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Energy Considerations in Systems
With Varying Stiffness
If the stiffness of an elastic system changes with time, a conventional Newtonian stat
of the equations of motion will generally lead to solutions that violate the fundame
mechanics principle that the work done by the external forces be equal to the increa
total energy of the system. Timoshenko’s discussion of the problem of a vehicle d
across an elastic bridge is generalized to show that energy conservation can be re
only if the local deformation of the components is taken into account in determining
direction of the contact force. This result has important consequences for the intera
of elastic systems in general, including, for example, the dynamic behavior of me
gears. @DOI: 10.1115/1.1574060#
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1 Introduction
If a mechanical system contains no energy sources or diss

tive mechanisms~such as friction or plasticity!, the work done by
the external forces must be equal to the increase in total pote
energy of the system. This principle is one of the pillars of m
chanics, but apparent counter examples can be produced i
system contains components whose stiffness changes with
This inconsistency is a clear indication that the problem is in so
sense ill-posed. In the present paper, we shall demonstrate tha
energy conservation principle will be satisfied in such cases o
if the local deformation of the components is taken into accoun
determining the direction of the contact force.

An important application in which the stiffness of a mechani
component varies with time concerns the meshing of two gear
this case, the meshing stiffness changes as the contact point m
over the gear teeth and at the point where an additional pa
teeth comes into contact or leaves contact. Other examples inc
a vehicle moving over an elastic bridge or a loaded system
which the elastic modulus of the material changes as a functio
temperature.

To introduce the subject, consider the simple case of a lin
spring of stiffnessk loaded by a forceF. The extension of the
spring,u, and the strain energy stored,U, are given by

u5
F

k
; U5

F2

2k
, (1)

respectively. If we now slowly change the stiffness of the spr
by an amountdk ~for example, by changing the temperature a
hence the elastic modulus of the material!, the forceF will do
work

dW5Fdu5F
]u

]k
dk52

F2dk

k2 , (2)

but the strain energy will increase by

dU5
]U

]k
dk52

F2dk

2k2 , (3)

so the system appears to violate the principle of conservatio
energy under a change of stiffness.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 1
2001; final revision, Dec. 16, 2002. Associate Editor: L. T. Wheeler. Discussion
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, De
ment of Mechanical and Environmental Engineering University of California–Sa
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months
final publication of the paper itself in the ASME JOURNAL OF APPLIED MECHAN-
ICS.
Copyright © 2Journal of Applied Mechanics
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In this example, the inconsistency will be resolved if the pro
lem is reformulated in the context of thermodynamics and
apparent energy deficit will be associated with an exchange
tween thermal and mechanical energy. However, similar proble
arise in purely mechanical problems, where the stiffness chang
due to kinematic effects. These effects are generally not explic
remarked in the literature. For example, the change in mesh
stiffness of involute gears is sometimes approximated by re
senting the meshing stiffness by a sinusoidal function,@1#. The
resulting equation of motion then takes the form of the Math
equation, which has domains of instability in which an initi
perturbation from the steady periodic state will grow expone
tially with time. Clearly this implies that the total energy increas
with time. However, the mean power at input and output are eq
and opposite, so the system as modeled violates the princip
conservation of energy.

2 A Cantilever Beam Problem
A simple example with a kinematically varying stiffness in

volves the cantilever beam of Fig. 1~a!, loaded by a transverse
force F at a distancex from the support. Elementary calculation
show that the displacement under the force and the strain en
are

u5
Fx3

3EI
; U5

F2x3

6EI
, (4)

respectively, whereEI is the flexural rigidity of the beam. If the
point of application of the force now moves fromx to x1dx, the
displacement will change by

du5
]u

]x
dx5

Fx2dx

EI
, (5)

allowing the forces to do work

dW5
F2x2dx

EI
. (6)

However, the corresponding change in strain energy in the b
is only

dU5
]U

]x
dx5

F2x2dx

2EI
. (7)

Alternatively, these results can be obtained from Eqs.~1!–~3! by
substitutingk53EI/x3.

This paradox is related to that remarked by Timoshenko
others,@2–6#, in connection with the vibration of beams subject
moving transverse loads. If a vehicle drives across a bridge s
ported at both ends, the gravitational force does no net work, s
the vehicle leaves at the same vertical level as it enters, bu

6,
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art-

nta
after
003 by ASME JULY 2003, Vol. 70 Õ 465
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general the bridge will be left in a state of vibration and hence w
be in a higher energy state than it was before the transit. Wh
does the extra energy come from?

Timoshenko resolved the problem by noting that the instan
neous motion of the vehicle is not horizontal because of the
flected shape of the bridge. It follows that the brakes or the eng
must be engaged to ensure a constant transit speed and this
duces additional energy terms. This argument can be applie
our cantilever beam problem by introducing the modified syst
of Fig. 1~b!, in which the force is transmitted to the beam throu
a roller. If the roller is frictionless, it can be retained in equili
rium only by the application of a tangential force

FT5F tanu, (8)

where

tanu5
Fx2

2EI
(9)

is the slope of the beam at the point of application of the force
the roller in Fig. 1~b! moves a distancedx to the right, an amount
of work

dWT5FTdx5
F2x2dx

2EI
(10)

will be done against the forceFT and the inclusion of this term
completes the energy balance

dU5dW2dWT . (11)

Lee @3# showed that the same conclusion could be achie
without recourse to arguments from contact mechanics. We a
the notion of Lee~who uses a convected time derivative! to the
quasi-static case under consideration here. We decompose th
tion of the force into two processes. In the first phase, the bea
‘‘frozen’’ in its deformed state while the force moves fromx to
x1dx. During this phase, the force moves a distancedu1
5dx tanu and hence does work,

dW15Fdu15Fdx tanu5
F2x2dx

2EI
, (12)

but none of this work is communicated to the beam. In the sec
phase, the beam is allowed to relax to its new equilibrium po
tion. The additional displacement of the force isdu25du2du1
and the work done during this phase

Fig. 1 „a… The cantilever beam loaded by a normal force, „b…
the same beam loaded through a frictionless roller
466 Õ Vol. 70, JULY 2003
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dW25Fdu25
F2x2dx

2EI
(13)

is communicated to the beam and results in the increase of s
energydU.

Notice that if the direction of motion is reversed, the quant
dW1 will be negative, showing that an external source of energ
required in phase 1 to move the force over the ‘‘frozen’’ beam

Of course, in a real physical application, the workdW1 cannot
simply be lost to or generated from a fictitious energy source
any practical realization of the problem will bring us back into t
realm of contact mechanics.

3 A More General Case
Figure 2 shows a more general elastic structure loaded b

normal forceF at a point on the boundary characterized by
curvilinear coordinatex. We assume that strains and rotations a
small, but the elastic behavior is not necessarily linear. We a
assume that the force produces a bounded displacement a
point of application. This restriction will be removed for the line
case in Section 4.

We define the normal displacement at a general point on
boundaryx5j as

u5u~F,x,j!, (14)

in which case the local rotation of the deformed surface is

u~j!5
]u

]j
~F,x,j!. (15)

We also define the functions

f ~F,x![u~F,x,x!; g~F,x!5u~F,x,x!, (16)

which are the normal displacement and rotation at the poin
application of the force.

The strain energy in the structure can be found by applyingF
gradually, keeping its location fixed. It is therefore given by

U~F,x!5E
0

F ]u~F,x,x!

]F
FdF5E

0

FS ] f

]F DFdF. (17)

If, following Timoshenko’s scenario, the force is applied throu
a frictionless roller, we shall require a restraining force

FR5Fu~F,x,x!5Fg~F,x!. (18)

If the roller is now allowed to move a distancedx, the forceF
will do an increment of work

dW5F
] f

]x
dx, (19)

but FR will have work done against it equal to

Fig. 2 General elastic structure loaded by a normal contact
force
Transactions of the ASME
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dWR5FRdx5Fg~F,x!dx. (20)

Thus, the net work done on the structure will be

dW2dWR5S F
] f

]x
2FgD dx. (21)

Equating this to the increase in strain energy in the structure,
obtain

]U

]x
5F

] f

]x
2Fg5E

0

FS ]2f

]F]xDFdF, (22)

from Eq. ~4!. Differentiating with respect toF, we then obtain

F
]2f

]F]x
5F

]2f

]F]x
1

] f

]x
2g2F

]g

]F
(23)

and hence

] f

]x
2g2F

]g

]F
50, (24)

which defines a relationship between the displacement and
slope of the structure which must be satisfied if energy is to
conserved during the process.

