterior motions satisfy the same nonholonomic constraint, the L(l_)= Mv(c_) cog ¢\ ) —6y),

prior and posterior velocities ok and C, v§ ), v&), v{") and

L(H: M UH)
vE", can be also expressed in terms of the prior and posterior- 1 ’
privileged velocitiesu(™), 67, u*), and 6*), with the same L) =MIvS) sin(g ™) — 6g)+ 16,
form, respectively. )
Let C be selected as the reference point forThe coefficients LS =(MI12+10) 6.
. . . 2 C
of the velocity ofC and the angular velocity d$ correspondingto _. . . . .
the privileged velocities can be obtained as Since there is no applied impulse, the conservation of virtual-
privileged momenta can be then invoked to yield the posterior
B = Beo=1 velocities as
Bci=¢&, Bca=ley, (55) - .
=0, =6, u=vg cogy! = ),
respectively. The linear momenta, and the angular momenta about () 1 (<) o 5 ()
C given in (43), (44), are then ( _—MI2+IC(M|UC sin(' )= 0p) +1c67)).  (57)
LA =Mu*g+MI6 g, _ o
. ) Case (iii). If the ice surface exhibits a sudden motiont ataused
HES =10 e,, by external agents, such as an earthquake, the sleigh moving on it

hen experiences an impulsive constraint. Let the velocity of the
face be denoted hxg. Instead of(51), the constraint becomes
now

respectively. On the other hand, the applied linear impulse and
applied angular impulse are, respectively,
PSa=Peg,, J?A):Paez. (Va—Vs)-6,=0, (58)

Substituting these terms into the formula of the privileged mar
menta and privileged applied impulses, the privileged impulse-

momentum Eq(18) can be applied to derive, in matrix form, Va- &~ Vs €=0, (59)
GO Ty 0 in which the inhomogeneous term makes it become a live impul-
[M]( N S P ): } sive constraint. In particular, let the surface suddenly move with
Y Y P(a+l) velocity v$™) in the direction of angley$™ with respect to the
where the privileged mass matiik] is given by axisi. The velocity ofA andC during the impulsive motion can be
then expressed as
M 0
M1= . 56 Va=uegt+ug(Cosysit+singg),
M=o (mizrig) (56) AT TSRS
Hence, the posterior longitudinal velocity and angular velocity of Ve= et 108 tus(cosysitsiny),
the sleigh3 can be determined as respectively, in whichu is now the longitudinal velocity of the
() sleigh relative to the surface, and, 5 are the magnitude and
u+) ul) u the direction ofvg, respectively. From the constraint, we have
o |=[M] 7Y }+ = a+l . : — —
o] "M paen |l )} AP vs(t=)=0, vg(t+)=vs",
c
0 Ys(t=)=0, ys(t+)=ys".

Case (i) Consider the landing of the sleigh on the ice surface gl this case, the prior motion, the virtual motion, and the poste-
the instantt, with prior velocity of the center of mass bein§’  rior motion have the same degree-of-freedom, and the same set of
in the direction of angles(™) with respect to the axig and the privileged velocitiesg; =u, ¢é:9 may be chosen. Again, Eq.
prior angular velocity aboug, being 67, cf. Fig. 2ii). The ve- (55), after replacingd, @ by ', @', is applicable, and the quan-
locity of the landing poinfA may have lateral component befdre tities of momenta for the body are found as

but it immediately satisfies the constra{tl) after contact. This .

impulsive constraint is thus characterized as an inert constraint. LE=M(u e +16 g,

The virtual motion and the posterior motion have the same char- 5 ) ) ) CH) 4 i ()

acteristics as the motion in Ca¢B. Similar to the discussion LPo=M[u'"e+16'" e +vs"(cosys  i+sinygs )],
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HE= =) ;9(1)62 For the previous example, with the generalized coordinates
¢ ¢ ' (X¢,Yce,60), the kinetic energy of the sleigh is simply
These formulas in turn give rise to the prior and the posterior

. - . , 1 1 .
virtual-privileged momenta corresponding ¢g , ¢, as T= > M (x%+y%)+ > | 62
L) =Mu),
The inert constrain(54) may be expressed as
=Myt (+) (+)_
Li’=Mu'"+Muvg" cog g — b)), - sing. +cos€_ .
L) =(MI2+10) 8, STy et T e (62)
L(2+):(M|2+|c)'0<*)+Mlv(+) sin(yL") — 6g) Corresponding to the generalized coordinatgs y., the equa-
S S '

tions of the impulsive motion can be derived frdfl) as
respectively. The conservation of the virtual-privileged momenta | |
is then invoked to find the posterior longitudinal velocity relative C(H) ' Ch) cing (=) Coy
to the surface and the posterior angular velocity as MXc I 0777 sin6p=Mxc | 6" sin o, 63)
(F =y — () (+) _
utt=ut—og cod g~ bo), lc. lc.
" My(c+>+l—CO(“cos¢90=My(C‘)+I—Cﬁ(*)coseo.
P =) () sir1(¢<+)— 0o).
MIZ+1¢ s The prior velocity of C is (v&”) cosyf ) wE) singl?)), and the
] posterior velocity can be expressed in terms of the posterior lon-
To show the distinct features of the proposed scheme, Newtogi$udinal velocity and angular velocity as
method and Lagrange’s method for impulsive motion are applied

et i (+) ()| sing.p+)

next to solve the same problem as in Cése X¢' '=cosfu I'sinfo6' ™,
As discussed if2], the integration of Newton-Euler’'s equa- () +) )
tions gives rise to the law of impulse for impulsive motion. For yc '=sinfou’ "' +1 cosbp 6’ .

the problem of Caséi), the only impulsive force acting o IS gypstituting the above formulas int63), the posterior velocities
the one acting om exerted by the ice surface, which has nQ,(+) " 4(+) can pe then determined by exactly the same equations
component in the direction perpendicular to the blade by the na: 2

ture of the constraint. Accordingly, we have the conservation 0

linear momentum in that direction, It is noted that in Lagrange’s method, the quasi-veloudity not

introduced directly, which reflects the fact that the treatment of

L.g=L).e, quasi-velocity is a little awkward in Lagrange’s formulation.
Moreover, the computation of kinetic energy can only accommo-
or date the regular constraints. If the impulsive constraints occur,
Mu(+)=MvE{> cog ¢ ) — ). additional terms have to be included in the equations. Since the

proposed methodology somewhat has similar characters as the

On the other hand, there is no impulsive torque alfoeither, and Kane’s approach for the finite-force problem, the comparison of
the conservation of angular momentum is then different methods irf28] can be partly transported here. In par-

() M1 (=) ) ticular, it has been shown [r2'7,42 that Kane's approach is very
lc0 e+ (re—ra) X (Mve ) =1cf e+ (re—ra)X(Mve ). effective in generating equations of motion for multibody systems
through symbolic computations. The same advantage of applying

e proposed method to deal with impulsive motion of multibody
@stems subject to impulsive constraints is conceivable accord-
iggly. Using the method to tackle the impulsive constraints, it is
ng)t necessary to include the impulsive constraint forces in the
gguations, which may contain some parameters, e.g., Lagrange’s
Irir_1ultipliers, to be determined in the process.

From the relatiovS” ) =u(Me+16(")e,, the posterior longitudi-
nal velocity and posterior angular velocity can be obtained exac
the same as in Eq57).

Although Newton’s method seems to be more intuitive for thi
simple case, it is not straightforward to apply the method to mo
sophisticated problems. For example, to handle the impulsi
problems for constrained multibody systems, it is rather comp
cated to solve the problems by inspection.

On the other hand, in Lagrange’s method,[8f5,18, the equa-
tions of impulsive motion are written in terms of the kinetic eng  Conclusions
ergy T of the system. The problem studied in Cdgehas been . .
solved by Lagrange’s method [i18]. Here, the same method is _ Although there are many approaches dealing with the con-
applied to attack the impulsive problem for Cdiig, and is sum- strained impulsive problems for mechanical systems, the principle
marized as follows. Consider the system with kinetic energy ©Of velocity variation for impulsive motions lays down the founda-
and subject td, inert impulsive constraints at From the impul- 10" Of the methodology discussed in this paper. The classical
sive constraintsn— I, generalized velocitiesy, , - vqan can principles for finite-force problems may not be suitable to be ap-

plied directly to the impulsive problems, due to the irregularity of
be selected to represent the other ones such that the occurrences of the impulsive constraints. From the fundamen-

n—I, tal principle, it was shown that, instead of the classical notion of
;= E Dj,8,+d;, j=n—I;+1,...,n. (60) conservation of momenta for systems without applied impulses,
o=1 the more appropriate law should be the conservation of virtual-

Brivileged momenta, respecting the behavior of the system in the
virtual motion. With the inclusion of quasi-velocities, such as the
angular velocity of a rigid body, or the longitudinal velocity of a
vehicle, the selection of independent privileged velocities seems
to be more natural. The methodology discussed in this paper pro-
vides a systematic tool in dealing with various types of impulsive
T constraints, and can be applied to solve a variety of constrained
(61) impulsive problems for mechanical systems.

Then the prior motion and the posterior motion satisfy th
Lagrange’s equations for impulsive motion, i.e., =1, ,n
_lfr

n

aT aT

3y j=it+100; 7

aT T
o j=n—l+1 8Qj

t+
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Dynamic Response of Kirchhoff
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In this paper Fourier transform is used to derive the analytical solution of a Kirchhoff
plate on a viscoelastic foundation subjected to harmonic circular loads. The solution is
first given as a convolution of the Green’s function of the plate. Poles of the integrand in
the integral representation of the solution are identified for different cases of the founda-
tion damping and the load frequency. The theorem of residue is then utilized to evaluate
the generalized integral of the frequency response function. A closed-form solution is
obtained in terms of the Bessel and Hankel functions corresponding to the frequency
response function of the plate under a harmonic circular load. The result is partially
verified by comparing the static solution of a point source obtained in this paper to a
well-known result. This analytical representation permits one to construct fast algorithms
for parameter identification in pavement nondestructive tg30I1: 10.1115/1.1577598

1 Introduction the plate is assumed to be harmonic. As a result, the time and
spatial coordinates become separated and the governing partial

¢ : ; . the 1980s.4], t luat differential equation turns out to be an ordinary differential equa-
pavement engineering since he 74, 10 evaluale pave- v, The solution is then obtained using the Bubnov-Galekin

ment structural parameters. The_ most com_monly ysed NDT devﬁ%thod and series expansion of the vibrational modes of the plate.
for pavement structural evaluation are falling weight deflectomeg 14 et al.[14] and Warburtor{15] conducted similar studies
ter and Dynaflect. Falling weight deflectometer applies an impulgg, means of integral transform methods. Using integral represen-
load to pavement surfaces, while Dynaflect applies a steady-stalgon of the general solution of the plate provided by Bycroft
vibrating harmonic load]3]. Given that a typical physical model [16], Krenk and Schmidf17] studied the steady-state response of
for rigid pavementse.g., cement concrete pavemenssa Kirch-  finite plate on an elastic half-space.
hoff plate resting on an elastic Winkler foundatid,6], the In our previous work[18—20, dynamic response of Bernoulli-
mathematical problem involved here thus becomes to estimate th@ar beam(one-dimensional situatiorio specific loading condi-
parameters of governing equation of the plate provided that thgn has been studied. However, the analysis of a Kirchhoff plate
applied load is knowri.e., the inverse problemThe structural on a viscoelastic foundation to a circular harmonic load applied by
evaluation is then achieved by identifying structural parametesspynaflect has not been available in the literature. To this end, as
based on pavement response to applied dynamic loads. a continuous effort in this paper the author extends previous work
Because of the complexity involved in the inverse problem, ity deal with cases and the dynamic response of a ridge pavement
current practice a widely used technique is to use the forwaggtucture (two-dimensional situationunder a circular harmonic
analysis of a plate under a static load. By comparing measunigdd. The availability of such analytical solutions will enable one
dynamic response and calculated static response using optimigaeonstruct fast algorithm for parameter identification problem, a
tion techniques, pavement structural parameters are eventually ¢lere issue in pavement NDT.
termined while selecting a pavement structure whose calculatedrhis paper is organized as follows. In Section 2, the governing
response is most closely to the measured maximum responsedpuation is established with the exploration of associated founda-
terms of certain objective function§7]. Clearly, pavement re- tion models. In Section 3, the Green’s function of a Kirchhoff
sponse under dynamic loads such as applied by Dynaflect is gifpte is derived analytically using integral transform method. In
nificantly different from pavement response under static loads. Section 4, by integrating the Green’s function with respect to
Finite element procedures have been developed to calculate tiore-spatial dimensions, we obtain the frequency response func-
merically the response of a plate to dynamic lod8s;10. How- tion corresponding to a harmonic circular load and concentrated
ever, in terms of efficiency, the computation using finite elemetad. In Section 5 we address several special cases such as the
methods is time-consuming. Computational efficiency can be iratatic solution and Winkler foundation, which is also used to
proved if analytical solutions are available and used for numericegrify the correctness of our result.
calculation. Achenbach et dl11] investigated the response of an
infinite plate to harmonic plane waves. Freund and Achenbach
[12] and Oien[13] investigated the response of a semi-infinite
plate on an elastic half-space. In their study the displacement of

- 2 The Governing Equation of the Plate
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLEDME- _Figure 1 depicts the coordinate system and significant dimen-
CHANICS. Manuscript received by the Applied Mechanics Division, Jan. 25, 200®ions. Three assumptions are commonly made to simplify the
final revision, Sept. 15, 2002. Associate Editor: V. K. Kinra. Discussion on the papgiathematical model of a Kirchhoff plate. These assumptions are

should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, Department qf : : . . :
Mechanics and Environmental Engineering, University of California—Santa Barbal ) the strain componeny, in the perpendlCU|ar direction of the

Santa Barbara, CA 931065070, and will be accepted until four months after fifdiate is sufficiently small such that it can be ignor&dj;the stress
publication in the paper itself in the ASMEDURNAL OF APPLIED MECHANICS. componentsr,,, 7,,, and o, are far less than the other stress

Nondestructive testindNDT) has been extensively used in
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Fig. 1 A plate on a viscoelastic foundation subjected to a circular load

components, therefore, the deformation caused-gy 7,,, and - O
o, can be negligible; and3) the displacement parallel to the f(§)=F[f(X)]=f f f f(x)exp(—igx)dx  (5a)
horizontal direction of the plate is zer®]. T e e
Denote the displacement of the plate in thkelirection by w fo o
W(x,y,t). Based on these assumptions and the fundamental equa- f(x)=F*1[?(§)]=(277)*3f f J T(&expiéx)dé
tions of elastodynamics, the governing equation for the deflection o —w) o
of the Kirchhoff plate can be derived by considering the balance (5h)
of all the forces acting on the element X +dx;y,y+dy). These \nere = (¢ 5 w), F[-] and FY[ -] are the Fourier transform
forces are the impressed force distributie(x,y,t), the shearing 4,4 its inversion, respectively. To solve the Green’s function, we

force, the restorizng fogce from the foundatialx,y,t), and the 550y three-dimensional Fourier transform to both sides of(Eq.
inertial forcephd“W/dt“. The well-known result is

7 D(£24 7%)?G(&%o) + KG(&X0) +1CwG(&X) — phw?G(&Xo)
2¢7 2 — — ~
DV<V W(x,y,t)+phWW(x,y,t)—F(x,y,t) q(x,y,t) ~F(® ®)

(1) in which F(&) is the Fourier transform df(x), and the displace-
where the Laplace operator V2=d%/9x?+9%/9y?, D ment respons®/(x) has been replaced by the symi@(x;x,) to
=Eh%/[12(1- x?)] is stiffness of the plateh is thickness of the indicate the Green’s function. In the derivation of H&) the
plate, p is density of the plate, anE and u are Young’s elastic following property of Fourier transform is used:
modulus and Poisson ratio of the plate, respectively. .

The most widely used foundatiorr)l model if’)l rigid gavement de- FLEO(0]= () FIT(D]. )
sign is Winkler foundation6,20,21, which assumes the reactive SinceF(£) is the representation d¥(x) in the frequency do-
pressure to be proportional to the deflection of the plate, d.e.,main,F(£) needs to be evaluated as well. This can be achieved by
=KW whereK is the modulus of subgrade reaction. A constant applying three-dimensional Fourier transform on both side@)of
implies a linear elasticity of the subgrade. When the damping

effect of the subgrade is considered, the restoring force becomes=, ., _ e _ . _ r
g=KW-+CdW/ét. This is a viscoelastic foundation consisting of F(&= fﬂoﬁwﬁf(x Xo)eXp( —1 £X)dx=exp(— i)

a spring of strengt and a dashpot of strengt@, placed paral- ®)
lel, as shown in Fig. 1. Substitution of the restoring force into Eq. . i . .
(1) gives in which the property of the Dirac-delta function, i.e., E4), is

utilized while evaluating the above integral. Substituting this re-

J sult (8) into Eq. (6) gives
DV2V2W(X,y,1) + KWy, 1)+ C - WOKy, 1) ult (8) into Eq. (6) giv

G(&Xo) =exp —i &) [D(&2+ 72)2+K+iCw— phw?] .

2 ©
+phWW(x,y,t)=F(x,y,t). ) The Green’s function given bff) is in the frequency domain and
needs to be converted back to the time domain. To this end, take
3 The Green’s Function the inverse Fourier transform of E(Q)

According to the mathematical physics theory, the Green's P R R . 2. o2
function is a fundamental solution of a partial differential equa- G(X:%0) =(27) exi&(x—xo) J[D(£°+ 7°)
tion, [22,23 For the present problem, the Green’s function is de- e
fined as the solution of Eq1) given that the external excitation +K+iCw—phw?] tdé& (10)

F(x,y,t) is characterized b . . . .
(xy.1) y Equation (10) is the Green’s function of a plate on the vis-

F(x)= &(x—Xop) (3) coelastic foundation. The Green’s function serves as a fundamen-
tal solution of a partial differential equation. It can be very useful

in which x=(x,y,1), Xo=(Xo,¥0,t0), 8(X=Xo)=8(X=X0)8(y  \pen dealing with circular loads.

—yo)8(t—to), and &) is the Dirac-delta function, defined by

fx S(x—xo) F(X)dx="f(Xo). 4 4 The Frequency Response Function

4.1 Integral Representation. We use the Green’s function
Define the three-dimensional Fourier transform and its inveobtained in the previous section to construct the frequency re-
sion, [24], sponse functioriFRF). DenoteW(x) as the solution of Eq.1) in
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which the external load is a harmonic circular load with its center i = (= Jy(Zro)exp(—ilr coshy)
located at the origin of the coordinate system, i.e. Hcirce(r, Q)= — 7 > dgdy.
' ’ 7roD Jo J_."+(K—phQ°+iCQ)/D

Fere(X) = (m15) TH(rg—x*—y?)exp(i2t) (11) (21)
in which Q is frequency of the harmonic load. The steady-state 4.2 Roots of the Characteristic Equation. Before the inte-
response can be expressed as gration(21) can be further evaluated, it is necessary to investigate

_ the roots of the characteristic equation of type
WI(X) =Hcireie( X, 1) expli{dt). (12)

DenoteH ¢irqe( X, Q) the frequency response functiBRF of the 4+ (K=phQ?+iCcQ)/D=0. (22)

plate. Expressior(12) simply says that both the response and

external excitation possess identical frequeficyhough response cparacteristic Eq(22) is a fourth-order algebraic equation, roots

of the plate may have a phase difference with the external excitg-hich are dependent upon parameters related to plate structure,
tion reflected in theHie(x,€2). The solution of Eqs(1) and ¢oyndation, and loading condition. We separate our discussion into
(11) can be constructed by integrating the Green’s function ovgf,q categories: no damping effeinkler foundation and with

all dimensions, i.e., damping effect(viscoelastic foundation Within each individual
t o [o category three cases are separately addressed because the relation-
W(x)zf f f F(X0) G(X;Xg)dXg . (13) ship between load frequency and eigenfrequencies may result in
—wJ —o) - different scenarios.

Take(10) and(11) into (13) and apply the property of the Dirac-  4.2.1 No dampindC=0). This case corresponds to a plate
delta function twice. on a Winkler foundation. Define equivalent stiffnesskas | (K
—phQ?)/D| and resonance frequency g = JK7ph.

W(r,Q)
a. 0<Q,. Equation(22) becomes{*+K=0. All the four
_ ifm fx fol({ro)Jo(gr)exmwt)exp{i(w—ﬂ)to] roots of thiqs equa’giorz possess gomplex values and can be
2m) ) =)o 7o(DL*+K+iCw—phw?) given by ¢, =4/K exi(1+2j) /4] with j=0,1,2.3.
b. O=0Q,. Equation(22) becomes*=0 and all four roots
X d¢dwdto (14) degragle agd beco(mé)y 0. * o
Here, Jo(-) andJy(-) are the Bessel functions of the first kind, C- Q>Q,. Equation(22) becomes*—K=0. Two of the four
[25]. Since roots are imaginary and the other two are real valued, which
) are given by¢; =K exdi(j=/2)] with j=0,1,2,3, respec-
J exi(Q— w)to]dty=278(Q— ), (15) tively.
o 4.2.2 With DampindC+#0). Define the equivalent damping
substituting(15) into formula(14) gives coefficientC=C(/D. Three cases are discussed as follows:
_ P J1(Lr ) Jo(LT) a. 0<Q,. Equation(22) becomes{*+K+iC=0. All four
W(r,Q)zemet)f 7 - — —d{dw. roots possess complex values and can be given{jy
o Mo(DEHKHICA—phQY) —8/K7+ CZ exefi(9+m+2m/4] with j=0,1,2,3 in which
(16) tan9=C/K>0. o
Comparing(16) to (12) it is straightforward that b. O=0,. Equation(22) becomes*+iC=0. In this case all
. four roots possess complex values and can be giveg; by
HCircIe(r:Q):J il(fl’o)j]o(fl’) ~d¢. (17) :‘{/Eexp[l(377-l-'4j77)/8] with j=0,1,2,3, respectively.
o o(DE+K+iCQ—phQ)?) c. 0>0,. Equation(22) becomes{*—K-+iC=0. All four

roots possess complex values and can be given{jy

The frequency response function of the plate to a concentrated _38jz, 2 (942 e ; ;
harmonic loadF pyi(X) = 8(x) 8(y)exp(t) can be obtained by tangz_%fégl(ﬂ Am/a] with j=0,1,2,3 in which

simply taking the limitr,—0 on both sides 0f17), i.e.,
4.3 Closed-Form Representation. According to the resi-

1 0)= 1/ Jo(41) due theorem(Saff and Snider{26]) the residues of the integrand
HPomt(r: )—2 D4 : — 2§d§ (18) K X A N
7)o D{*+K+iCQ—phQ of (32) in the upper half-plane contribute to the following integra-
tion:

Now we have obtained the frequency response function
Hcirae(X,Q2) and Hpgin(r,€2) in the rectangular and cylindrical )
coordinate systems, respectively. In general, the frequency re- * Jy(Lro)exp(—idr coshy)d
sponse function given byl7) and (18) are complex functions. . §4+E+i(? ¢
The Bessel function of the first kindy(z) can be given in inte- -
gration representatiofi25],

J .
o 2 Re{ll(gro)exp( i{r coshy)
=1

i [~ 4 i~
Jo(2)= ;f [exp(—iz coshy)—exp(iz coshy)]dy. (19) "EK+IC =¢
0
. J .
Realizing the property of even function, we can also rewrite iden- - 2 Ja(Zro)exp—idr COShy)‘ (23)
tity (19) as 2 =1 e ‘;=§. Im(¢)>0
i
i (= )
Jo(2)= ;f_wexp(—lzcoshy)dy. (20) in which J is the number of poles whose imaginary parts are
positive, andZ; represents the poles of the integrand of E2§).
Substituting this expression into E(.8) gives Based on the previous analysis, it is clear that two complex
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roots exist in the upper half-plane of the compléglane for all Since no pole is embraced by the closed contour, the theorem of

the cases o€+#0 and the cas€ <, of C=0. For(0>(), and residue says that the integral along this closed contour becomes

C=0 two poles are located on the real axis, whilefb+Q, and zero, i.e.,

Q= only one pole is located on the real axis. Since the residue

theorem cannot be directly applied in the sense of Riemann inte- R

gral, the concept of Cauchy principal valgev.) of the integra- % :p.v.f +f +f =0

tion (23) has to be introduced for these two cade@§]. In Fig. -R JC JG

2(a) and (b) two integral contours are respectively provided for

Q=4 of C=0 andQ>(), of C=0. in which the abbreviation p.v. means the Cauchy principal value
As shown in Fig. 2a), the contour consists of three portionsof the integration. For thos¢ values onC;, they can be ex-

for the case) =), andC=0. The integral of the left-hand side pressed by, =¢ exp(B) and d{=ie exp(B)dB. The integration

of Eq. (23) now becomes|™  J;({ro)exp(—ilr coshy)/Z*di. Jc, ase—0 is then given by

(24)

lim

e—0

fOJl[S exp(iB)rolexd —ier exp(i B)coshy] . fOJl[S exp(iB)rolexd —ier exp(i B)coshy] dp

) T exp(i14f) e expif)dp=limi | =T exp(i30)

(25)

By applying the Maclaurin expansion and the L'Hospital rule to the l{@8), it is found that a singularity with an ord€¥ (e~ 1) exists.
For those{ values onC,, they can be expressed iy R exp(B) andd{=IiR exp(B)dB. The integrationfc2 asR—x is then given

by

) 0J.[Rexp(iB)rolexd —iRr exp(i B)coshy] . . . [%J4[RexpiB)rolexd —iRr exp(i B)coshy]
lim L RY exp(i48) 'ReX“'B)dBZF'{'Tx'L R exp(i35) dp=0.
(26)
I
Comparison amon¢R4), (25), and(26) shows R
poouf ol Lr ]
-R Jc; Jc, Jcg
0 R .
p.v.f = lim f =—lim f ~0(e™h). 27) zzwiRe{‘]l(grO)qulgr coshy)
—»o R—w»w J-R e—0JCy §4_K 4
{=|‘{/K
miJ({ro)exp(—idr coshy)‘
For the case)>(, and C=0, as shown in Fig. ®), the - (28)

3
contour consists of four portions. One pole is within the range 2¢ |§:iW
of the closed contour. Suppose that a tiny amount of dampipgr those; values onC, andC5, one can prove lim . fe,=0

is present, which is the case in reality, the pole that is currentz 4 i =0 in the same manner as in the previous dis-
ly exactly located on the positive part of the real axis will be M0 / Cs P

actually pushed down into the fourth quadrant of the compléwsiion' For thos¢ values onC,, they can be expressed ly
plane. Hence, its contribution to the integral vanishes. So we now— VK+e, exp(p) andd{=ie,; exp(B)dp. The integrationf ¢,
have ase;—0 is then given by

0 Re(¢) 0 Y Re()
(0 Q=Q,and C=0 b)Q2>Q,and C=0
Fig. 2 The integral contours for evaluating the Cauchy principal value in Eq. (23)