Alternative Proof. An alternative proof of this result can b
obtained by invoking the incremental form of Maxwell’s recipr
cal theorem,@7#, for small perturbations about the reference st
where the forceF is applied atx, producing displacementu and
rotationu.

Moving F by a distancedx is equivalent to adding an infini
tesimal momentdM5Fdx at x. The response of the structure ca
be linearized for small perturbations about the reference s
leading to the relation

]u

]M
5

]u

]F
5

]g

]F
. (25)

Following Lee’s argument above, we consider the displacem
due to the motion of the force fromx to x1dx as the sum of two
parts. Freezing the beam in its deformed shape, we havedu1
5u(F,x,x)dx after which relaxation to the new equilibrium po
sition gives an additional displacementdu2 associated with the
momentFdx. The total displacement of the force along its line
action is therefore

u~F,x,x!dx1
]u

]M
Fdx5g~F,x!dx1

]g

]F
Fdx, (26)

but this displacement is also given by

] f

]x
dx,

giving

] f

]x
5g1F

]g

]F
(27)

as before.

4 Distributed Forces
In problems of linear elasticity, the displacement field due t

concentrated force is singular at the point of application of
force and hence the functionsf, g of the previous section are no
well defined. However, the concentrated force solution can stil
used as a Green’s function to define the effect of a distribu
force by superposition. Consider the case where Fig. 2 repres
a two-dimensional linear elastic body and suppose that a con
trated normal forceF at x produces a normal displacementu at j,
where

u~j!5Fũ~x,j!. (28)
Journal of Applied Mechanics
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Now consider the case where the force is distributed in the vic
ity of x, with intensity

p~x1r !5F f ~r !, (29)

where the distribution functionf (r ) is nonzero only in2c,r
,c and is normalized so that

E
2c

c

f ~r !dr51. (30)

The displacement due to this distribution can now be written
superposition as

u~j!5FE
2c

c

ũ~x1r ,j! f ~r !dr (31)

and the local slope is

u~j!5
]u

]j
5FE

2c

c ]ũ

]j
~x1r ,j! f ~r !dr. (32)

The stored strain energy is

U5
1

2 Ex2c

x1c

u~j!p~j!dj

5
F2

2 E
2c

c E
2c

c

ũ~x1r ,x1s! f ~r ! f ~s!drds, (33)

writing j5x1s. If the distributed force is now displaced a dis
tancedx, the increment in strain energy will be

dU5
]U

]x
dx

5
F2dx

2 E
2c

c E
2c

c S ]ũ

]x
1

]ũ

]j D ~x1r ,x1s! f ~r ! f ~s!drds.

(34)

The additional work done by the normally directed distribut
force during this motion is

dW5dxE
x2c

x1cS u~j!1
]u

]x
~j! D p~j!dj

5F2dxE
2c

c E
2c

c S ]ũ

]x
1

]ũ

]j D ~x1r ,x1s! f ~r ! f ~s!drds,

(35)

which is exactly twice the increment of strain energy. The rema
ing work is required to overcome the implied tangential restra
ing forceFT , which is the resultant of tractions equal and opp
site to the component ofp parallel to thedeformedsurface and is
given by

FT5E
x2c

x1c

u~j!p~j!dj

5F2E
2c

c E
2c

c ]ũ

]j
~x1r ,x1s! f ~r ! f ~s!drds. (36)

Notice that from Maxwell’s reciprocal theorem we have

ũ~x,j!5ũ~j,x!;
]ũ

]j
~x1r ,x1s!5

]ũ

]x
~x1s,x1r ! (37)

and hence

E
2c

c E
2c

c ]ũ

]j
~x1r ,x1s! f ~r ! f ~s!drds

5E
2c

c E
2c

c ]ũ

]x
~x1r ,x1s! f ~r ! f ~s!drds, (38)
JULY 2003, Vol. 70 Õ 467
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on interchanging the dummy variabless, r. Using this result in
Eqs. ~34!, ~35!, we see that the system satisfies the principle
conservation of energy1 if and only if we include the contribution
of the tangential forceFT .

5 Implications in Contact Mechanics
These results show that in systems with kinematically vary

stiffness, the direction of the contact forces or tractions mus
chosen to be normal to thedeformedcontact surface in a Newton
ian statement of the problem if energy conservation is to be
served. This contradicts the conventional wisdom in contact
chanics, where the direction of the contact forces is referred to
undeformed configuration of the contacting bodies.

For dynamic systems involving moving contacts such as
meshing of two gears, failure to include this effect will genera
lead to equations of motion that are incorrect because their s
tion violates the fundamental principle that the work done by
external forces equal the change in total potential energy of
system.

Figure 3 shows a simple illustrative example in which a ‘‘gea
comprising a flexible beamO1A rotates clockwise at constan
speedV about a centerO1 that is fixed in space. The rod drives
rigid pin B mounted on a rigid disk which rotates about cen
O2 . If O1 , O2 are not coincident, the effective lengthO1B of the
beam will vary with angular position, leading to a kinematica
varying stiffness.

The beam support can be brought to rest by superposin
counterclockwise rigid-body rotationV on the whole system. The
disk will then be seen to execute a more complex motion wh
effect however is merely to cause the pinB to slide quasi-
sinusoidally along the beam. The results of Section 2 there
show that the correct~energy conserving! equations of motion for
this system will be obtained only if the local slope of the deflec
beam is taken into account in determining the direction of
transmitted force and hence the torque transmitted by the
O2B.

5.1 Involute Gears. Similar considerations apply to th
more complex system of the meshing of two involute gears. O
again, there will generally be a variation of effective stiffness
the contact point moves along the surfaces of the two mes
teeth. However, most gear systems will have a noninteger con
ratio, implying that the number of teeth in contact changes dur
the meshing cycle, resulting in a major change in contact stiffn
The present energy arguments show that there must be a su

1Notice that for an elastic body, the tangential forceFT will also induce a local
tangential deformation, but the associated work term is of second order relati
those considered above.

Fig. 3 Simple gear system using the cantilever beam of Fig. 1
468 Õ Vol. 70, JULY 2003
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input of energy to the system at the point where the numbe
teeth in contact~and hence the total contact stiffness! increases
and a sudden removal of energy when itdecreases. The only
external forces acting on the system that do work are the input
output torques, so we must conclude that there will be a sign
cant change in the instantaneous torque ratio of the gears du
these transitions, associated with the change in the line of ac
of the contact forces due to gear tooth deformation. The read
invited to conduct a ‘thought experiment’ in which the outp
~reaction! torque is held constant and the input shaft is rotated
extremely slow speed. A significant spike will be needed in
input torque to force an extra tooth into contact. By contrast, wh
a tooth leaves contact, the input shaft will tend to spring ahea

To explain this result, notice first that the tooth deflecti
causes a relative rigid-body motion of the gears, so at the p
where an additional tooth would theoretically come into contac
a result of involute action, the new unloaded tooth would actua
be in a position implying interpenetration. This is illustrated
Fig. 4 for a deformable gear meshing with a rigid rack. As a res
the contact of the new tooth will actually start before the theor
cally correct point and it will involve contact of the noninvolut
corner of the rack~Point A in Fig. 4! with the flank of the tooth.
The line of action of the transmitted force will deviate conside
ably from the theoretical pressure line during this engagem
period as a consequence of local tooth deformation. The ana
of this problem would be geometrically complex, but the resu
of Sections 3 and 4 show that the use of the true direction of
contact force would lead to the same result as the simpler ene
based analysis.

The tooth engagement period represents only a small propo
of the tooth period and an acceptable idealization in many cas
to assume it is instantaneous, leading to discontinuities~jumps! in
stiffness. However, this implies the occurrence of discontinuit
in strain energy and energy conservation requires correspon
discontinuities in kinetic energy and hence in rotational spe
The implications of these discontinuities for the dynamics of
volute gear sets will be discussed in a separate paper,@8#.

6 Conclusions
In this paper we have shown that a conventional statemen

the equations of motion for a system with kinematically varyi
stiffness will generally lead to a solution that violates the fund
mental mechanics principle that the work done by the exter
forces be equal to the change in total potential energy of
system. We cannot emphasize too strongly that such equation
motion are therefore incorrect.

To obtain a correct statement of the governing differential eq
tions, it is necessary to allow for the local deformation of t
components in determining the direction of the contact forces
tractions. This result, which is a generalization of the ‘‘Timos

e to

Fig. 4 A flexible involute gear meshing with a rigid rack
Transactions of the ASME
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enko paradox,’’ applies even in small strain problems where
problem statement is conventionally referred to the undeform
configuration.
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On the Strain Saturation
Conditions for Polycrystalline
Ferroelastic Materials
A phenomenological constitutive law is developed for the deformation of polycrysta
ferroelastic materials. The model is framed within a thermodynamic setting commo
internal variable plasticity. The two significant inputs to this model are a switching (yi
surface, and a hardening potential. To maintain simplicity, the shape of the switc
surface is assumed to be spherical in a modified deviatoric stress space. In ord
ascertain the functional form of the hardening potential, micromechanical self-consi
simulations of multiple single crystals, with tetragonal crystal structure, embedded i
effective polycrystalline matrix, are performed for differing loading paths in reman
(plastic) strain space. As a result of the asymmetry in the tension versus compre
behavior of these materials, it is shown that pure shear loading does not result in
shear straining. This feature of the material behavior is demonstrated with the
consistent simulations and predicted by the phenomenological constitutive law.
mately, the phenomenological theory is able to capture the complex constitutive beh
of ferroelastic materials predicted by the micromechanical model.
@DOI: 10.1115/1.1600472#
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1 Introduction
Many smart materials, including ferroelectrics and sha

memory alloys~below the martensite finish temperature,M f),
have a noncubic crystal structure. The simplest of these struct
is tetragonal, but other structures such as rhombohedral and o
rhombic exist in technologically useful ferroelectrics with chem
cal compositions near a morphotropic phase boundary. A sig
cant feature of these materials is that they exhibit irrevers
deformation through a switching mechanism, e.g., a tetrago
variant oriented in thex direction can switch its orientation to th
y direction. In shape memory alloys belowM f this switching is
termed twinning and detwinning or twin reorientation. In all cas
this type of switching, when it is induced by applied mechani
stress, is called ferroelasticity.

An interesting feature of ferroelastic deformation is that th
exists an asymmetry in the uniaxial tension and uniaxial comp
sion behavior@1–3#. In general, larger irreversible strains can
attained in tension than in compression~for the common case
when thec-axis of the unit cell is longer and thea-axes!. Con-
sider a single crystal of tetragonal material. Assume that this c
tal consists of equal quantities of three tetragonal variants a
lustrated in Fig. 1~a!, i.e. one third of the crystal has thec axis
aligned in thex direction, one third in they, and one third in the
z. Within the crystal the variant types are divided into domai
with each domain separated by a domain wall or twin bound
~the terminology used depends on the material in considerati!.
If we assume that the strain state of a variant with itsc axis
aligned in thex, y, and z directions are given as«xx5«0 ,
2«0/2,2«0/2, «yy52«0/2,«0 ,2«0/2 and«zz52«0/2,2«0/2,«0
respectively, then the initial volume averaged strain of the en
crystal vanishes. Now, apply a tensile stress in thex direction.
This stress will do positive work if the variants aligned in they
andz directions switch their orientations towards thex direction.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 2
2002; final revision, Dec. 10, 2002. Associate Editor: H. Gao. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departme
Mechanical and Environmental Engineering University of California–Santa Barb
Santa Barbara, CA 93106-5070, and will be accepted until four months after
publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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Generally, the mechanism for switching is the motion of dom
walls/twin boundaries. Switching will proceed until all of the var
ants are aligned in thex direction, leaving the crystal with a strai
of «xx5«0 , «yy52«0/2 and «zz52«0/2. Now, if we apply a
compressive stress in thex direction, the stress will be able to d
positive work if the variants oriented in thex direction switch to
either they or z directions. Furthermore, the amount of work do
by either of these switches is identical. In general, the ex
switching sequence will depend on the geometry of the dom
walls; however, if the crystal is large enough it is reasona
to expect that the final state of the crystal will have half
its variants aligned in they direction and half in thez. Therefore,
in compression the averaged strain state of the crystal is«xx
52«0/2, «yy5«0/4, and«zz5«0/4. Hence, for the single crysta
loaded along any of itŝ100& directions the maximum irreversible
tensile strain is«0 and the maximum compressive strain is2«0/2,
as illustrated in Fig. 1~b!.

This observation has led some researchers to propose a sa
tion condition for ferroelasticpolycrystalsbased on a minimum
principal remanent strain criterion@4–6#; namely, that the mini-
mum principal remanent strain in the material can never be
than 2«0/2. This criterion leads to a tension-compression asy
metry ratio of 2:1 for the polycrystal loaded in any directio
More sophisticated models that treat the polycrystal as an ag
gate of single crystals have found this asymmetry ratio to be ab
1.37:1 @7–9#. Such a model will be used in this work to invest
gate the entire range of strain saturation conditions. For exam
what is the maximum value of pure shear remanent strain that
be achieved? After the presentation of the micromechanical si
lations a phenomenological model for ferroelasticity will be d
veloped and compared to predictions from the micromechan
model.

2 Micromechanical Computations
The micromechanical model for the polycrystalline behav

implemented here is identical to the model presented in Ref.@10#
without the effects of electric field. Furthermore, this model
analogous to the Hill-Hutchinson model@11–15# for polycrystal
plasticity. The fundamental components to this model are a
gent constitutive law for the single crystals and a self-consis
averaging method to predict the properties of the polycrys

9,
the
nt of
ara,
nal
03 by ASME Transactions of the ASME



Journal of
Fig. 1 „a… The three possible orientations of tetragonal variants within a single crystal. Different variants
within a single crystal will be separated by a domain wall or twin boundary. „b… The uniaxial stress-strain
response of a model single crystal loaded along any of the Š100‹ directions. Notice the asymmetry in
tension versus compression.
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Each single crystal has a unique orientation and is treated
spherical inclusion embedded in an infinite matrix. The tang
properties of the matrix are taken to be a self-consistent ave
of the incremental behavior of all of the single crystals. Hence
stress or strain history can be applied to the polycrystal and
model can be used to determine the corresponding strain or s
history.

The single crystal constitutive law is analogous to continu
slip plasticity models with the added effect of strain saturation
order to derive the single crystal constitutive law it is assum
that the stress within the single crystal is uniform and both
total strain and the remanent strain are the volume averages
the entire crystal. Note that by assuming the stress within
single crystal is uniform, we are neglecting elastic interactio
between domains in the crystal. As illustrated in Fig. 1~a!, three
tetragonal variants can exist in each single crystal. Hence,
strain, remanent strain, and elastic compliance of the single cry
are

« i j
sc5(

I51

3

cI« i j
(I) , « i j

r ,sc5(
I51

3

cI« i j
r (I) , and si jkl

sc 5(
I51

3

cIsi jkl
(I) ,

(2.1)

wherecI represents the volume concentration of theI th variant.
Then, the remanent strains of each of the variants are given

« i j
r (1)5«0~3d i1d j 12d i j !/2,« i j

r (2)5«0~3d i2d j 22d i j !/2,

and

« i j
r (3)5«0~3d i3d j 32d i j !/2, (2.2)

where the 1, 2, and 3 coordinate directions are parallel to the^100&
crystal directions,d i j is the Kronecker delta, and«0 has the
same meaning as that for the discussion in the Introduction,
can be given in terms of the lattice parameters as«052(c
2a)/(c12a). With these definitions of the remanent strains f
the individual variants, the remanent strain of the entire cry
will be zero if there are equal volume concentrations of each
the variants.