598 / Vol. 70, JULY 2003 Transactions of the ASME



foal{ro[“ﬁmexp(iﬁ)]}exp{ir[“ﬁmexmﬁ)]coshy}_

lim — — ie,exp(iB)dB
e—0J 7 [74\/?+elexp(iﬁ)]4fK
_ Jy(Zrg)exp(—iZr coshy) —amidy(Lro)exp(—ilr cosh7)|
=—miRe = = Ve | - (29)
K A ¢ =4k
I
Comparison amon¢28) and (29) gives This expressioni34) is exactly identical to a known result27—
. R i » h 29].
p'V'J — lim j _ mida(dro)exp(—i¢r coshy)| If damping is ignored in Eqs(17) and (18), the frequency re-
e Row J-R 243 ‘g=i‘b? sponse functions become
mid1({ro)exp(—i{r coshy)| [T 3a(Lro)do({r)
+ 4{3 |{:,‘{/E (30) HCirCIe(rvﬂ)f 0 er(D§4+ K_thZ) dg (35)
So far, all cases have been analyzed and the left-hand side of 1 (= Jo(21)
Eq. (23) has been represented in closed-form expressions for dif- Hoo (r Q)= — | — =957 _+4s 36
Poml( ’ ) 4 2 g § ( )
ferent cases. With the help of these closed-form expressions, the 7 Jo DI*+K=phQ

frequency response function given Kg1) is now ready to be )
further evaluated. Realize that an integral representation of Hn€aMY, Heircie(r,€2) andHpqin(r,(2) given by (35) and (36) are

kel function is,[25], real functions. It implies that no phase difference exists between
the response and the external excitation.
2i (= . If the radius of the circular load approaches zero, the frequency
- — —H® ,
7 ), exp(—izrehy)dy=Hg"(zr) (1) response functions given K$2) becomes
whereH{?(-) is the Hankel function of the second kifice., the H ) i D HE? (Zar) 37
Bessel function of the third kind Applying this expression and poinf 1)) = 8D <, 22 (37)
the closed-form representation of the inner integral of Bd))., we '
are eventually able to write the integrati@®1) in a closed-form where the following limit is used:
expression, as illustrated {$2):
. J1(&nro)
[ J(Zar)HP (Z00) lim ————==1/2. (38)
Hordr )= 7= 2, ————"—  (32) o0 o
4I’0D n=a,b {n

In practice, the vibratory devices used for pavement nondestruc-
tive test generate harmonic loads with frequeney6d Hz, [3].
These frequencies usually fall into the low frequency range of

where poles/, and ¢, are provided in Table 1.

5 Verification Through Special Cases Q<. Under such condition, it is appropriate to wri&7) as
It is of interest to examine the static solution through applying ) L (RAKD -2 (@4 i :

the resultg17) and(18). The derivation of static solution can also Heain(r, Q)= (64KD) " Ho VK explim/4)r]

be of great value in terms of verifying if the general result given n ng)[zl Kexp(iSrrM)r]}. (39)

by Eqg. (32) is correct. For a static loadFcjge swX)

=(mr5) TtH(ri—x2—y?) andFpgin 5 X) = 8(x) 8(y). The static g  Conclusion
solution of Eq. (1) corresponding to the static load can be

achieved by letting2—0 in (17) and (18) In this paper we derived a closed-form solution of dynamic

response of a Kirchhoff plate on a viscoelastic foundation sub-

#J1({ro)Jo(¢r) jected to impulse and harmonic circular loads. The solution uti-
H circle Sta(r):f ———— - d¢ (33) lizes the Bessel and Hankel functions. The result has been par-
- o Mo(DL7HK) tially verified by comparing the static solution of a point source
1 (% 3o(ro) obtair_led in this paper to a well-known result._This analytical ex-
Hpoint sd ") = _f . Ld¢ (34) pression permits one to construct fast algorithms for parameter
- 2w Jo DI7HK identification in pavement nondestructive test.

Table 1 Poles that contribute to the harmonic response of the plate

Damping Frequency Polest, and ¢,

C=0 0<Q, L= K™ and ¢, = K Ygi3m4

C=0 Q=Qo 0(871)

c=0 0>0, £,=iK¥ and ¢, = K

C#0 0>Q, ga:(iqaz)l/sei(wﬂ)m, é«b:(K2+62)l/8ei(ﬁ+3w)l4
_and tan9=C/K_

C#0 0=Q, = C1ei37/8 and ¢, = CH4gi7m8

C+#0 >0, {a:(i2+c2)l/8ei(x‘}+2ﬂ-)/4' {b:(i2+62)1/8ei(1‘}+41r)/4

and tany=-C/K
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Based on the generalized differential quadrature (GDQ) method, this paper presents, for
the first instance, the free-vibration behavior of a rotating thin truncated open conical
H. Li shell panel. The present governing equations of free vibration include the effects of initial
hoop tension and the centrifugal and Coriolis accelerations due to rotation. Frequency
K.Y. Lam characteristics are obtained to study in detail the influence of panel parameters and
boundary conditions on the frequency characteristics. Further, qualitative differences be-
C. F. Chua tween the vibration characteristics of rotating conical panels and that of rotating full
conical shells are investigated. To ensure the accuracy of the present results using the
Institute of High Performance Computing, GDQ method, comparisons and verifications are made for the special case of a stationary
National University of Singapore, panel.[DOI: 10.1115/1.15776Q0
1 Science Park Road,
01-01 The Capricorn,
Singapore Science Park Il
Singapore 117528
1 Introduction based orthogonal coordinate system#,z). The components of

A comprehensive literature search will reveal that the amoualsplacement in the meridional circumferentialg, and normak

of research work conducted with regard to the vibration o rections, are given by:, v andw,_res_pectlvely.

X ) N ; The governing equations of motion in terms of forces, moments
rotating/nonrotating clyllngrlcal ST)e”S ?nd panehls arel |ndeedl “And displacements for the resultants of free vibration of a rotating
tensive. Comparatively, the number of research articles availal . - .
on the vibration of either rotating or stationary full-circular coni- Gnical shell can be written as followsee Lam and L2]):
cal shell as well as stationary open conical shell panels remaing, +r~IN,, ,+r 2N(u yo—rw , cosa)+r Y(N,—Ny)sina
few. Further, it is noted here that there is presently no technical )
paper available in the open literature on the vibration analysis of ~+2phQu ;sina—phu ;=0 (1)
rotating open conical shell panels. This paper aims to address the

. . . > + -1 + -1 + -2
void of information on this problem. Nxgxt 1 No,gt 1" Mypx COSat T "My, 5 COS

By employing the generalized differential quadraty@DQ) +r72NY(ru U gsina+ro  sina)+2r "INy, sina
method,[1], this paper solves the free vibration problem of gen- ’ ' ’
eral rotating thin truncated open conical shell panels. The govern- —2phQ(u;sina+w,cosa)—phv =0 @)

ing partial differential equations of motion derived include th 1 ,2 _1 . _1 .
effects of initial hoop tension as well as the centrifugal and Corlhxxt 20 "Myg ot 1 "My gy 20 "My xSin@ =1 "Mo, Sina
olis acceleratlop_s. Employing the _GDQ method and imposing the +r’2Ng(w po—TU cosLy)+r*2N2(wcos’- a+usina cosa)
boundary conditions, these equations are transformed to a set of ' ’

numerical eigenvalue equations, which are then solved for the —r~!N,cosa+2phQu ;cosa—phw =0 (3)

natural frequencies. . . - -
q where the subscript variable after a comma indicates partial dif-

) ) ferentiation with respect to that variable, and
2 Theoretical Formulation o2

Figure 1 shows an isotropic truncated open thin conical shell p:p(x,a):hflf p*(x,0,2)dz 4)

panel rotating about its rotational axis of symmetry at a constant —hi2

angular velocityQ). The half vertex angle is denoted ly the 0 20 2 L _ _ .

subtended angle bg, the thickness byr and the slant length of Ne=PhQT"=phQ%(a+xsine)®, r=r(x)=(a+xsina)

the shell byL. The symbolsa andb are the mean radii for the ®)

smaller and larger ends of the shell, respectively. The middle swith p* (x,6,z) being the mass density of the conical shell, and

face of the shell is taken as the reference surface for our groungy g) the average density in the nornedirection.N§ is defined

- as the initial hoop tension due to the centrifugal force effect. The
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MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- . -
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Dec. 2,(1) to (3) are the relative accelerations. The four terms,

2001; final revision, Nov. 26, 2002. Associate Editor: O. O’ Reilly. Discussion on thdQ2v  Sina, 2Qu ;sina, 2Qw ; cose, and A)v ; cose, are the
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3 Generalized Differential Quadrature (GDQ) Imple-
mentation

Unlike traditional numerical techniques such as the finite ele-
ment method, which may require a large number of nodes or
elements for accurate results at points of interest, the generalized
differential quadraturédGDQ) method is a global numerical ap-
proximate techniqud,1], requiring only a sparse grid point distri-
bution to achieve similar accuracy. The basic concept is that the
derivative of a sufficiently smooth function with respect to a co-
ordinate direction at a discrete point can be approximated by a
weighted linear sum of the functional values at all the discrete
points in that direction. Details of the GDQ implementation can
be found in[1].

In this paper, a cosine distribution of discrete grid points in the
meridionalx direction is used. Also, in satisfying the simply sup-
ported boundary conditions on the straight edges Q,3), the
displacement field can be written as follows:

u(x, 6,t) U(x)sin(\ §)el! A+ eb)
Fig. 1 Geometry of a thin rotating conical panel U={ v(x,0,t) } ={ V(x)cog\ g)eli*F+ot) (7)
w(x, 6,t) W(x)sin(x §)eli0Feb)

) . where A =(n#/B), w(rad/9 is the natural circular frequency of
and moment vectors which can be expressed by a linear-elagfig rotating conical panels, andis an integer representing the

constitutive relationship[1]. The strains and curvatures follow .j.cumferential wave number of the panel. Substituting &9.
those of Love thin shell theory. Substituting the constitutive relgaig the set of partial differential governing Ed$) in temporal-
tions into the governing Eqs¢l) to (3), a set of partial differential ghatia| domain, a set of ordinary differential equations with spatial

governing equations with variable coefficients expressed by tQgiaple coefficients in the meridionaldirection is derived as
displacements is derived and written in the matrix form as

LU=0 6) L*U*=0 ®)

where UT={u(x,6,t),0(x,0,t),w(x,6,t)} is the displacement where U*T={U(x),V(x),W(x)} is the unknown modal spatial

vector.L=[L;;] (i,j=1,2,3) is a 3 differential operator ma- function vector describing the distribution of vibrational ampli-

trix of U, seefl] for details. tude in thex direction.L* =[L}] (i,j=1,2,3) is a 3 3 differen-
The governing Eq(6) can be used for a rotating conical sheltial operator matrix. By the GDQ procedure, the approximate gov-

with arbitrary boundary conditions. In this paper, the simply sugerning equations in the discrete form is

ported boundary conditionu0w=0N,=0,M,=0) is applied

on both the straight edgdat =0, B). For both the curve edges L*U*[x=x, = Rax1UTTxalx=x =0 (i=1,23...N) (9)

(atx=0, L), four boundary condition types are considered, which

are namely: clampedi= 00 =0w=0w ,=0) at both edge&Cs- whereN is the number of total discrete grid points including the

Cl); simply-supported =0w=0N,=0M,=0) at both edges points at both edges in the meridionaldirection. R is the 3

(Ss-S); simply supported at small edge and clamped at large edyell complex-coefficient matrix that is function of discrete grid

(Ss-C); and clamped at small edge and simply supported at largeint x=x; . U** is an 11-order column vector consisting of the

edge(Cs-S). eigenmodes irx.

Table 1 Comparison of frequency parameter, f=wb phlA1;, with results generated from MSC /NASTRAN for a conical panel.
Numbers in parenthesis denote discrepancies against finite element method results.

o=20°, =60°, h=0.0154, L=20a, v=0.3 and axial wave number m=1

Boundary  Methodology Circumferential wave number, n
Conditions 2 3 4 5 6 7
Cs-Cp GDQ 0.0894(-0.17%)  0.1096(-0.27%)  0.1460(-0.46%)  0.1948(-0.75%) 0.2554(-1.14%)  0.3277(-1.59%)
NASTRAN 0.0892 0.1093 0.1453 0.1933 0.2525 0.3226
Ss-CL GDQ 0.0894(-0.17%)  0.1096(-0.27%)  0.1460(-046%)  0.1948(-0.75%)  0.2554(-1.14%)  0.3277(-1.59%)
NASTRAN 0.0892 0.1093 0.1453 0.1933 0.2525 0.3226
Cs-Si GDQ 0.0638(2.65%) 0.0909(0.83%) 0.1299(0.16%) 0.1801(-0.24%)  0.2419(-0.76%)  0.3147(-1.22%)
NASTRAN 0.0655 0.0917 0.1301 0.1797 0.2401 0.3109
Ss-Si GDQ 0.0638(2.65%) 0.0909(0.83%) 0.1299(0.17%) 0.1801(-0.24%)  0.2419(-0.76%)  0.3147(-1.22%)
NASTRAN 0.0655 0.0917 0.1301 0.1797 0.2401 0.3109
B=60°, h=0.024, L=25a, v=0.3, and mode (m,n)=(1,2)
Boundary = Methodology Vertex angle, o
Conditions 10° 20° 30° 40°
Cs-CL GDQ 0.0850(-0.36%) 0.0937(-0.25%) 0.1104(-0.15%) 0.1240(3.87%)
NASTRAN 0.0847 0.0934 0.1102 0.1290
a=30°, h=0.02a, L=20a, v=0.3, and mode (m,n)=(1,4)
Boundary =~ Methodology Subtended angle, S
Conditions 15° 30° 45 60°
Cs-Cr, GDQ 1.4619(-3.42%) 0.4191(-1.65%) 0.2273(-0.91%) 0.1634(-0.41%)
NASTRAN 1.4136 0.4123 0.2253 0.1627
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Fig. 2 Variation of frequency parameter f=wb phlA1; for a rotating conical panel with different boundary conditions against
revolution speed (rps), for different n [n=1 (top) and n=5 (bottom )], with panel parameters a=30°, B=15°, h/a=0.015, L/a
=5,and m=1