In order to determine how the volume concentrations of
variants can change with applied loading, we will first consid
the free energy of the crystal. Under isothermal conditions,
Helmholtz free energy of the single crystal,Csc, is equal to the
stored elastic energy of the crystal and is given as
Applied Mechanics
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Csc5
1

2
ci jkl

sc ~« i j
sc2« i j

r ,sc!~«kl
sc2«kl

r ,sc! with

ci jkl
sc 5~si jkl

sc !21 and s i j
sc5

]Csc

]« i j
sc 5ci jkl

sc ~«kl
sc2«kl

r ,sc!. (2.3)

Note that the elastic compliance of the crystal, and hence
elastic stiffness, are allowed to change as the volume conce
tions of the variants changes. The dissipation rate in the sin
crystal is given as the work rate due to applied stresses minus
free energy rate. By applying the previously stated assumpt
and an appropriate Legendre transformation, the dissipation
can be shown to be

ẇD5s i j
sc«̇ i j

sc2Ċsc5s i j
sc«̇ i j

r ,sc1
1

2
ṡi jkl

sc s i j
scskl

sc

5(
I51

3

ċIS s i j
sc« i j

r (I)1
1

2
si jkl

I s i j
scskl

scD . (2.4)

Note that six different switching transformations are possible, i
each of the three variants can switch to the other two. Furth
more, if a transformation is occurring, then the volume concen
tions of the variants being switched to and from increase
decrease, respectively, at exactly the same rates. By appl
these facts, it is then possible to rewrite the dissipation rate
define the transformation driving forces,Ga, as

ẇD5(
a51

6

ḟ aS s i j
scD« i j

r (a)1
1

2
Dsi jkl

a s i j
scskl

scD
5(

a51

6

ḟ aGa, where Ga[s i j
scD« i j

r (a)1
1

2
Dsi jkl

a s i j
scskl

sc .

(2.5)

Here,a numbers the six possible transformation systems and
D represents the difference in the following quantity between
variant being transformed to and that being transformed from.
example, takea51 to represent the transformation from variant
to variant 2. Then,D« i j

r (a51)53«0(d i2d j 22d i1d j 1)/2 ~note that
this is a pure shear strain!, Dsi jkl

a515si jkl
(I52)2si jkl

(I51) and the volume
JULY 2003, Vol. 70 Õ 471
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concentration rates areċ(I51)52 ḟ (a51) and ċ(I52)5 ḟ (a51). Note
that in generalsi jkl

(I51) andsi jkl
(I52) will be different due to differences

in the orientations of thec axis of each variant.
It is assumed that if a quantity of a given variant exists, i

cI.0, then it is possible to incrementally switch that variant in
one of the other two variants. Furthermore, this switching betw
variants is assumed to occur only if such a transformation res
in a characteristic rate of nonnegative dissipation. Specificall
transformation system is potentially active if

Ga53t0«0→ ḟ a>0 (2.6)

and the transformation system is inactive if

Ga,3t0«0→ ḟ a50. (2.7)

If we neglect changes in the elastic properties, then the phys
interpretation of Eq.~2.6! is as follows; when the resolved she
stress on a transformation system reaches the critical reso
shear stress,t0 , then transformation is allowed to occur on th
system. Note that if the volume fraction of a given variant va
ishes, then the transformation systems that reduce the quant
that variant cannot be activated. This feature enables the mod
account for strain saturation at the single crystal level. In
absence of hardening of the transformation systems, i.e.,t0 re-
mains fixed during switching, the single crystal constitutive la
requires the following inputs: the elastic properties of a sin
tetragonal variant, the critical resolved shear stress to ind
transformationt0 , and the lattice parameters of a tetragonal va
ant that determine«0 .

From Eqs.~2.1!–~2.7! it is a mathematical exercise to dete
mine the transformation rates,ḟ a, in terms of the applied strain
rates, and then forms for the single crystal tangent moduli foll
This procedure will not be given here, but it is presented clearl
Ref. @10#. The resulting uniaxial stress-strain response of
single crystal loaded in any one of the^100& directions is given in
Fig. 1~b!. Note however, that the single crystal response is an
tropic, and loading along other directions will yield different b
haviors. For example, uniaxial stress applied in any of the^111&
directions does not create a driving force on any of the trans
mation systems, and hence^111& loading will result in a perfectly
linear elastic response of the crystal.

Using the single crystal constitutive law described above
self-consistent model is applied to compute the overall stre
strain behavior for a polycrystal. For conceptual simplicity t
polycrystal is viewed as an infinite collection of randomly o
ented single crystals subjected to homogenous states of stres
strain. The Cartesian components of the macroscopic stress
strain increments of the polycrystal are taken to be the volu
averages of the Cartesian components of the corresponding s
and strain increments in the single crystals. Each individual sin
crystal region is modeled as a spherical inclusion embedded i
infinite effective mediummatrix. The tangent stiffness of the e
fective medium is taken to be that of the polycrystal. Since nei
boring grains are not modeled explicitly, the constraint inter
tions between grains are not determined directly in this mo
Instead, each grain is constrained by the effective medium ma
and in this sense the model accounts for grain-to-grain constra
in an averaged sense. Ultimately, the stress and strain state in
single grain will depend on the applied loading history and
orientation of the crystal. For more details of both the single cr
tal constitutive law and the self-consistent averaging method
reader is referred to Refs.@10–15#.

Note that in Eqs.~2.1!–~2.5! the quantitiess i j
sc , « i j

sc , and« i j
r ,sc

were used to represent stress, strain, and remanent strain
single crystal. Throughout the remainder of this paper,s i j , « i j ,
and« i j

r will be used to represent stress, strain, and remanent s
in a polycrystal. To isolate the behavior of the polycrystal satu
tion, the elastic properties of a single tetragonal variant were ta
to be isotropic in this study, with shear modulusm and Poisson’s
472 Õ Vol. 70, JULY 2003
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ratio n. Then, a dimensional analysis of the governing equati
implies that the predictions of the model for the normaliz
stressess i j /t0 versus the normalized strains« i j /«0 will only de-
pend on the dimensionless parametersm«0 /t0 andn. The goal of
this investigation is to map out the saturation conditions for re
anent strain states between axisymmetric extension and axis
metric contraction. To do this the following remanent strain
variants are introduced:

J2
e5S 2

3
ei j

r ei j
r D 1/2

and J3
e5S 4

3
ei j

r ejk
r eki

r D 1/3

. (2.8)

Here ei j
r is the remanent strain deviator,ei j

r 5« i j
r 2d i j «kk

r /3. Of
course, since the deformation processes of the single crystal
volume conserving, recall that the transformation strains are p
shears and therefore«kk

r 50; we haveei j
r 5« i j

r and the introduction
of the remanent strain deviator appears to be unnecessary. H
ever, the theory presented in the next section will require der
tives of these invariants, and the derivatives will be affected
this distinction. With the definition of these two invariants, a fu
range of remanent strain saturation states can be probed by a
ing the ratio ofJ3

e/J2
e to vary from21 ~axisymmetric contraction!

to 0 ~pure shear! to 1 ~axisymmetric extension!. If we consider
any volume conserving remanent strain in the principal directio
then the remanent strain tensor andJ3

e/J2
e can be written as

« r5S « r 0 0

0 b« r 0

0 0 2~11b!« r
D and

J3
e

J2
e 5

2)~b1b2!1/3

41/6A11b1b2
sgn~« r !, (2.9)

whereb can be any arbitrary constant. In other words, every m
tiaxial volume conserving remanent strain state can be descr
by the ratio of these two invariants, and this ratio will always
in the range21<J3

e/J2
e<1.

Next, consider the problem of finding the saturation conditio
for a pure shear remanent strain. At first, one might attempt to
this condition by applying a pure shear stress or pure shear
strain to the model polycrystalline material. However, as will
shown, such a procedure will not produce a pure shearremanent
strain state. Due to the material’s ability to deform more in tens
than in compression, the ratio ofJ3

e/J2
e will approach 1 as an

applied pure shear stress is increased. Therefore, it is necess
devise a more sophisticated scheme for probing the range
J3

e/J2
e . Within the self-consistent model, the tangent moduli of t

polycrystal,ci jkl
t , are computed at each increment in the loadi

process. This knowledge of the instantaneous tangent modu
lows for the adjustment of the loading path in applied stress sp
such that the ratioJ3

e/J2
e remains constant during the entire loa

excursion. More specifically, by manipulating the relationships

ṡ i j 5ci jkl ~ «̇kl2 «̇kl
r !5ci jkl

t «̇kl (2.10)

the appropriate stress or strain increments that are requ
to maintain a constant ratio ofJ3

e/J2
e during loading can be

determined.
Figure 2 plots a set of results for the normalized effective stre

se /t0 , versus the normalized effective remanent strain,J2
e/«0 ,

for the dimensionless material ratios ofm«0 /t052.36 andn
50.22. Note that the effective stress is defined as

se5S 3

2
si j si j D 1/2

, where si j 5s i j 2
1

3
skkd i j . (2.11)