By imposing Eq.(9) on every discrete grid poink=x; (i =1,2,...2N*) can be obtained. We select the two real egenval-
=1,2,...N), and then rewriting resulting equation in terms olies with the lowest absolute values, one positive and the other
yields an equation in the following matrix form: negative, and these correspond, respectively, to the backward and

[0?H; + wH,+ Hy]d=0 (10) forward traveling waves.

where H;, H,, and H; are theN* XN* numerical complex- 4 Numerical Results and Discussions

coefficient system matricesNf =3XN—-8), and d is the To facili . fd Il

N*-order eigenmode column vector. Equatid) is a nonstand- ? dac[ |tatt$]_compatr.|son of data, ?h redq_uency p?rameie:fs;]pre-
ard eigenvalue equation. For a given frequency, it can be trap&1'cd N tis Section are in the —dimensioniess form,

formed into a standard form of eigenvalue equation as = wb\ph/A1;=wb(1-v%)p/E. Comparisons studies against
results generated by the commercial finite element solver MSC/
0 I I 0 d NASTRAN using eight-noded shell elements are first conducted.
—H; —H, %0 H,|/ | od =0 (11)  For these finite element results, well converged results were ob-

tained using a 20040 grid size or 8000 elements. The tabulated
wherel is anN* X N* identity matrix. From the eigenvalue Eq.results of these comparison studies are presented in Table 1 for a
(11), a total of AN* real and complex eigenvalues;(i range of parametric cases. For all four boundary
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Fig. 3 \Variation of frequency parameter f=wbphlA;; for a rotating conical panel with different boundary conditions against
revolution speed (rps), for different n [n=1 (top) and n=5 (bottom )], with panel parameters «=60°, B=120°, h/a=0.015, L/a
=5 and m=1

condition cases considered here, there is monotonic convergeatewhen the boundary condition varies. Each figure shows the
as the number of grid points were increased. It is found that tfirequency behavior of the rotating conical panels at circumferen-
use of 15 grid points produced sufficiently converged results witlal wave numben=1 and 5. Figure 2 shows the effects of the
generally less than 1% difference when compared with resulieundary conditions when both the subtended apgiaed the half
using 13 grid points. It is also observed that present GDQ resultsrtex anglea are low at values of 15° and 30°, respectively.
agree very well the finite element results for all four boundarffigure 3 shows the effects of the boundary conditions when both
condition cases with less than 4% difference between the two stte subtended anglg and the half vertex angle: are high at
of results. values of 120°, and 60°, respectively.

Figures 2 and 3 are two sets of graphical plots showing theln Figs. 2 and 3, the present results reveal a major qualitative
changes in the vibration characteristics of the rotating conical patifference from that of rotating completer full) truncated coni-
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cal shells. For full conical shells, bifurcation of the natural fre5 Conclusions

guencies into the forward and backward waves occur immediately. I . . . i
upon the presence of rotation, see Lam and1+3]. For the The free vibration study of thin rotating truncated conical pan

present conical panels, however, it is observed that this bifurcati Iﬁ has been carried out, the present results represent the first to be

does not occur until a certain rotating speed is reached. O 'éggsrgﬁj ?JgrDtg;SmC é?ﬁgdo\tvgg)lefﬁ 'I ;23 f%err;ﬁirsagiea(f gif?,;ﬁgtrfl
bifurcation occurs, the forward wave is observed to decrease rap- y

idly to the critical speed value. This phenomenon is again disting e effects of initial hoop tension and the centrifugal and Coriolis

) ; ) . : celerations due to rotation were all considered. A major quali-
from that observed in the vibration of rotating full conical She”stative difference, from that of rotating completer full) truncated

:zeal_?{ezart]dolf_ﬁtlh_e?ﬂfyovr\(xgg |\1‘N(z:ar\|/t(|acsaldsepz:ergg:i§X|srtﬁ étn'cs)tgﬁir::(;rlfi”y onical shells, in that bifurcation of the forward and backward
9 Y Waves in rotating shell panels does not occur until a certain rotat-

wardz zerol, see 1’1? at;]d Lad[m] for d(;t.a.iled d.iSCﬁSSiog on Cr:!tiﬁal Ijng speed is reached, was discovered as a result of this work. The
speed analysis. The boundary conditions, in the order which prg: ' ” e
duces the highest to the lowest frequency parametersre Shects of panel parameters and boundary conditions on the fre

(Cs-Cl)> (Ss-Cl)> (Cs-SIj> (Ss-Sl). This is intuitively correct as quency characteristics of these rotating conical panels have also

: ; ' ; n examined.
the stiffer structures possess the higher frequencies. Further, in lagg
same order, a rightward shift of the frequencies is observed, with
the stiffer cases presenting more pronounced shifts. References
In Fig. 3, it can be observed that, at low rotating speeds, the1] Li, Hua., and Lam, K. Y., 2001, “Orthotropic Influence on Frequency Charac-
initial frequency parametefsare different for different boundary teristics of a Rotating Composite Laminated Conical Shell by the Generalized
. ; Differential Quadrature Method,” Int. J. Solids Struc38, pp. 3995-4015.
andlthns' I-_Iowever, .the Same. COI’ICl!JS_I_OnS cannot be drawn fro Lam, K. Y., and Li, Hua., 1997, “Vibration Analysis of a Rotating Truncated
Fig. 2, in which the difference in the initial frequency parameters™ " circular Conical Shell,” Int. J. Solids StrucB4, pp. 2183-2197.
f are small for the different boundary conditions. It can thus be[3] Lam, K. Y., and Li, Hua., 2000, “Generalized Differential Quadrature for
concluded that the effects of boundary conditions on the fre- Fre%uencgzof Rotating Multilayered Conical Shell,” J. Eng. Med26, pp.
P . : : 1156-1162.
quency b_ehaV|or_|s small for relatlvely low speed rotatlng conical [4] Ng, T. Y., and Lam, K. Y., 1999, “Vibration and Critical Speed of a Rotating
panels with relatively low values of both the subtended amgle Cylindrical Shell Subjected to Axial Loading,” Appl. AcousE6, pp. 273—
and the half vertex angla. 282.
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Comparison of Stresses in Center- wound rolls. Burns et al. WOS solution for roll stresses was re-
. cently developed; the analysis converted the accreted residual,

Wound Rolls From Two Linear wound on strains from the web into an elastic boundary value

Elastic Models problem which yielded the stresses in the roll. Altmann developed

his displacement based intralayer accretion solution by balancing
forces for a thin cylindrical shell clamped onto a roll as a stressed
; layer in the roll. His COS model has been the basis for most linear
W. R. Debesis and S.' J. Burlns . . . and nonlinear analyses on this tofié~10]. The WOS and COS
Department C_Jf Mephamcal Engineering, Materials Sc'en%ﬁ'}alyses are formulated in stress and strain, respectively. The
Program, University of Rochester, Rochester, WOS and COS solutions were thought to be compatible since
NY 14627-0133 both analyses are based on the same deformation formulas and
adaptations of Hooke’s law. The stresses in center-wound rolls for
assumed linear elastic media should be the same since both mod-

. . - . describe the same problem. In the linear elastic limit, they
Two linear elastic models for describing stresses in center-wouff bre initially thought to be identical, i.e., elastic solutions. We

rolls have been compared. One model includes wound on residg
o]

strains from the web while the other uses a clamped on stre OVI\\I/Ig‘rSéE\;g rthsi rlelzgii;eirllasgﬁtgr:]&o(ﬂggrri)qlze:rg%vngﬁ ig ;Cvirgogé
B e hes? o Jeplacement solatons fore complex s the mecia s bt noninear and ronelsic. COS
analytical differenées and similarities. ’ and WOS differences s_hc_>u|d be g:laflfled before und_ertaklng the
[DOI: 10.1115/1 157i855 compllcatlons of a realistic constitutive law for nonlinear, non-
T ) elastic stacked sheets.

Hakiel [5] and Bensom6] have nonlinear, nonanalytic solutions
for the wound roll problem. Hakiel uses the same boundary con-
Introduction ditions as the COS model while Benson utilizes a method which

allows the outer lap to relax. The linear elastic differences be-

Web materials are wound onto rolls for storage, d'St“b”“Orm/een the COS and WOS models are as large as the nonlinear

processing, and operations. A tension is applied to the web as Edia effects are on accreting layers. If the COS model does not

roll is being wound which produces stresses inside thg rqll. Theﬁ vide a good description of roll stresses then subsequent non-
stresses can cause defects and damage to the material in the

1 Itis i tant to k th " functi £ windi [iR&ar work based on this model are suspect. This paper discusses
[1]. Itis important to know these stresses as a function of win Nbw the inclusion of residual strains into the elastic solution com-

tension so roll stresses can be predicted and defects can Ig? : : :
> es with the inclusion of a clamped on stress boundar
avoided. The wound-on-stra{tvOS) model and the clamped-on- gondition. P y

stress(COS models are both intended to describe stresses in
center-wound rolls.
Linear elastic solutions for shrink-fitting reinforcing hoops ont&tress Analysis

gun cylinders were explored in the early part of the 20th century. . , .
Shrink-fitting was a common method used to strengthen large gunBoutaghou and Chadd] by using Maxwell's reciprocal theo-

barrels. A close tolerance, thin outer cylinder is made to expahd " smphﬂgd Altlmanns equat;ons forr:he coS modelo.l Hege ;{ve
by heating and is then shrunk over an existing barrel when it ¢ "estricted to plane str(ra]ss solutions t Eli,t a;e asslum;e to be llnear
allowed to cool. The thermal shrinkage creates residual stres§ asSt'C‘ Equatlon(l_) Is the COS mo_de S formuiafor radia
between the thin cylinders that make up the gun barrel. Thedesses and E@2) is the formula for circumferential stresses.

stresses are formed because neither cylinder can relax to its stress r28+a Ro,(Dt?
free shape. Or= " BT f 1 a (1)
Burns, Meehan, and Lambropoul® and Altmann[ 3] formu- r
lated analytic elastic solutions for describing stresses in center- r28_ 4 Ry, (DA
gp=0ou(r)—p YD XJ P12 dt (2
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF r

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- . ) . - .
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Aug. 14, The symbolr is defined as the radius ratio, i.e., the actual radius
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ratio of the roll. The stress of the web as it is being wound ont®oth models use similar methods of solution, yet they don’t agree
the roll is a function of the radius ratio for profiled rolls, and itanalytically nor do they give similar results for stresses in wound
is represented by, (r). The symbolt is an integration variable, rolls as explained below.

and the constard is used to simplify the formula after the first
boundary condition is applied3 is a material property defined
by Eq.(3).

Examples
,BZZE 3) The first example shows stresses for both models when the web
E, is being held at a constant stress as the roll is wound.
E, is the radial modulus of elasticity in the roll aril, is the au(r)=0o, (8)

circumferential modulus of elasticity in the roll.

The WOS model’s formulas, as done by Burns et al., are giv
by Eg. (4) for radial stress and by Ed5) for circumferential
stress.

1 R2#
O'r_FHB(r'B—r—B) 2—
R are larger than the WOS model’s radial stresses. The COS model's
_rﬁf t~Ba* (1)dt (4) circumferential stresses are smaller than the WOS model's cir-
r cumferential stresses at the core and become greater than them at
1 p R2A\T 1
0',41:? ,BB re+ r—B

the outside of the roll.
R
+rﬁf t~Po* (t)dt
r

o, is the initial web stress. The material properties applied to the
lutions are found in Table 1. The radial stresses for both models
divided by the initial web stress are shown in Figa)l The cir-
cumferential stresses for both models divided by the initial web
1 R stress are shown in Fig(H).
r—ﬁf tAo* (t)dt By looking at Figs. 1a) and Xb) it can be seen that the two
B r models do not agree. The COS model’s radial stresses in the roll

+

i R P The next example is for constant torque. A moment placed on
5" tPo* (t)dt the core of the roll is kept constant during the winding process.
' The web stress decreases as the roll is wound. Constant torque is

] (®)

The symbols, R, andt are the same in the WOS model and the Table 1 Physical properties

COS model, and is a constant found by applying the innerproperty Value
boundary condition to the WOS solution.

The web stress in the WOS model is given by Ej, which is Modulus of elasticity in radial 690 MPa
an expression for the strains caused by the tension put on the vﬁ/{%oﬁdcj'lgg ngr)elasticity in 4.14 GPa
during the winding process. circumferential direction&,) (E,,)

d Nodus of Eiastcty of the 6.14 G
o (=] G lrow(n]+vou(r) (6)  Outer rads ratar) o oo i
Initial web stress §,) 2.30 MPa
The symbolv is Poisson’s ratio of the web, arigl, is as defined
before.o,(r) is as defined previously. or

Both solutions must be in equilibrium, which can be checked co
by Eq. (7). .

N —— WOS
op=Tr &+Ur (7) 0.6 ~ --- COoS

dr

Both models use Eq.7) to help form second-order differential
equations that are solved to formulate the equations for radial
stresses; E(7) is applicable to all linear and nonlinear solutions.
Notice that according to Ed7) if the slope of the radial stress in
the radial direction is zero, then the circumferential stress must
equal the radial stress. This does not occur in any of the examples
in this paper, but is good way to check all linear and nonlinear

solutions graphically. 00

Both the COS and WOS models used here are based on second- 5o
order differential equations formulated from the plane stress form 1 ,
of Hooke’s law and radial displacements. The COS model uses ——— WOS g
Hooke’s law first then Eq(7) to formulate a second-order differ- 0.8 ___ cos //
ential equation for displacement. In the WOS model E&gis put

into Hooke’s law to form a second-order differential equation for
radial stress. Another difference in these models is how the web
stress is modeled. The WOS solution models the web stress as
residual strains, which leads to the development of a particular
solution. The COS model does not include the web stress residual
strains in the development of its differential equation, instead the v 1s L3 55 3 3.5 1
web stress is modeled in one of the boundary conditions. Radial N

stresses at the inside and outside of the roll are used as boundary ~ -

conditions therefore the arbitrary constants are found using thg. 1 (a) Radial stress ratio versus radius ratio for constant
formulas for radial stresses only. Circumferential stresses are @b tension, (b) circumferential stress ratio versus radius ratio
tained from Hooke’s law and are checked by applying Ef. for constant web tension
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often how many machines are designed to wind rolls making this
a very practical example. The web stress used in this example is
stated in Eq(9).

0o

ou(r)= T )

Figures 2a) and 2Zb) show that the radial and circumferential
stresses, respectively, both solutions are divided by the initial web
stress. Again, the COS model’s radial stresses are greater than the
WOS model’s radial stresses. In this example the COS model has
only positive values for circumferential stresses. This shows that
these two models have major differences and they are affected
differently by changes in web stresses.

Comparing Figs. @), 1(b), 2(a), and 2b) it is evident that
these solutions are very different even though they are based on
the same equations. Timoshenko and Goodi#} present a solu-
tion for residual thermal strains in a disk, as does Case. When the
thermal strains in these solutions are replaced by residual strains
of a web stresg¢see the Appendix the solution equals the WOS
models solution. In Fig. (b), the COS model's circumferential
stress has a negative value in the roll close to the core while the
WOS model’s does not. This is an important difference because if
the circumferential stress is in compression defects are more

or
[efe]

[o2=]
0o

0.8
—— WOS

0.6 - —-COos

0.4

likely to occur in the roll. Reasons why the two solutions diffe
will be discussed in the next section.

Figures 3a) and 3b) show the WOS model’s differential equa-
tion in radial stress without the residual strains from the particul

0.2\
r
W 2.5 3 35 4

r

-0.2

%‘g. 3 (a) Radial stress ratio versus radius ratio of two solu-

solution and the COS model’s differential equation in displacyns without residual strains, ~ (b) circumferential stress ratio
ment solved using the boundary conditions of the COS mod@krsus radius ratio of two solutions without residual strains

The models use different differential equations yet come to the

same stresses, when the web stress is modeled the same in each

solution. Thus, the difference between the two analytical solutions

is how the web stress is modeled and which boundary conditiog% used. Figures(® and 3b) show that both models have com-

WwOS

. - : - . — T
1.5 2 2.5 3 3.5 4
Fig. 2 (a) Radial stress ratio versus radius ratio for constant

torque, (b) circumferential stress ratio versus radius ratio for
constant torque
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mon parts as would be expected since they arise from the same
equations and assumptions.

Inner Boundary Condition

Both models use Eq10) as a boundary condition, but it can be
seen in Figs. (a) and Za) that the radial stresses of the two
models are not equal at the core.

o (r=1)=E.Xu(r=1) (20)

Equation (10) is used to find one arbitrary constant in both
solutions. The symbdE, is the modulus of elasticity of the core
as already mentioned. The WOS model’s solution for radial stress
includes the residual strains caused by the web stress when this
boundary condition is applied, while in the COS model’s solution
the web stress has not been factored into the equation. The inclu-
sion of the web stress in this boundary condition causes the
stresses of the two models to have different values at the core. In
Fig. 3(@) and 3b) it can be seen that the WOS and COS solutions
equal each other at the core when the residual strains are not
modeled in the WOS solution. Modeling the web stress as residual
strains allows the material to relax once it is on the roll. This
decreases the radial stress and increases the circumferential stress
at the core. Why the web material is allowed to relax in the WOS
model and not in the COS model will be discussed in the next
section.

Outer Boundary Condition

The radial stress at the outside of any roll must be zero. No
forces are applied externally to the roll so the radial stress must
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equal zero. The outer boundary condition used in the WOS modebdel are the same except for how they model the web stress.

and by Timoshenko and Goodier is Modeling the web stress as residual strains allows the material to
have the same constitutive behavior through out the winding
rocess.
o (R)=0. ay P

Referencg 1] includes thermal residual strains in the solution
for a disk, as do the solutions for the shrink fitting of gun barrels,
Both models show that the radial stress is zero at the outer surfa&@]. The thermal strains can be thought of as web stresses for the
of the roll. The COS model’s arbitrary constants are zero at théound roll problem with the winding process at constant tempera-
outside of the roll because they are integrated froim the outer ture. The material in the winding process should have the same
radius which causes the radial stress to be zero at the outsigenstitutive behavior through out the whole process. Modeling
When Eq.(11) is used as a boundary condition in the COS modesidual strains is an easy method to accomplish this.
el's solution both arbitrary constants are zero and the solution islt is unlikely that the outer lap of the roll is unable to relax. In

trivial. Benson’s nonlinear solutior{6,7], the outer lap is allowed to
Equation (12) is the boundary condition used by the COgelax. Timoshenko’s solution allows the thermal strains to convert
model to find the second arbitrary constant. to mechanical stresses as they cool. The outside lap of the roll will

not relax if the roll is rigid, or the web material is perfectly com-

pliant. This assumption is only present in one of the boundary
o (s)=-Q (12)  conditions of the COS model. Modeling the web stress as residual

strains precludes the WOS model to the have a particular solution

The web stress in the COS model is applied as the second boulyhich makes it possible to use two exact and consistent boundary

ary condition. WhereQ is defined as the incremental load changgonditions. o .
of pressure applied to the outside of the rolrats In the nonlinear problem the material will have different con-

stitutive behavior in the roll and in the web. The constitutive law
of the roll is typically very complaint for early laps. Thus it does
ow(S) not act like a rigid body while the web is elastic. In the linear
T As. (13 problem the web and the roll have the same elastic properties.
All strains present in the winding process should be included in
) ) o ) the inner boundary condition in the wound roll analysis for a
Equation(13) is definingQ as the radial pressure caused by theeajistic solution. Utilizing the method of residual strains to model
circumferential stress of the lajA§) on the outside of the roll at the stresses brings continuity to the problem. If the roll is to be
r=s. Equation(13) also states this circumferential stress is equabnsidered rigid this must be represented in forming the differen-
to the web stress. This is shown in Figlbll where the COS tja| equation and not just in one boundary condition. The WOS
model's circumferential stress approaches the web stress at figdel is a more accurate method for modeling the stresses in

outside of the roll. In the COS model the web material is Nqyound rolls in the elastic limit because the web stress is modeled
allowed to relax once it is on the roll. If the roll is rigid then theas 3 residual strain.

stress placed on it from the winding process holds constant. Equa-
tion (13) states that the roll and the outermost lap do not interact
with each other.
The outer layer’s circumferential stress would equal the web
stress if the roll acts as a rigid body. This can only occur if the .
modulus of elasticity in the radial direction is much larger than th@PPendix
modulus of elasticity in the circumferential direction. By looking Timoshenko and Goodidrll] analyze stresses from thermal
at Table 1 it can be seen that the modulus of elasticity in the raditains in a disk. This method can be converted to the wound roll
direction is much less than the modulus of elasticity in the ciproblem, which will result in a differential equation in displace-
cumferential direction. Thus, it is elastically difficult to envisionment that models the web stress as residual strains.
the outer lap’s circumferential stress to equal the web stress.  Timoshenko and Goodier sets up Hook’s law in the following
If the roll is not rigid then for Eq.(13) to be true the web form, as does the WOS model:
material must be inelastic. Both models have the web material
modeled elastically in the roll. If the web material is elastic it will

Q

relax on the roll. The WOS model allows for this, as does Ben- 8”+8rs:ﬁ_ vXag (14)
son’s model[6]. For an accurate model the material in the wind- E. By
ing process won't be elastic in the roll and inelastic in the web.
The difference in the models is not only different boundary
conditions but also how the web stress is modeled in each solu- oy vXoy
tion. The WOS model includes the web stress as residual strains, SWJFSHS:E_H_ E, (15)

which results in forming a particular solution. Modeling the web
stress as residual strains allows the material to have the same
constitutive behavior inside and outside the roll. In the COBE, is the radial modulus of elasticitf, is the circumferential
model the web stress is applied though a boundary condition. Thi®dulus of elasticity, ana is Poisson’s ratio in the circumferen-
boundary condition gives the radial pressure caused by the gial direction.o, ando, are the radial stress and the circumferen-
cumferential stress in the outer most lap and this circumferentigdl stress, respectively,, is the mechanical strain in the radial
stress is always equal to the web stress. If this is true then eithigfection ande,, is the residualformerly the thermalparts of the
the roll is rigid or the outer most lap of the material is not allowedtrain in the radial direction. The mechanical strain in the circum-
to relax and there is no friction between the web and the roll. ferential direction is represented lyy, and €, represents the
residual strain in the circumferential direction. All parts of the
strains must be added together to get the total strain. In(E4.
. the v, /E, term has been replaced withv&E , term which accord-
Conclusion ing to Maxwell’s reciprocal theorem are equal.

The tension that is put on the web while the roll is being wound Solving Egs.(14) and (15) simultaneously for radial stress and
creates strains in the material. The WOS model and the C@Bcumferential stress, and then putting these equations into equi-
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librium by using Eq.(7) form a differential equation. The strains Equation(26) is the resulting solution fou(r) that includes the
can then be defined and placed into this equatégnande,, are homogeneous and the particular solution
the parts of the mechanical radial and circumferential strains

caused by displacements in the roll and are given as functions of 2 2 R
radial displacements onl§Eqgs. (16) and (17)). u(r)=Arf+Br A+ IBZE (rﬁf tPo,,(r)dt
du(r) of '
Err = dr (16) R
—rf’f tBo'W(t)dt). (23)
u(r) '
oo~ a7 Equation(23) is then substituted back into E¢4¢4) and(15) to

Timoshenko and Goodier use Eq$8) and(19) for their thermal

get the equations for the stresses. The equations for circumferen-
tial stress and radial stress are given in E@4) and(25) after Eq.

strains. Here thermal strains are replaced by the strains produg_ag has been used as a boundary condition to solveAfor

by the web stress, Eq&0) and(21).

es=aT (18)
€ps™ aT (19)
v
8rs:_E_60'w(r) (20)
w(r)
ew="p (21)

The moduli of elasticity and Poisson’s ratio are assumed to be

equal in the web and in the roll.
The differential equation of the displacemerft) formed after
the strains are substituted in is shown in EzZp).

d
dr

1du(r)]  u(r)  oy(r)(B—1?
roodr 2 E, |
(22)

dfu(r)] N
dr

where 3 is defined the same as before in E§).

(Rzﬁ(,8+ V)

+—| rf(B+v)

2p

1 ( BE,(r #—rPR2P)

o(nN=—=
r r B+v

R R
xJ t*ﬁow(t)dtﬂ*ﬁ(ﬁﬂ)J tﬁow(t)dt>)

(24)
1/BE,B(r #—rPR2P)
ag(r)=F( B - +5| —rAB)
R R
xf t*ﬁow(t)dtﬂfﬂ(/sfu)f tPoy(D)dt| | + oy (r)
(25)

Equation (26) shows the solution forB when Eg. (10) is

used as the second boundary. Recall that #@) is used as a
boundary condition in both models. In Timoshenko's and
Goodier’s example the disk has no inner radius thus the boundary
condition he uses is the stresses equal zero at the center of the
disk.

R R
(,8+V)(E0+Ec(_,8+7/))f tfﬁﬂw(r)dH(ﬂ—V)(E0+Ec(,3+V))f tﬁvw(t)dt))
1 1

Equations(24) and (25) don't look exactly like Eqs(4) and (5),

(2EyB(E4(— 1+ R¥#P) +E(1+R?)B+(—1+R*)v)))

(26)

[3] Altmann, H. C., 1968, “Formulas for Computing the Stresses in Center-
Wound Rolls,” Tappi J.51, pp. 176-179.

but if the web stress is defined in symbolic form and after SOme[4] Boutaghou, Z.-E., and Chase, T. R., 1991, “Formulas for Generating Pre-

algebraic manipulation Eq24) will be equal to Eq.(4) as will

Eq. (25) be equal to Eq(5). The equations look different because
the latter solves a differential equation for) and the former
solves a differential equation iar,(r). The COS models use a

scribed Residual-Stress Distributions in Center-Wound Rolls,” ASME J. Appl.
Mech.,58, pp. 836—840.

[5] Hakiel, Z., 1987, “Nonlinear Model for Wound Roll Stresses,” Tappi 70,
pp. 113-117.