Each plot on Fig. 2 represent a different loading path that w
prescribed in such a way that the ratio of the remanent st
invariants,J3

e/J2
e , remained constant throughout the loading. T
Transactions of the ASME
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inset contains an expanded view of the region excluded from
main graph. Note that a material with a switching~yield! surface
described solely by the stress invariantse and a hardening behav
ior dependent only on the remanent strain invariantJ2

e would have
curves on this graph that are independent of the ratioJ3

e/J2
e . At

small remanent strains,« i j
r ,0.15«0 , the saturation behavior o

the single crystals has not fully developed and has little effect
these stress-strain curves. In fact, the differences in the cu
appearing on the inset figure arise primarily due to the fact that
switching surface for the model material follows a Tresca criter
@15#. As the remanent strain continues to increase, the satura
behavior of the single crystals begins to have an effect on
polycrystal, with the stress having to increase dramatically in
der to cause further remanent straining. Ultimately, for each l
path J2

« approaches some limiting value. The saturation val
range from 0.40«0 for axisymmetric contraction to 0.55«0 for
axisymmetric extension. These values are in agreement with o
models with similar transformation system switching criteria, b
less sophisticated polycrystalline averaging techniques@7–9#.

In order to illustrate the effects of the dimensionless ra
m«0 /t0 ; Fig. 3 plots the normalized effective stress versus
normalized effective remanent strain in a uniaxial compress
test for three values ofm«0 /t0 . Note that the curvature in the
transition from J2-like deformation to saturation is larger a
m«0 /t0 decreases for these normalizations. Also note that
ultimate saturation level of remanent strain is the same for e
level of m«0 /t0 . The saturation strains are ultimately a functio
of the underlying crystal structure geometry; hence it is to
expected that the saturation levels of remanent strain are inde
dent of the elastic properties of the material. In general, for
given untextured polycrystal, the saturation strain will depe
only on the crystal structure of the variants, the switching criter
for the transformation systems, and the remanent strain inva
ratio J3

e/J2
e . Hence, the results for the saturation strain level to

presented in Fig. 4 are universally valid for tetragonal mater

Fig. 2 Self-consistent computations of the deformation behav-
ior of the ferroelastic material for different proportional rema-
nent straining paths. The stresses are normalized by the criti-
cal resolved shear stress required to cause switching and the
effective remanent strains are normalized by the tensile satura-
tion strain of a single crystal. Note that J 3

eÕJ 2
eÄÀ1,0,1 repre-

sents axisymmetric contraction, pure shear remanent strain,
and axisymmetric extension, respectively. The inset is an ex-
panded view of the region cut off from the larger plots. Note the
lack of tension-compression asymmetry for small strains, but
the significant asymmetry of the saturation strains.
Journal of Applied Mechanics
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with thec axis longer than thea axis and transformation allowed
at a critical resolved shear stress on the transformation syste

Lastly, Fig. 4 plots the saturation strain values for the mo
polycrystalline material versus the remanent strain ratioJ3

e/J2
e .

This result is the key component from these micromechan
simulations that will be applied to the phenomenological the
for ferroelastic switching presented in the next section. Figur
illustrates the entire range of multiaxial remanent strain states
are possible in the model material. Specifically, the region be
the curve represents strain states that are achievable, and th
gion above the curve consists of unattainable remanent stra
Again, the observations that the low remanent strain region
relatively independent ofJ3

e/J2
e , and the saturation levels o

Fig. 3 Self-consistent computations of the uniaxial compres-
sion deformation behavior of the ferroelastic material for differ-
ent levels of the dimensionless ratio m«0 Õt0 . Note that the
saturation strain for each test is the same but the shape of the
stress-strain curve differs.

Fig. 4 The effective saturation strain level as a function of the
remanent strain invariant ratio J 3

eÕJ 2
e . Note that J 3

eÕJ 2
eÄÀ1,0,1

represents axisymmetric contraction, pure shear remanent
strain, and axisymmetric extension respectively. This figure il-
lustrates the anisotropic nature of the material in response to
tension versus compression.
JULY 2003, Vol. 70 Õ 473
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remanent strain are dependent onJ3
e/J2

e will be used to devise a
phenomenological constitutive law for these materials in the n
section.

3 Phenomenological Model for a Polycrystalline Mate-
rial

The phenomenological model follows the general formulat
developed for ferroelectric materials developed in Ref.@6#. Here
we will focus only on purely ferroelastic behavior. Hence th
model applies to unpoled ferroelectric materials loaded only
applied stress and not by electric field. The model also applie
twin reorientation in shape memory alloys below the marten
finish temperature. The model will be cast within an isotherm
rate independent, small deformation framework. The primary
sumption of the model is that the internal state of the material
be entirely characterized by the remanent, i.e., irreversible, st
state of the material« i j

r . Hence, we introduce the Helmholtz fre
energy per unit volume of the polycrystalline material,C, as

C5Cs~« i j ,« i j
r !1C r~« i j

r !. (3.1)

Here,Cs represents the stored elastic energy per unit volume« i j

are the components of the total strain, andC r represents a contri
bution to the free energy associated only with the internal stat
the material. The following development of the phenomenolog
theory will demonstrate thatC r gives rise to ‘‘back stresses.’’ It is
generally accepted@16–18# that the physical mechanism for bac
stresses is the existence of residual stresses in the material d
inhomogeneous remanent/plastic strain from grain to grain,
‘‘locked-in’’ energy @18#. Therefore, the physical interpretation o
C r is that it accounts for the stored energy due to the inter
residual stresses in the material.

Note that the elastic properties of the material can depend
the remanent strain state. For example, an initially unpoled fe
electric will be elastically isotropic since the crystal variants w
tetragonal elastic properties are randomly oriented. Howeve
this material is strained in tension in thex direction, most of the
variants will align in thex direction and the elastic properties wi
now be transversely isotropic about thex direction. Then, assum
ing linear elastic behavior about a fixed remanent strain state
stored free energy can be written as

Cs5
1

2
ci jkl ~« i j 2« i j

r !~«kl2«kl
r !. (3.2)

Here ci jkl are the components of the elastic stiffness tensor
can depend on the remanent strain components« i j

r .
The second law of thermodynamics implies that the dissipa

rate Ḋ must be non-negative, i.e.,

Ḋ5s i j «̇ i j 2Ċ>0. (3.3)

A Legendre transformation along with the following definitions

s̄ i j 5
1

2

]spqrs

]« i j
r spqs rs , (3.4)

s i j
B5

]C r

]« i j
r , (3.5)

ŝ i j 5s i j 2s i j
B1s̄ i j , (3.6)

are used to show that Eq.~3.3! can be written as

Ḋ5ŝ i j «̇ i j
r >0. (3.7)

Note that thesi jkl are the components of the elastic complian
tensor, where the elastic compliance is the inverse of the ela
stiffness, i.e.,si jkl 5(ci jkl )

21.
Now, assume that a switching surfaceF(ŝ i j ,« i j

r )50 exists in
ŝ i j space such that switching can occur if the stateŝ i j is on the
surface and the material response is elastic if the stateŝ i j lies
474 Õ Vol. 70, JULY 2003
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within the surface. Stress states outside of the switching sur
are forbidden. If the material abides by the postulate of maxim
plastic dissipation, such that (ŝ i j 2ŝ i j* ) «̇ i j

r >0 for any stress state
ŝ i j* on or within the switching surface and the stress stateŝ i j

causes the remanent strain increment«̇ i j
r , then the switching sur-

face must be convex and the flow law for the remanent strain
is associative. In other words, convexity implies that the Hess
]2F/]ŝ i j ]ŝkl is positive definite, and the associative flow ru
implies that the remanent strain increment must be normal to
switching surface such that

«̇ i j
r 5l

]F

]ŝ i j
. (3.8)

Here,l is a positive scalar multiplier that must be determin
from the consistency condition. In addition to the convexity a
normality constraints, the second law, Eq.~2.7!, implies that the
switching surface must enclose the origin inŝ i j space.