[6] Benson, R. C., 1995, “A Nonlinear Wound Roll Model Allowing for Large

differential equati_on in displ_acement as does this Appgndix. This™ peformation,” ASME J. Appl. Mech.62, pp. 853-859.
shows that the differences in the two models are not in the anaf7] Benson, R. C., 1996, Errata, ASME J. Appl. MedsB, p. 418.

lytic formalism but rather how the web stress is modeled.
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Rate_Dependent Transition From cosity (dynamic loss modulysof certain kinds of silicone elasto-

. . . meric adhesives would experience a rate-dependent transition
Thermal SOftenmg to Hardenmg n from thermal softening to thermal hardening with rising tempera-
Elastomers ture. The observed rate-dependent thermomechanical process is
reversible without any phase change. This kind of physical phe-
nomenon has not been documented in the open literature. Hence,
Z. Chent a phenomenological experimental study is performed here to ex-

Department of Civil and Environmental Engineering, plore the effects of temperature and loading rate on the elastic

: . - . . . modulus and viscosity of a selected silicone elastomer, DA6501,
University of Missouri-Columbia, Columbia, MO 65211 the inherent properties of which have already been investigated by

Mem. ASME several researcheri3,4].

e-mail: chenzh@missouri.edu Silicone elastomer is the best candidate for the compliant layers
in the new electronic packages due to its low modulus and small

J. L. Atwood moisture absorption. The low rotational energy of silicone-oxygen

Department Of Chem|stry, Un|vers|ty Of Mlssoun_ bond in S|||C0ne attributes to the hlghly flexible inorgan.i(.: back-

Columbia, Columbia, MO 65211 bone, which yields a low modulus and a low glass transition tem-

perature for silicone elastomeric adhesii&$, DA6501, made by
Dow Corning toray siliconéDCTS), is a kind of one-part adhe-

Y.-W. Mai ) sives packaged in a syringe, which can be cured fast at low tem-
Center for Advanced Materials TechnologgAMT), perature without voids. The specimens used in this study were
School of Aerospace, Mechanical and Mechatronic cured at 150°C for three minutes, following the procedure recom-
Engineering JO7, The University of Sydney, Sydney men_ded by D_CTS_. The cure mechar_lism of _DA6501 is a hydrosi-
NSW 2006, Australia Iyratlc_m reaction in crosslml: formation. Slllcon_e_s hav_e a glass
Fellow ASME transition point Tg) of —120°C and a melt transition poinT {,)

of —43°C. There are no additional phase transitions abbye
Normally, the weight loss of silicone only occurs at a temperature
above 200°C. The relationship between the dimensional change of
silicones and temperature is linear abdygso that a very stable
The thermal-mechanical properties of the materials currently usguofile can be found for the thermal expansion coefficient over a
in packaging are being reexamined as the electronic packagitgoad temperature range 6f40°C to 300°C[4].
industry moves towards chip scale packages and wafer scaleBased on the above properties of DA6501, the effects of tem-
packages. The rate-dependent transition of elastic modulus aperature and loading rate on the elastic modulus and viscosity
viscosity from thermal softening to thermal hardening with risingvere measured over a temperature range-50°C to 150°C and
temperature, which does not involve any phase change, has bégnmeans of cyclic deformations at three different frequencies, 1
observed in certain elastomers. An explanation about this inte#tz, 10 Hz, and 100 Hz. A dynamic mechanical analyzer, TA In-
esting phenomenon is given based on thermodynamic considgfuments DMA 2980, was employed to measure the changes of
ations. A theoretical analysis is performed to show the limitatiofhe elastic (storage modulus and complex viscosity of cured
of existing viscoelastic models in predicting the transition. It appA6501 samples with rising temperature and frequency. The
pears that macroscopic material properties should be reexaminﬁghgth, width and thickness of the samples were 15 mm, 5 mm
based on the physics behind the interaction between ordinagig 2 mm, respectively, and the multifrequency—tension mode
elasticity and entropic elasticity[DOI: 10.1115/1.1571860 was selected based on the test procedure recommended in the user
manual of DMA 2980. As can be seen in Fig. 1, the elastic modu-
lus experiences a transition from thermal softening to thermal
The effects of strain rate and temperature on the deformationlwirdening over a temperature range -60°C to 150°C. The
polymers are the challenging research topics of current interegagige of change in the elastic modulus is about 5%. The corre-
due to the increasing use of polymers in extreme environmentsSponding transition in the complex viscosity is shown in Fig. 2,
Spring in series with a dashpot’ and a spring and dashpot in pWith the rate effect on the ViSCOSity being different from that on

allel have been commonly employed to describe the deformatite elastic modulus. Note that the same sample was used for tests

of a liquid with elasticity, and that of a viscous solid, respectivel)ﬁond”ded at three different frequencies. The transition is repeat-

To the authors’ knowledge, however, the effects of temperatu??le' To verify the experimental data, three DA6501 samples were

. ) . . tested under the same conditions, with the result that the
and strain rate on elastic modulus and viscosity have not begn .

) . . . - . rate-dependent thermomechanical responses of these samples are
investigated in a comparative and systematic manner in smalliar

and/or large deformation cases, as can be seen from the represeRy,iner kind of die attach adhesives, DA7920, was also tested
tative reference$l,2]. Especially, there exists a lack of undery, sing the above test procedure. A similar transition from ther-
standing of the interaction between the ordinary elasticity, whigha| softening to thermal hardening could be found with the
is almost entirely due to internal energy and decreases with thange of elastic modulus being in the scale of 10 MPa instead of
increase of temperature, and the entropic elasticity that rises wittMPa as shown for DA6501 in Fig. 1. Thus, the transition from
the increase of temperature. thermal softening to thermal hardening appears to be common for
In recent experiments to benchmark commercial die attach agilicone elastomers. Based on the physics of rubber elasticity, the
hesives, it was found that the elastic modulus and complex vigternal-energy-based elasticitghe ordinary elasticity which
softens with the increase of temperature, could be offset by the
entropic elasticity that hardens with rising temperature. As dis-
cussed by Treloar in detajl1], the elastic modulus is insensitive
'To whom correspondence should be addressed. to the change in frequency while the viscosity is inversely propor-
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF tional to the frequency. To the authors’ knowledae. however. the
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- q y . g¢, !
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Apr. 23,rat_e-dependent transition from thermal softening to the_rmal hard-
2002; final revision, Nov. 10, 2002. Associate Editor: M.-J. Pindera. ening as observed here has not been documented in the open
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+6 with ¢ being an integration constant. The amplitiejeand phase
angle« are given by
s S 212
& _20 2|7
\2; — 100Hz eo—E 1+ o (E) } 4)
-—4'3 ——
e 12 10Hz
S —=1Hz and
23
E MW Ui
i a=tan * wgl- (5)
68 If 7=n/E is used to represent the time of relaxation, it can be
-50 0 50 100 150 found from Eq.(4) that the amplitude ratio of stress to strain is
Temperature(°C)
So _ 2_2\1/2
Fig. 1 Transition from thermal softening to thermal hardening e_o =E(l+ e 6)

of elastic modulus

With the assumption that the time required for the molecules to
change their configurations is governed by the rate of passage of
chain segments across potential barriersyould exponentially
decay with rising temperatur¢l]. Based on the conventional
constitutive models, therefore, the amplitude ratio of stress to
literature. Especially, there exists a lack of quantitative Undegtrain would increase with the increase of |0ading frequanpy
standing of the interaction between the ordinary elasticity amlit decrease with rising temperature, as can be seen frof6Eq.
entropic elasticity. As demonstrated in the following theoreticajowever, the transition from thermal softening to hardening, as
analysis, the conventional constitutive models can not predict tsBown in Figs. 1 and 2, indicates the limitation of existing models.

observed rate-dependent transition. _ _ Although the observed transition form thermal softening to
For a viscoelastic solid as measured by the dynamic mechaniggtdening in the elastic modulus is small as can be seen from the
analyzer, the Kelvin-Voigt model takes the form of experimental data, there exists an urgent need to accurately char-

acterize the rate-dependent thermal-mechanical responses of the
de materials currently used in electronic packaging. In view of the
S= WEJF Ee (1)  recent claim that silicones maintain consistent properties without
any transition throughout the temperature range-af0°C to
300°C, [3], the rate-dependent transition reported here deserves

wheres denotes stresg,strain, and time. The material constants @nother look at the physics of the thermal-mechanical properties

E and 7 correspond, respectively, to a modulus of elasticity and@f Silicon elastomers. Especially, a combined analytical, experi-
viscosity. For a cosinusoidal stress defined by mental and numerical effort is required in the further study to

quantitatively understand the interaction between the ordinary
elasticity and entropic elasticity.

S=5Sy COSwt (2)
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the general solution of Ed1) can be found to be
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[eyvis vivr 2
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Fig. 2 Transition of complex viscosity corresponding to Fig. 1 Edina, MN.
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Elastic Waves Induced by Surface heating and coupling of the thermal and elastic equations. Series

. . solutions are obtained. These latter papers introduce undue com-
Heatlng ina HaIf-Space plications for cases in which non-Fourier effects are insignificant
and are of questionable value since the hyperbolic equation solved
has not been validated experimentally and has been shown to

J. P. Blanchard yield nonphysical results for three-dimensional problefis].
University of Wisconsin—Madison, 1500 Engineering The time scales for which the solution derived in this paper is
Drive, Madison WI 53706-1609 valid are discussed in the Results section of this paper.

e-mail: blanchard@engr.wisc.edu

Modeling

Rapid surface heating will induce waves in an elastic material. | pegin by considering thermoelastic deformation of a half-
Closed-form solutions for the resulting longitudinal and tra.nSSpace7 withx denoting the perpendicular distance from the sur-

verse thermal stresses are derived using Laplace Transforms. Fhge. Following Sternberg and Chakravofg], | define the fol-
model is one-dimensional, consisting of a half-space subjected|é@ving dimensionless variables:

a step change in the surface heating. The transverse stress at the
wave peak is found to exceed the surface stress for short times,

while for long times the surface stress far exceeds either of the §= a
stresses at the wave peak. Both the longitudinal and transverse
stresses at the peak of the wave reach steady-state values after a Kkt
few dimensionless timeq.DOI: 10.1115/1.1571861 =
é kT
Introduction qa
Rapid surface heating, such as that created by a laser, can in- . (1-2v) koy
duce numerous ph in soli i - Ox= @)
phenomena in solids. Some of these include melt 2(1+v) aqau

ing, vaporization, thermal wavegl], and plastic deformation. In

many applications, such as mirrors, such phenomena must weereo is the dimensionless axial stressjs the dimensionless
avoided in order to ensure a long life. In this paper, | derive @mperature¢ and 7 are the dimensionless coordinates for space
closed-form solution for one-dimensional elastic waves inducédd time, respectively is the thermal diffusivityq is the surface
by a step change in surface heating. This creates a temperafifat load,« is the thermal expansion coefficient, is the shear
field in which the surface temperature increases as the square @gulus, is Poisson’s ratio, and

of the pulse time. It is assumed that the heat is deposited at the

surface, there is no cooling, the heat transport is diffusional, and a= K
that the elastic and thermal equations are uncoupled.
Several previous works have analyzed thermoelastic waves in
solids. Sternberg and Chakravof] solved the problem for both 2 2(1-v)p @
a step and ramp change in surface temperature. Gl§dysnlved (1-2v)p "’

the problem for a surface temperature changing“ap(-at) Herec is the wave speed angis the density of the solid

while White [4] solved it for surface heating which varied har- . 2 . .
monically and Boley and Weind] solve the problem for con- With these definitions, the governing equations then become

vection boundary conditions. Gladysz obtains a series solution, Pd I

while the others are provided in closed form. Other studies have —=—

included the effects of coupling of the elastic and thermal equa- 23 JT

tions, as well as heat deposition below the surface and thermal P 725 2

waves. Bushnell and McClosk¢$] obtained a closed-form solu- Tx_ 7% . (3)
tion for elastic waves due to volumetric heating, modeling the 9g> ot o7

deposition using a nonzero attenuation coefficient for the heat
incident on the surface of the solid. However, they ignored diffy-
sion, assuming that the temperature profile matched the deposi
profile. Similarly, Mozina and Dov{7] and Galka and Wojnd8]

It is assumed here that the only nonzero displacement is per-
endicular to the surface of the half-space. Thatuissu,=0.
initial conditions are such that all temperatures, stresses, and
. . . ) time derivatives are nonexistent. The boundary conditions are that
each assumed a volumetric heating given in the foRfi

) < o the temperatures and stresses vanisk equals infinity, while at
=au exp(—ux) whereu is the attenuation coefficient of the heat P e 4

h f
incident on the surface, but they included diffusion. All of thestcte € surlace

papers provide closed-form solutions. Boley and Tol@ksmod- aT

eled the case with a step change in temperature, but included the a= —kﬁ

coupling of the thermal and elastic equations by adding in a heat-

ing term which depended on the local strain rate. The solutions o,=0 %)

were obtained in terms of an integral and approximations were
given in closed form for short and long times. Kdd] solves the which implies
problem analytically for the non-Fourier case, in which the time

scales of the heating are such that thermal waves are induced. ﬁ:_l
Wang and Xy 11] included thermal waves, as well as volumetric 13
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF ‘}x: 0. (5)
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T =& ¢ 3 0 c—ar= I ———
d=2 —exg——|— serfc — (6) » NS y -
T 47 2 2 \/;- A AE = e ﬁ /7
g ; ." / T < ?
and its second derivative can thus be found to be W 05/ S N,
) \
2 21 g2 % / i "
J =& (21 = !
e —exr{ = ™M S i
aT a4 4\/;7' L Y £ Longitudinal Stress - tau=05] - 1
[} -1 #— Transverse Stress - tau=0.5
C — L ongitudinal Stress - tau=2
The Laplace transform of this function (g14], p. 246, #15% o —&— Transverse Stress - tau=2
E = = Langitudinal Stress- tau=10
5 == Transverse Stress - tau=10
b= \sexp —£\s) ®) -1.5 i i ;

0 2 4 6

wheres is the Laplace parameter and the bar over the function .. E—'
meant to denote the transformed instance of the time functi
Taking the transform of Eq(3) and using the fact that all the
initial values of the stress and its time derivatives are 0 gives

8 10 12

oIﬂ'g. 1 Shape of stress fields at three different times. Trans-
verse stresses assume »=0.3.

d%,

25 = —
g~ S0k Vsexp—£s). ©) . (1-2»)(1-1) ko,
YTTT2(1+v)  agam
Solving this equation and using the stress free boundary condi- (1-2v)(1—») ko
tions yields b,= 21+ 1) aqaiu (15)
exp(—&\s)  exp—¢s i
- A—&Vs) exp(—¢ )=?1+?2. (10) Ve obtain
(1-s)Vs  (1-9)\s N
oy=0,=voy—(1-2v)¢. (16)

Inverting the first term in this function requires some manipula- bstituti . hi . . lution f
tion. | begin by lettingp= |8, giving us Substituting Eq(14) into this expression gives us a solution for

the two remaining normal stresses. This completes our solution
for the stresses induced by surface heating on a half-space.

— exp—£p) 1 Since the longitudinal stress() is zero at the surface, the
T op(1-p?) (11) transverse stressr() at the surface is given by
The inverse of this function i§14] p. 183, #22 and p. 170, oy=0,=—(1-2v)¢ 17
#15
f(r)=[1—cosi7—§)]H(7—¢) (12)
whereH(z) is the Heaviside step function. Given this result fol
f(7), one can then find the time dependence of the original fun
tion using([14], p. 171, #29
w
17
1= — f p(_uz)[l fu-oldu (13 2
01=——— | uexp ——|[1—cosHu— u =
1 2\ [mt3? ¢ AT )
@
where the lower limit on the integral has been changed to refle @
the step function irf (7). Carrying out this integral and inverting S
the second ternd(14], p. 221, #1 and p. 170, #1Gives ®
C
[
X 1 . g){l Ho6) f(27+§)+ f(zf—g) E
oy=—sexpr— —ex erfc er
2 2yr 2yr a =1 | ——Longitudinal Stress - &=5 \
—— Transverse Stress - &=5 -\
—_— — =— Longitudinal Stress - &=1
—2erf( \/T_ HOH(T—&) ;. (14) -1.2 —=8— Transverse Stress - $=1
' 2 4 6 8 10
Having obtained this stress, we can obtain the remaining stres T

by taking advantage of the assumption that there is no displace-
ment parallel to the surface. Defining two more dimensionlessy. 2 Time dependence of stresses at two different locations
stresses as relative to the surface. Transverse stresses assume r=0.3.
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0 transverse stress peaks at the surface because that's where the
temperature peaks. At early times, there is a local peak in the
transverse stress where the wave front lies, and at this point the
A, I transverse stress is less than the longitudinal stress.
&\- ----- LN S Figure 2 displays the time dependence of the stresses at various
A depths from the surface. Each of the pairs of the curves is given at
dimensionless times of 1 and 5. It is clear from this figure that the
. long-term behavior is dominated by the quasi-static stress while
\ the short-term behavior is dominated by inertial effects.
The peak in the longitudinal stress occurséat = while the
peak transverse stress occurs at the suifexeept at short times
. These peaks are plotted in Fig. 3, which gives both stressés at
. =ralong with the surface stress at the same dimensionless time. It
S can be seen that beyond a dimensionless time of approximately 4,
15 o the surface stress exceeds the stress at the wave peak. The point
: N where the two are equal can be found more precisely by numeri-
i —— *« cally solving Egs.(18) and (19), giving a value of 3.81 for a
..... FoakLongludinal Siress AN Poisson’s ratio of 0.3.
— — Surface Stress . By comparing the surface stress to the peak stress in the wave
1 1 the results presented here are of interest for dimensionless times
0 5 10 15 20 less than about 10. This corresponds to approximately 5 ps for
aluminum and 25 ps for iron at room temperature. The pulse times
T of interest can also be much longer, because the stress wave will
propagate much faster than the heat diffuses, and can cause spal-
Fig. 3 Stresses versus time at the surface and at the peak of lation at a free surface at the back of a solid. In this case it will be
the wave. Transverse stresses assume  v=0.3. the absolute magnitude of the peak stress in the wave, rather than
its relation to the surface stress, that is of interest. On the other
hand, the results are only valid for times long compared to the
or relaxation time associated with non-Fourier conduction. In most
metals this relaxation time is less than 0.01 picoseconds at room
temperature and even smaller at higher temperatures. Hence, there
6’2=—2(1—2v)< \ﬁ>

Stress

&y= (18) is a pulse length window from tens of fs to tens of(ps greater

for which this solution is valid and meaningful.

The peak stress in the wave occurséat 7. Substituting this
into Eq. (14) gives
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Thermal Stresses in an Infinite Elastic the axially symmetric stresses can be expressed by

Pipe Weakened by a Finite 7o =(C120% A2+ Co X U X Al ar ) (g + o+ T*)

Cylindrical Crack 401902 922 Byby+ Bobo+ wT*)— by T,
Too=(C12021 I 2+ Cr X LI X 31 91 ) (py+ ot T*)

S. ltou 2/ 02 *

Professor, Department of Mechanical Engineering, +C1a0" 192 (Brpy+ Bapot uT*) = DaT, @)

Kanagawa University, Rokkakubashi, 7= oo P12+ U X A1) (gt byt TF)

Kanagawa-ku, Yokohama 221-8686, Japan A ;

e-mail: itous001@kanagawa-u.ac.jp +C190°/9Z°(Brp1+ Bachot wT*) — by T,

Fax: +81-45-491-7915 Tr=Caad?l 90 92 (1+ 1) o+ (14 B) byt (14 ) T,

with

Axially symmetric thermal stresses in the vicinity of a finite cylin-
drical crack in an elastic pipe are calculated. The surfaces of the

crack are assumed to be insulated. The outer surface of the pip&y§ereu, andu, arer andz components of displacemer; are
heated so as to maintain a constant temperatyye dnd the inner - e|astic moduli, andy, anda, are the coefficients of linear expan-

surface of the pipe is cooled so as to maintain a constant te@jon along the axis and thez axis, respectively. In Eq2), tem-
perature T,. Expressions developed by Sharma are used to solygratureT satisfies

the problem. Stress intensity factors are defined and calculated
numerically for several configurations of the pipe. (P1ar2+ 1l X 9l dr + k26?1925 T=0 (4)
[DOI: 10.1115/1.1598475

by=(cpitciday+Cizay, by=2C301+Caaas, 3)

with

2
. K=Ky /Ky, (5)

1 Introduction 2

A pipe is one type of mechanical part used in plant constru
tion. If a low-temperature liquid flows in a metallic pipe in a, i
high-temperature environment in order to remove heat, tensﬂée equation
stress may be produced in the pipe, possibly leading to develop- 2 2 22 2_
ment of a finite cylindrical crack. To the author’s knowledge, ther- (°plor"+ LI X 9l or)+v"9" ¢l 92°=0, (©)
mal stresses resulting from a cylindrical crack have not been pigreare ;2 (j=1,2) are the roots of the equation
sented. Therefore, in the present paper, axially symmetric therma ! '
stresses are solved for an elastic pipe weakened by a finite cylin- C11Caal*+ (2C14Cau— C11Caat C22) V2 +C =0. 7
drical crack, by use of the expressions provided by Shdtrha 1G4+ (201004~ C1aCagt 1) 3das @

In a first step, the boundary conditions relating to the tempergy Egs.(1) and(2), sz (j=1, 2 are given by the equation
ture field are reduced to dual integral equations by the Fourier
transform technique. To satisfy the boundary conditions outside 3j=(cllyj2—c44)/(c13+ Cas). (8)
the crack, the temperature difference at the crack surfaces is ex-
panded to a series of functions that diminish to zero outside tReinctionsT* and u can be calculated by use of the equations
cracks. The unknown coefficients in the series are determined by 5 5 5 5
the Schmidt methof2]. Next, the boundary conditions relating to  C11(“T*/dr =+ Lt X dT*/dr) +[Cgat p(Cizt Cha)]9°T*/ 92
the stress field are reduced to dual integral equations. To solve the b T=0
equations, the differences in the displacements at the crack sur- 1= 9)
faces are newly expanded in a series of functions that diminish to « 2k ) a2 D ) D
zero outside the crack. The Schmidt metH8d is also used to (Cag Cagt uCag) (VX I/ 97 + 9"T1907) + puCagd™ T/ 02
solve the unknown coefficients in the series. —b,T=0.

vherek,, k, are the thermal conductivities along thexis and
ez axis, respectively. Potential functiogg and ¢, must satisfy

2 Fundamental Equation

With respect to the cylindrical coordinates, §,z) shown in
Fig. 1, consider a cylindrical crack located oa ¢ and extending T, (Temperature)
from z=—ato z=+a. The inner surface and the outer surface of N perature

the hollow cylinder are denoted by=b andr=d, respectively. T BT
For the sake of convenience, the hollow cylinder is divided into an Q R ¢ W
inner layer(1) denoted by B<r=c) and an outer laye(2) de- 3 e "(1')',

noted by ¢<r=d).
If displacementsu, andu, are defined by the potential func-
tions ¢,, ¢,, andT*, in a manner similar to that developed by

Sharma[1], O

Ur=0d(h1+ ot T*)Iar, U=3d(Brd1+ Bahot mdT*)ldz,
1

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 1,
2002; final revision, Apr. 2, 2003. Associate Editor: J. R. Barber. Fig. 1 Geometry and coordinate system

616 / Vol. 70, JULY 2003 Copyright © 2003 by ASME Transactions of the ASME



3 Boundary Conditions

Consider the case where the outer surface of the pipe is heated K,

S0 as to maintain a constant temperaflife and the inner surface
of the pipe is cooled so as to maintain a constant temperatre
If the crack surfaces are assumed to be thermally insulated, the

T, -T,)/d~b)]

boundary conditions for the temperature field are given by the & ;
equations S g
T,=To, forr=b, |z<w, ag Ly of T . .
T,=Tq, forr=d, [7<w, 1 =, H*-\L\_\_\' S ]
- Y A
aTylor=4aT,lar, for r=c, |z|<e, (12) N ; : )
_ _ ¥ 05 5 ‘\'\*H*'/.
dT,lor=0, forr=c, |z|<a, (13)
T,=T,, forr=c, a<|z, (14) . ! ; i
1 1.2 1.4 1.6 1.8 2
cla

where the variables denoted by subscripts 1, 2 are those for layers

(1) and(2), respectively. When the crack faces are assumed to M 5 Stress intensity factors
come into contact, the boundary conditions for the stress field ar '.0 versus c/a

given by the equations

K; and K, for b/a=1.0, d/a

®.,=0, ,=0, forr=b, |z|<o, (15)
=0, 70,=0, forr=d, |z<w=, (16)  where the expressions of the known functi®hgz) andu(z) are
c ¢ c _ ¢ f _ o 17 omitted. Equatior{23) can be solved for coefficients, by means
=Tz, =Tz, forr=c, <<, (17) ot the Schmidt methofi2], whereby the entire temperature field
Ww=u,, uS=uS,, for c=0, a<|z, 18) can be obtained.
a2 Tz 17 (18) Next, the stress field is obtained. Equatid®) shows that the
7,=0, 75,,=0, forr=c, |z|<a, (19) displacements are continuous outside the crack. To satisfy these

where superscripts, ¢, andd denote variables at=b, r=c, and the series

r=d, respectively.

4 Analysis
To obtain the solutions, we introduce the Fourier transforms

(&)= r f(z)exp(i £2)dz, (20)

f(z)=1/(2m) f_ f(&)exp(—i£2)dé. (21) for r=c,
=0 forr=c,

In order to satisfy Eq(14), the temperature difference atc
is expanded by the series

©

=0 forr=c, a<|z,

|z| <a,

conditions, the differences in the displacements are expanded by

w(uglfugz)zgldnsid2nsin*1(z/a)], for r=c, |z|<a,

(24)

m(uS—uS,) = Zl e, cog (2n—1)sin X(z/a)],

a<|z|,

a(TS=TS) =D, c,cod(2n—1)sin"Y(z/a)] for |z|<a, ,
= (22) =
m(T;—T5)=0 for a<|z|, -
wherec, are unknown coefficients and the superscdgtenotes ‘“,f
the values at=c. Then, as is easily shown, the boundary condi- ¢

tions with respect to the temperature field can be reduced to the =
form

> cFn(z)=—u(z), for 0<z<a, (23)
n=1

&, K))[Eafz o

Table 1 Material constants of steel

-1 i

E (GPa) 205.9 2 2.2 2.4 2
v 0.3
a(X1075/°C) 1.14
k[WIm°C)] 48.6 Fig. 3 Stress intensity factors K; and

=3.0 versus c/a
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K, for b/la=2.0, d/a
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C11=Cag=(1—v")E/[(1+v')(1-2v")],

o

Cip=Cia=V'E/[(1+7v")(1-2v")], @7)

Ca=El(1+7v"), Kki=k,=k, a;=a,=a.

<
2

The present analysis is based on orthotropic elasticity. This pre-
sents no problem in solving the temperature field for an isotropic
material; however, Eq7) has two kinds of multiple roots, and the
analysis is invalid for this case. However, if the valuesgfand

cq3 are replaced by values slightly larger than thosecgfand

C1o, the solutions presented in this paper are still effective. This
can be verified in the solution for a transversely isotropic material
[4—7]. Here, the following values are assignedctg andcs:

K Ky)[Eayn a"*(T, -T,)(d - b))

&

-1
3.2

Fig. 4 Stress intensity factors K; and K, for b/a=3.0, d/a

=4.0 versus cl/a
033=l.01>< Cll! C13= 1.01x ClZ' (28)
where d,,, e, are the unknown coefficients to be determined.

Then, as is also easily shown, the boundary conditions with re- o ) )
spect to the stress field can be reduced to the form The semi-infinite integrals which appearf(2) in Eqg. (23) and

those which appear i6,(2), H.(2), Ky(2), Ln(2), U(z), and
V(2) in Eq. (25) can be easily evaluated numerically by means of
Filon’s method, because the integrands decay rapidly as the inte-
gration variablef increases.

The Schmidt method has been applied to solve coefficients
in Eq.(23) andd,, e, in Eq.(25), truncating the infinite series to

> diGn(2)+ Y, eHn(2)=—U(2),
n=1 n=1 (25)

D daKn(2)+ 2, enln(z)=—V(x) for 0<z<a,
n=1 n=1

where the expressions of the known functioBg(z), H,(2),
Kn(2), Ln(2), U(2), andV(z) are omitted. Equatiof25) can be
solved for coefficientsl,,, e, by means of the Schmidt method
[3], whereby the entire stress field can be obtained.