Along with the following definitions

Ui jkl 5
1

2

]2spqrs

]« i j
r ]«kl

r spqs rs , (3.9)

Hi jkl 5
]2C r

]« i j
r ]«kl

r , (3.10)

«̃ i j 5
]F

]ŝ i j
1

]F

]ŝkl

]smni j

]«kl
r smn , (3.11)

s̃ i j 5ci jkl «̃kl , (3.12)

D5
]F

]ŝ i j
~Hi jkl 2Ui jkl !

]F

]ŝkl
2

]F

]« i j
r

]F

]ŝ i j
, (3.13)

D5D1s̃ i j «̃ i j , (3.14)

and the consistency conditionḞ50, we can solve for the multi-
plier l as

l5
1

D «̃ i j ṡ i j 5
1

D
s̃ i j «̇ i j (3.15)

and then write the incremental constitutive equations as

«̇ i j 5S si jkl 1
1

D «̃ i j «̃klD ṡkl (3.16)

or

ṡ i j 5S ci jkl 2
1

D
s̃ i j s̃klD «̇kl . (3.17)

The definitions outlined in Eqs.~3.9!–~3.14! serve two purposes
First, these definitions allow for a compact notation, and seco
the new variables allow for a simple realization of the symme
of the tangent moduli.

4 Fitting the Model to the Material
The material specific variables that need to be specified for

model include the dependence of the elastic properties on
remanent strain, the switching surfaceF, and the remanent poten
tial C r . For the sake of simplicity, we will assume that the elas
properties are isotropic and independent of the remanent s
from here on. As such,s̄ i j and Ui jkl vanish. This assumption is
in agreement with the self-consistent calculations since the i
vidual crystallites were assumed to be elastically isotropic. Ho
ever, real materials can exhibit significant anisotropy in th
elastic properties and this assumption may need modificat
Again, the emphasis of this work is to investigate the saturat
behavior of these materials so this simplification is of second
importance.
Transactions of the ASME
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Due to the fact that the remanent strains arise due to the re
entation of the crystal variants it is reasonable to assume tha
remanent strain is volume conserving, i.e.,«̇kk

r 50. Then the
switching surface must be a function of invariants of the dev
toric stress,ŝi j 5ŝ i j 2d i j ŝkk/3. In general, the switching surfac
can change both size and shape with continued remanent s
ing. However, again for the sake of simplicity, we will assume t
simpleJ2 form for the switching surface, such that

F5
3

2
ŝi j ŝi j 2s0

250. (4.1)

As noted in Sec. 2, the initial switching surface predicted by
self-consistent model follows the Tresca criterion. Furthermo
the switching surface will in general evolve into even more co
plex shapes than the Tresca hexagon@10,15#. However, it will be
shown that this additional complexity need not be added to
phenomenological model in order to capture the salient feature
the deformation behavior of ferroelastic materials, and that
switching surface form of Eq.~4.1! is adequate.

Finally, we must specify the form of the hardening potent
C r . Of course, this potential must depend on the invariants of
remanent strain. Furthermore, to formally cause the back st
s i j

B to be purely deviatoric, we will writeC r in terms of invariants
of the remanent strain deviator,ei j

r 5« i j
r 2d i j «kk

r /3. Beyond this
consideration, determiningC r becomes a curve fitting exercise
However, this curve fitting must be done intelligently and sho
be informed by experimental observation and micromechan
models.

Recall that the remanent strain saturation behavior has a sig
cant dependence onJ3

e . A first step to determiningC r is to de-
termine a reasonable fit to the saturation behavior. The satura
behavior depicted in Fig. 4 can be accurately determined in
following way. First, define a functionf of the remanent strain
invariant ratioJ3

e/J2
e as

f S J3
e

J2
eD 520.0965S J3

e

J2
eD 3

10.01S J3
e

J2
eD 6

10.8935 for S J3
e

J2
eD ,0,

(4.2)

f S J3
e

J2
eD 520.1075S J3

e

J2
eD 3

20.027S J3
e

J2
eD 6

20.028S J3
e

J2
eD 21

10.8935 for S J3
e

J2
eD>0. (4.3)

Note that this fit forf has first, second, fourth and fifth derivative
equal to zero atJ3

e/J2
e50. The importance of these conditions o

f at J3
e/J2

e50 will be discussed shortly. Also note that this is
function for materials with tetragonal crystal structure only. F
nally, one divided by this function is able to fit the normalize
results of Fig. 4~with J2

e normalized by«c instead of«0) to within
0.04% accuracy forJ3

e/J2
e,0 and 0.15% forJ3

e/J2
e.0.

Now, define a strainlike variable«̄ as
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«̄5J2
ef ~J3

e/J2
e!. (4.4)

When the remanent strain level characterized by«̄ reaches the
compressive saturation level,«c , the remanent strain will be satu
rated, i.e.,«̄<«c . Note that the micromechanical simulations d
scribed in Sec. 2 found that«c50.4035«0 . Then Eqs.~4.2! and
~4.3! imply that the effective saturation level of remanent strain
tension is« t51.3679«c50.5520«0 , and if the remanentstrain
state is pure shear, then the saturation level is«s51.1191«c

50.4515«0 . Hence, when devising a functional form forC r , the
back stresses must become large as«̄ approaches«c .

The second significant observation from the self-consist
computations is that, discounting the Tresca nature of the in
switching surface, for small remanent strain levels the stress
sus remanent strain behavior can be described solely by the s
invariantJ2

e , i.e., it is independent ofJ3
e . This can be restated as

C r is only a function ofJ2
e as «̄ approaches zero. Furthermore,

is reasonable to conclude thatC r is a function of «̄ as «̄ ap-
proaches«c . Hence, as part of this curve fitting procedure, a n
strainlike variable is introduced,

«* 5~12w!J2
e1w«̄, (4.5)

wherew is a weighting function that must be zero when«̄50 and
one when«̄5«c . A simple method for generating steplike weig
functions is to takew8( «̄)5A«̄p(12 «̄)q. For this studyp53, q
55 and the functional form forw is

w~ «̄ !5504F1

4 S «̄

«c
D 4

2S «̄

«c
D 5

1
5

3 S «̄

«c
D 6

2
10

7 S «̄

«c
D 7

1
5

8 S «̄

«c
D 8

2
1

9 S «̄

«c
D 9G . (4.6)

Finally, we takeC r to be a function of«* , i.e., C r5C r(«* ).
The functional form for the derivative ofC r with respect to«*
can be fitted to either a uniaxial tension or compression test.
this study the functional form was taken as

dC r

d«*
5H0F S 1

12«* /«c
D m

21G . (4.7)

Note that this function and hence the back stress components
proach infinity as«* →«c .

From Eq. ~4.7! the required inputs to the phenomenologic
model can be obtained. Note that the ‘‘primed’’ variables den
first or second derivatives with respect to the argument of
function.

s i j
B5

dC r

d«*
]«*

]« i j
r (4.8)

and

Hi jkl 5
d2C r

d«* 2

]«*

]« i j
r

]«*

]«kl
r 1

dC r

d«*
]2«*

]« i j
r ]«kl

r (4.9)

with
]«*

]« i j
r 5~12w!

2ei j
r

3J2
e 1~w1w8«̄2w8J2

e!
]«̄

]« i j
r , (4.10)

]2«*

]« i j
r ]«kl

r 5~12w!F 1

3J2
e S d i l d jk1d ikd j l 2

2

3
d i j dklD2

4

9~J2
e!3 ei j

r ekl
r G2

2

3
w8S ei j

r

J2
e

]«̄

]«kl
r 1

ekl
r

J2
e

]«̄

]« i j
r D

1~w1w8«̄2w8J2
e!

]2«̄

]« i j
r ]«kl

r 1~2w81w9«̄2w9J2
e!

]«̄

]« i j
r

]«̄

]«kl
r , (4.11)

]«̄

]« i j
r 5

2

3 S f 2
J3

e

J2
e f 8D ei j

r

J2
e 1

4

3

f 8

~J3
e!2 S eik

r ek j
r 2

1

2
J2

e2d i j D , (4.12)
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and

]2«̄

]« i j
r «kl

r 5d i j dklF4

9

~J2
e!3

~J3
e!4 f 92

2

9

1

J2
e S f 2

J3
e

J2
e f 8D 2

8

9

~J2
e!4

~J3
e!5 f 8G1~d ikd j l 1d i l d jk!F1

3

1

J2
e S f 2

J3
e

J2
e f 8D G1~d i j ekl

r 1dklei j
r !

3F4

9

1

J2
eJ3

e f 92
8

9

1

~J3
e!2 f 8G1ei j

r ekl
r F4

9

~J3
e!2

~J2
e!5 f 92

4

9

1

~J2
e!3 S f 2

J3
e

J2
e f 8D G1~d i j ekm

r eml
r 1dkleim

r em j
r !F16

9

~J2
e!2

~J3
e!5 f 82

8

9

J2
e

~J3
e!4 f 9G

1~d ikejl
r 1d j l eik

r 1d i l ejk
r 1d jkeil

r !F2

3

1

~J3
e!2 f 8G1~ei j

r ekm
r eml

r 1eim
r em j

r ekl
r !F2

8

9

1

~J2
e!3J3

e f 9G
1eim

r em j
r ekn

r enl
r F16

9

1

J2
e~J3

e!4 f 92
32

9

1

~J3
e!5 f 8G . (4.13)
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Note that Eq.~4.13! is the symmetric form of a similar expressio
appearing in Ref.@6#. The apparent complexity of these expre
sions is unfortunate, but is a result of the simple assumption
the internal state of the material can be described using only
remanent strain as an internal variable. The utility of these exp
sions will be demonstrated when the theory is compared to
more detailed micromechanical model used in Sec. 2. Note
the back stresses and hardening moduli depend directly on
expressions in Eqs.~4.12! and ~4.13!. In order for the back
stresses and hardening moduli to be finite, certain restrict
must be placed onf and its derivatives atJ3

e/J2
e50. These condi-

tions can be obtained by expandingf into a power series abou
zero and requiring the expressions in Eqs.~4.12! and~4.13! to be
finite. Specifically,f 0

I 5 f 0
II5 f 0

IV5 f 0
V50, where f 0

n represents the
nth derivative of f with respect toJ3

e/J2
e at J3

e/J2
e50. These re-

strictions must be true for anyf defining a strainlike variable tha
is used in the hardening potential. For example, Landis@6# as-
sumed that saturation occurs when the minimum principal re
nent strain reaches a critical value. The minimum principal re
anent strain can be written as

« III
r 5J2

eF2
1

2
cosS u

3D2
)

2
sinS u

3D G , with u5arccos@~J3
e/J2

e!3#.

Note that the function in square brackets satisfiesf 0
I 5 f 0

II5 f 0
IV

5 f 0
V50, and furthermoref 0 , f 0

III , f 0
VIÞ0.

The ultimate test of this phenomenological theory is to comp
it to experimental measurements on real materials. However
pecially for ferroelastic ceramics, it is difficult to investigate th
strain saturation behavior due to the large stresses required.
ceramic material tends to fracture at large stresses. Furtherm
as noted in Sec. 2, the stress paths required to generate test
those presented in Fig. 2 are not simple, and require more in
mation than is possible to obtain in a single experiment. Hen
the next best test of the theory is to compare it to the predicti
of a more detailed micromechanical model. Figure 5 is just suc
comparison.

On Fig. 5 the bold lines represent the predictions of the s
consistent model and the thin lines are the predictions of the p
nomenological theory for different proportional stress path lo
ings of the material. The parameters for the phenomenolog
theory were chosen to fit the uniaxial tension and compres
data. On this graph are results for a uniaxial tension, unia
compression, and two other proportional stressing paths, inclu
a pure shear stress test. The type of proportional loading pa
characterized by the stress invariant ratiose /A3 9si j sjkski/2, with
21, 0, and 1 corresponding to axisymmetric compression, p
shear stressing, and axisymmetric tension respectively. O
computations for stress invariant ratios of20.5 and 0.5 were also
performed, but not included on Fig. 5 in order to avoid clut
around the pure shear results. The comparison of the phenom
logical theory to these results was favorable as well. Notice
476 Õ Vol. 70, JULY 2003
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the pure shear stress test is not equal to theJ3
e/J2

e50 test of Fig. 2.
For a material with aJ2 switching surface andJ2 hardening po-
tential, the pure shear stress andJ3

e/J2
e50 tests would yield iden-

tical results. Note that the phenomenological theory predicts
saturation strain levels accurately. This is to be expected for
tension, compression, and in fact any of the proportional reman
strain path tests since the functional fit to the saturation beha
of Eqs.~4.2! and~4.3! has been used. However, the agreemen
the model to the proportional stressing tests is a true predictio
the phenomenological theory. No parameters of the model h
been adjusted in order to fit these micromechanical model te
Furthermore, notice that even the computation with the cons
stress invariant ratio of20.8 ~significant compressive stress!
yields remanent strains that are more tensile than the rema
strain controlled test withJ3

e/J2
e50.8. Note, of course, that the

tensile remanent strain is not aligned with the compressive st
direction, but rather the direction with the largest stress devia
component. The phenomenological model is able to capture
behavior to reasonable accuracy.

Fig. 5 A comparison of the phenomenological theory to the
self-consistent calculations for different proportional stressing
paths. The stresses and strains are now normalized by the pa-
rameters of the phenomenological model. Note that the ratio
se ÕA

3 9s ij s jk s ki Õ2ÄÀ1,0,1 represents axisymmetric compres-
sion, pure shear stressing, and axisymmetric tension, respec-
tively. Notice that even the stress path with significant com-
pression results in an ultimate remanent strain state with
significant extension. Of course, the tensile strain is not
aligned with the compressive stress in this situation.
Transactions of the ASME
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5 Discussion
In this work constitutive models for polycrystalline ferroelas

materials with an underlying tetragonal crystal structure have b
investigated and developed. In Sec. 2 the self-consistent mod
Huber et al.@10# was implemented to investigate the remane
strain saturation behavior of these materials. It was found that
saturation strain for axisymmetric extension was greater than
saturation strain for axisymmetric contraction by a factor of 1.
Furthermore the entire range of remanent strain saturation s
between axisymmetric extension and contraction were chara
ized using the remanent strain invariant ratioJ3

e/J2
e . Equations

~4.2! and~4.3! were proposed as an accurate fit for the derivat
of the saturation curve presented in Fig. 4.

In Sec. 3 a phenomenological constitutive framework for f
roelastic materials was proposed. The theory assumes that th
ternal state of the material can be characterized completely by
remanent strain. In other words, the remanent strain compon
are the internal variables that determine the elastic properties
switching surface, and the nonlinear hardening of the mate
The theory allows for the elastic properties of the material
change with remanent deformation, and accounts for th
changes in a thermodynamically consistent fashion within
definition of the switching surface space. Convexity of the swit
ing surface in a modified stress space and an associated flow
for the remanent strain increments follow from assuming that
material obeys the postulate of maximum plastic dissipati
Equations~3.16! and ~3.17! represent the general form for th
incremental constitutive relations from the phenomenolog
theory.

Section 4 of the paper is devoted to determining functio
forms for the switching surface and hardening potential. For
micromechanical calculations of Sec. 2, the crystallites were
sumed to be elastically isotropic. Hence, the functional form
the elastic coefficients in the phenomenological model were
taken to be isotropic and independent of remanent strain. To m
tain some simplicity, the switching surface was taken to be
sphere in the modified deviatoric stress space. It was noted
the initial switching surface for the self-consistent material ac
ally follows a Tresca criterion. Furthermore, the previous stud
of Hutchinson@15# and Huber et al.@10# have shown that the
shape of the switching surface evolves in a nontrivial way w
remanent deformation. However, these features were not inv
gated or accounted for in this paper. Such modifications are
for possible future work, but are expected to yield only increm
tal improvements in the predictions of the model.