5 Stress Intensity Factors
Since coefficientz,,, d,, e, are now known, the entire tem-

perature and stress fields can be obtained. In fracture mechanj
determining the stresses just ahead of the crack end is import%ndr
The stress singularities around the crack tip derive from the b

havior of the integrand when the integration variable assumes

infinite value. Therefore the stress intensity factors can be det

mined as follows:

Ki=[2m(z—a)]"?r,

rrllz—a+

= e(2n—1)(—1)"1Q5/(ma)
n=1 (26)

©

Ko=[2m(z—a)]"%,y], ar = >, dn(20)(—1)"Ql/(ma)?
n=1

where the expressions of the known consta@fsand Qj are
omitted.

6 Numerical Examples and Results

15 terms. The left-hand side of E¢R3) has been confirmed to
coincide with the right-hand side of E(R3). The same applies to
Eqg. (25. Namely, the boundary conditions inside the crack are
seen to have been completely satisfied.

(d—b)/a=1.0 is assumed. The results of the stress intensity
factors (K;,K,)/[EaymalX(T4—T,)/(d—b)] are plotted in
Figs. 2—4 for p/a=1, d/la=2), (b/la=2, d/a=3), (b/a=3,
d/a=4), respectively.

One the basis of the numerical calculations outlined above, we
can draw the following conclusions:

1) K; has a large value near=(d—b)/2, and becomes
aller as the crack approaches the outer surface or the inner
face. The value df, is considerably smaller than that Kf; ,
Snd its sign changes nee# (d—Db)/2. The value oK, has two
ks, which are located near the inner and outer surfaces of the

fbe, respectively. The predominant value of the stress intensity
factor isK, in the two-dimensional problem, whereas itkg for
a cylindrical crack in the axially symmetric problem.

(2) The peak value oK; nearr=(d—Db)/2 decreases slightly
with increasing diameter of the pipe, whereas the absolute values
of the two peaks oK, increase slightly.
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[7] Atsumi, A., and ltou, S., 1976, “Axisymmetric Thermal Stresses in a Trans-
versely Isotropic Circular Cylinder Having a Spherical Cavity,” ASME J.
Appl. Mech.,43, pp. 431-433.
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Benchmark Results for the Problem approximation is used. The unknown boundary parameters are

. approximated by complex Lagrange polynomials of the second
of Interaction Between a Crack degree. For the crack tip elements, square-root asymptotes are

H i used. The linear system is obtained by using a collocation formu-
and a Circular Inclusion lation, in which three collocation points on each element coincide
with the nodes of the Lagrange polynomials. In both methods, all
J. Wang, S. G. Mogilevskaya, and of the integrations are performed analytically.

S. L. Crouch
Department of Civil Engineering, University of . .
Minnesota, 500 Pillsbury Drive S.E., Minneapolis, 3 Results and D'SCQSS'O_n _ o
MN 55455, USA The problems under investigation are shown in Fig. 1. We refer
to the problem with the straight crack as case 1 and the one with
the curved crack as case 2. The elastic properties of the matrix and
) ) ) the inclusion areu,, v, andu,, v,, respectively. In both cases,
This paper is a reply to the challenge by Helsing and Jonssggilowing Helsing and Jonssdr], we takeu;=1,v,=0.35, and
(2002, ASME J. Appl. Mech69, pp. 88-90) for other investiga- ,,,=23, v,=0.30.
tors to confirm or disprove their new numerical results for the For case 1, we recompute the results in Table 1 in Rdfby
stress intensity factors for a crack in the neighborhood of a cifgsing both methods mentioned above. In the GBI method, the
cular inclusion. We examined the same problem as Helsing agflknowns are the complex coefficients involved in the truncated
Jonsson using two different approaches—a Galerkin boundary igeries. The number of terms of the complex Fourier series for the
tegral method (Wang et al., 2001, in Rock Mechanics in the Naclusion is 20 (n negative terms plus positive termg and the
tional Interest, pp. 14531460) (Mogilevskaya and Crouch, 2001,number of terms of the series of Chebyshev polynomials for the
Int. J. Numer. Meth. Eng.52 pp. 1069-1106) and a complex straight crack ism. In the CVBEM, the number of collocation
variables boundary element method (Mogilevskaya, 1996, Coppints isk. The numbers of degrees of freedom for the two meth-
put. Mech. 18, pp. 127138). Our results agree with Helsing ando(ds are 4+ 2m and X, respectively. The degrees of freedom are
Jonssons in all cases consideredDOI: 10.1115/1.1598473  chosen such that convergence to a fixed numerical result is ob-
tained. The stress intensity factors at the crack tips are normalized
by dividing them byoy+/7a. Our results for the normalized mode
. 1 and mode 2 stress intensity factdfs and F, at the left and
1 Introduction right crack tips from the above two metho@enoted by GBI and

Helsing and Jonssofl] recently initiated a discussion on theCVBE) are shown in Tables 1 and 2, together with the results
accuracy of benchmark tables and graphical results presente®li@ined by Helsing and Jonssph] (HJ) and Erdogan, Gupta,
the applied mechanics literature. They considered the problemaid Ratwan[5] (EGR.

a matrix crack interacting with an elastic inclusitfig. 1). Their It can be seen from Tables 1 and 2 that our results from two
converged results for the normalized stress intensity factors of téferent methods agree closely with Helsing and Jonsson’s for all
crack differed from those presented in papers by Erdogan, Guptalues ofc/a considered except for the caséa=3, where we
and Ratwan{5], and by Cheeseman and Santi8e In view of Dbelieve that the difference may be due to a mispfir., we

this discrepancy, the authors challenged other investigators to cBglieve that their result should be0.0035 rather thar-0.035.

firm or disprove their new results. As a response, we would like tthe results from the GBI method depend on the number of terms

participate in this discussion and present our numerical solutiofkthe truncated series. When the crack is not very close to the
to the same problems. inclusion, the method converges very fast and only a few terms of

the complex Fourier series and the series of Chebyshev polyno-
mials give accurate solutions. For the cases where the inclusion
and crack are very close to one another, many more terms are
needed to take into account the strong interaction between them.
2 Methods of Solution For example, 80 and 100 terms are needed in the Fourier series
. . _.and 20 terms in the series of Chebyshev polynomials to get the
We used two methods to solve the problem depicted in Figgymhtotic solution for the two most extreme cases witdee
1—a Galerkin boundary integraGBl) method[2,3] and a com- 5554 0.3, respectively. In the CVBEM, 696 and 870 colloca-
plex Va':]atéles bo_u(rj]dary delemerlnh metﬁ%avrl]?)EfM% [4]. Thgse c{ion points were required to get the converged results for these
two methods are independent, although both of them are baseq@l c4ses. We find that the GBI method involves approximately
a Comp"?x hypersingular integral equﬁ“ﬁﬁ written in terms of one-sixth as many degrees of freedom as the CVBEM. For the
the tractions on the boundary of the inclusion and the dlsplac§B| method the convergence of our results ForandF, at the
ment d'$C°”“”“'“¢S alo_ng the crack. In the GBI me_th_od, ”\%ft tip of the crack with the increase of the numimeis shown in
boundaries of the inclusion and the crack are not subdivided ”\{i‘?g 2 for the cases/a=1.0 and 0.5. It can be seen from these
elements; instead, global approximations are used for the Upi o that the convergence is much fasterdt@= 1.0 than for
known boundary parameters. The tractions along the boundaryC =0.5. Forc/a=2.0, Helsing and Jonssda] gave a 16-digit

the circular inclusion are represented by truncated complex FQige ence value oF , at the right tip of the crack computed with
rer series an_d the distributions O.f displacement .d'Scont'nu'ﬁlpproximately 600 discretization points. We obtained the first nine
along the straight crack are approximated by a series of Chelgis of that value with 20 terms in the Fourier series and 15
shev polynomials multiplied by a weight function, which take?erms in the series of Chebyshev polynomials.

”?30 a)ccountofhe crack tép asymptotics. A GalerKv;nllglghtedlre-b . For case 2, we recomputed the results shown in Fig. 2 in Ref.
sidua) procedure is used to construct a system of linear algebr ina the CVBEM. Eor the cireular inclusi 1
equations. In the CVBEM, the boundaries are discretized in ﬁ by using the C - For the circular inclusion, we used 100

: . ; cular arc elements foR.,/R=1.1 and 1.2 and 50 foR./R
small straight or circular arc elements, on each of which a |°C§|1_2, For the circular arc crack. the numbers of elements for

Comtibuted by the Abplied Mechanics Division ofiE A . different cases were chosen such that all of the elements on the
ontributed by the Applied Mechanics Division o MERICAN SOCIETY OF ; ;

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- inclusion and the EraCk have approximately the s.ame length. For
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Apr. 12,examp|e, forR./R=1.1, we had 48, 28, and ZQ circular arc ele-
2002; final revision, Feb. 22, 2003. Associate Editor: B. M. Moran. ments for #=75°, 6=45°, and #=30°, respectively. The stress
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Fig. 1 A straight (left) or circular arc (right) crack outside an inclusion under uniaxial or biaxial
tension. This figure corresponds to Fig. 1 in Ref. [1].
Table 1 Normalized stress intensity factors at the left tip of the o ]
straight crack 0. _Am
F F 060
cla GBI CVBE HJ EGR GBI CVBE HJ EGR 056 -]
0.3 0.236 0.234 0.235 0.225 0.074 0.073 0.073 0.072 ]
0.5 0.347 0.347 0.347 0.341 0.102 0.102 0.102 0.101 052
1.0 0.613 0.614 0.613 0.613 0.061 0.061 0.061 0.057 1 —h— ca=10
15 0.755 0.755 0.755 0.763 0.012 0.012 0.01:20.007 048 a=05
20 0830 0.830 0.830 0.845 0.018 0.018 0.0180.021 1
3.0 0936 0936 0.936 0.953 0.067 0.067 0.0670.001 i
40 1.003 1.003 1.003 1.014 0.079 0.079 0.079 0.002 044 -
8.0 1043 1.043 1.043 1.043 0.032 0.032 0.0320.026 ]
040
036 —:\h"ﬁ-bﬁk* .
0'32-I'I'I'I'I'I'Il'l'l
10 2 30 40 50 60 70 80 90 100
n
0.110
0.100 oot ¥ % ¥ *
. . . . . 0.090
Table 2 Normalized stress intensity factors at the right tip of —a— ca=10
the straight crack i 0.080 " =05
Fy F, 0.070
cla GBI CVBE HJ EGR GBI CVBE HJ EGR 0.060 il A
0.3 0.790 0.790 0.790 0.784-0.023 —0.023 —0.023 —0.004 0.050 T T T T
0.5 0.797 0.797 0.797 0.792-0.037 —0.037 —0.037 —0.006 50 60 70 8 9 100
1.0 0.817 0.817 0.817 0.8170.067 —0.067 —0.067 —0.005 n
1.5 0.833 0.833 0.833 0.839-0.074 —0.074 —0.074 0.008
gg 8289 828(7) 8388 888&8882 :8882 :8822 8833 Fig. 2 Convergence of F; and F, at the left tip of the straight
40 0947 0947 0947 0951 0.032 0.032 0032 0.11¢rack with increase of the number of terms of the Fourier series
8.0 1.022 1.022 1.022 1.020 0.032 0.032 0.032 0.088he dotted lines denote Helsing and Jonsson’s results for
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c/a=0.5 and 1.0)
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Table 3 Normalized stress intensity factors at the tips of the Table 1 in Ref.[1]. The comparison between the two methods
circular crack used in this investigation showed that the Galerkin boundary in-
tegral method is much more efficient than the collocation bound-

6=30 6=45 =75 ary element method.

R./R F, F, Fi. F, Fi, F,
1.1 0.919 1.494 0.928 1.393 0.955 1.363
1.2 0.944 1.353 0.962 1.285 1.009 1.281 References
15 0.961 1.202 0.990 1.159 1.056 1.160 [1] Helsing, J., and Jonsson, A., 2002, “On the Accuracy of Benchmark Tables
38 88;% i%gg 888% 1825 iggg igg;‘ and Graphical Results in the Applied Mechanics Literature,” ASME J. Appl.

: : : . : : : Mech., 69, pp. 88—90.
4.0 0.992 1.021 0.994 1.024 1.025 1.021 [2] Wang, J., Mogilevskaya, S. G., and Crouch, S. L., 2001, “A Galerkin Bound-
28 883? 18(1)3 888? ]1_8]1_2 igi; igig ary Integral Method for Nonhomogeneous Materials With Crackntk Me-

chanics in the National Interesb. Elsworth, J. Tinucci, and K. Heasley, eds.,
Balkema, Lisse, The Netherlands, pp. 1453—-1460.

[3] Mogilevskaya, S. G., and Crouch, S. L., 2001, “A Galerkin Boundary Integral
Method for Multiple Circular Elastic Inclusions,” Int. J. Numer. Methods Eng.,

) . . ) 52, pp. 1069-1106.

intensity factors are normalized by the corresponding values of4] Mogilevskaya, S. G., 1996, “The Universal Algorithm Based on Complex

the stress intensity factors in the absence of the inclusion. Our Hypersingular integral Equation to Solve Plane Elasticity Problems,” Comput.

; ; ; Mech., 18, pp. 127-138.
resu!ts for the normalized stress intensity facﬂé[sansz at the [5] Erdogan, F., Gupta, G. D., and Ratwani, M., 1974, “Interaction Between a
left tip Qf the Cr_aCk were plotted and found to be in good agree-"" circular Inclusion and an Arbitrarily Oriented Crack,” ASME J. Appl. Mech.,
ment with Helsing and Jonsson’s. We have tabulated our results 41, pp. 1007-1013.
(Tab|e 3 to make it easier for others to make comparisons_ [6] Cheeseman, B: A., and Sar?tar?, M. H., 2000, “The Interaction of a Curved
In this paper, we presented our numerical results for two proby, fict i & SRs Ciia, T el PR 0T gutar
lems involving interaction between a crack and a circular inclu-"" |negrals and Integral Equations in Plane Elasticity,” Acta Mechos,

sion. Our two independent calculations confirmed the results in  pp. 189-205.
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