The remanent potentialC r was the last component requiring
fit for the phenomenological model. The primary role of the re
anent potential in the phenomenological theory is to account
the complicated dependence of the saturation strain on the re
nent strain. Hence the first requirement forC r is to define a strain-
like variable that predicts the strain saturation behavior displa
in Fig. 4. Such a variable is defined in Eq.~4.4! with the function
f given by Eqs.~4.2! and~4.3!. This variable,«̄, must be less than
some critical value«c . Hence, as«̄ approaches«c the remanent
potential must grow without bound. Then, as a result of the
servation from the micromechanical calculations that the ini
deformation is essentially independent ofJ3

e/J2
e , a new strainlike

variable,«* , was introduced in Eq.~4.5!. Due to the weighting
functionw «* is close toJ2

e for small values of«̄, and approaches
«̄ as «̄ approaches«c . Finally, the ultimate specification ofC r

requires a fit to a stress versus remanent strain curve. The li
candidates for this fit are either a uniaxial tension or compres
curve. To summarize, three observations were used to specifyC r .
First, the functionf was introduced to fit the saturation strain as
function of J3

e/J2
e , thenw was implemented to fit the observatio

that small deformations are independent ofJ3
e/J2

e , and finally
dC r /d«* was fit to a uniaxial stress versus remanent strain cu

Note that each of the functions introduced to fit specific beh
Journal of Applied Mechanics
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iors is in no way connected to specified proportional stress
paths. For example, the loading path traversed to determine
strain saturation condition whenJ3

e/J2
e50 is not a pure shear load-

ing path. In fact, the load path required to keep the remanent s
ratio equal to zero is not even constant. Initially, the loading p
is pure shear stressing. Recall that pure shear is an extensio
one direction and an equal contraction in an orthogonal direct
Since the material is able to extend more easily than it can c
tract, in order to maintain pure shear remanent strain the comp
sive load in the contraction direction must be greater than the t
the tensile load in the extension direction as the strain approa
saturation. In fact, as saturation is approached with the rema
strain ratio remaining constant atJ3

e/J2
e50, the applied stress ap

proaches a uniaxial compression. Therefore, comparing the
nomenological model to the micromechanical model for differe
proportional stressing paths is a valid test of the phenomenol
cal theory. Figure 5 is a comparison of the phenomenolog
theory to the self-consistent calculations, and the agreemen
quite good.

Again, it is emphasized that the self-consistent computati
performed in Sec. 2 and the results of that model are valid
materials with tetragonal crystal structure only. In order to inv
tigate other crystal structures, like orthorhombic or rhombohed
and the possibility of combinations of these with tetragonal d
mains, the single crystal constitutive law used in the se
consistent model would need to be modified. However, the
mary result that would be obtained from such calculations i
strain saturation curve like the one presented in Fig. 4 for tetr
onal materials. Furthermore, simpler micromechanical models
do not account for grain to grain interactions can be used to ob
this strain saturation curve. Then, the only significant change
the phenomenological theory would be to the functional form of
defined in Eqs.~4.2! and ~4.3!.

The goal of this work was to understand the strain satura
behavior of ferroelastic materials and incorporate this informat
into a phenomenological constitutive theory. The phenomenolo
cal model is useful for structural stress analyses on systems
taining ferroelastic materials. Such calculations will most like
be performed within a finite element framework. Hence, it is i
portant that the constitutive response can be integrated rap
This consideration of computational speed rules out the more
tailed self-consistent model, since any one curve~aside from the
axisymmetric cases! on Figs. 2, 3, or 5 requires a few days
compute, whereas the corresponding phenomenological theor
quires a few seconds. Finally, while the phenomenological the
has been shown to be in good agreement with the more deta
micromechanical model, the ultimate test of this new constitut
law will be against careful multiaxial loading experiments.
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Relationship Among Coefficient
Matrices in Symmetric Galerkin
Boundary Element Method for
Two-Dimensional Scalar
Problems
Based on the assumption that solutions from different methods should be the sam
relationship among weakly singular, strongly singular and hypersingular matrices a
ciated with symmetric Galerkin boundary element method (SGBEM) is derived in
paper. Hypersingularity is avoided through matrix manipulations so that only weakly
strongly singularities need to be solved. Compared with the advantages brought abo
symmetry, the additional computation caused by matrix manipulations is not so impo
in many cases, especially for time-domain problems or when one wants to couple
with other symmetric schemes. Simplicity is the advantage of the current method ov
traditional SGBEM. Both steady-state and time-domain potential problems have
studied, and two numerical examples are included to show the effectiveness and ac
of the present formulation.@DOI: 10.1115/1.1598478#
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1 Introduction
The traditional collocation boundary element method~TCBEM!

and the asymmetric Galerkin BEM~AGBEM! have some certain
unpleasant features. The most pertinent is the lack of symm
for some coefficient matrices, which will make it less efficient
couple BEM with other symmetric schemes. The symme
Galerkin BEM ~SGBEM! formulation was first proposed by Sir
tori @1# for linear elastic analysis. The main problem encounte
is that one has to calculate the three kinds of coefficient matri
which may respectively contain weakly singular, strongly sing
lar, and hypersingular integrals@2#. Although numerous paper
have been published to deal with the hypersingular integrals, t
are still many spaces that need more research works. Carini e
@3# classified the existing strategies, proposed by different
searchers for solving the hypersingular integration, into three p
ciple groups: regularization, finite part, and direct approach. T
regularization procedure analytically converts the strongly sin
lar and hypersingular integrals into, at most, weakly singular
tegrals which can then be calculated directly by numerical me
ods @4–6#. The finite-part approach is based on the numeri
method for the finite part of the principal value of the singu
integral @7#. The difference of this approach from the direct int
gration approach is that the final integration is performed num
cally @8,9#. The direct treatment of singular integrals in BEM is
part the source and field points temporarily to allow an analyt
evaluation of the singular integral, and then derive the limit as
source and field points come together@10–12#. All of these meth-
ods have been proved to be efficient but need a complex pr
dure; therefore a simple method is necessary as an alterna
which can be easily used to convert an existing AGBEM code
a SGBEM one.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Apr. 2
2002; final revision, Dec. 17, 2002. Associate Editor: T. E. Tezduyar. Discussio
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, De
ment of Mechanical and Environmental Engineering University of California–Sa
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months
final publication of the paper itself in the ASME JOURNAL OF APPLIED MECHAN-
ICS.
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In fact, formulations for SGBEM and AGBEM are not indepe
dent. If the numerical error is negligible, their solutions should
same, while the rigid body movement is considered as a spe
solution here. Based on this assumption, the relationship am
the three kinds of coefficient matrices appearing in SGBEM
given in this paper, from which the hypersingular integral can
avoided through matrix manipulations. As only weak and stro
singularities need to be solved, such an indirect method ma
SGBEM much easier than it was before. The indirect SGBE
formulation is derived directly from the AGBEM one; there is n
doubt that they yield exactly the same result. However,
SGBEM formulation is symmetric which makes it more efficie
to couple BEM with other symmetric numerical methods.

The relationship is given for both steady-state and time dom
problems @13,14# in this paper. Compared with the traditiona
SGBEM, the use of the indirect method may need more comp
time, especially for steady-state problems. But for time-dom
problems, such a cost increment is not significant. For b
steady-state and time-domain problems, the indirect method
vides an alternative for those who want an easier method to c
vert directly an existing AGBEM code to a SGBEM one. Tw
numerical examples are included to illustrate the effectiveness
accuracy of the present method.

2 Relationship among the Three Kinds of Coefficient
Matrices

2.1 Steady-State Potential Problems. The two-
dimensional~2D! steady-state problem can be described as a t
cal Laplace problem. Consider the potentialu at any pointj in the
domainV bounded byG having unit outward normaln0 at the
boundary pointX ~see Fig. 1!. The problem can be described i
boundary integration form as

2pc~j!u~j!5E
G
u* ~X,j!p~X!dG~X!2E

G
p* ~X,j!u~X!dG~X!,

(1)

3,
on
art-

nta
after
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where c~j!5H 1 j in the internal domainV,

1/2 j on the smooth boundary,

0 j in the outer domainV8.

u(X) andp(X)5]u/]n are the potential and flux at the bounda
point X respectively,u* (X,j)52 ln r is the fundamental solution

p* ~X,j!5
]u* ~X,j!

]n
52

~r0
•n0!

r

is the normal derivative ofu* (X,j), andr is the distance betwee
pointsX andj.

The space derivative of Eq.~1! in the direction ofm becomes

2pc~j!
]u~j!

]m
5E

G

]u* ~X,j!

]m
p~X!dG~X!

2E
G

]p* ~X,j!

]m
u~X!dG~X!. (2)

If j is on the boundary andm is the outward normal, the abov
equation becomes

2pc~j!p~j!5E
G

]u* ~X,j!

]m
p~X!dG~X!

2E
G

]p* ~X,j!

]m
u~X!dG~X!. (3)

Consider a set of discrete pointsXj , j 51,2, . . .J, on the
boundaryG. u(X) andp(X) are approximately expressed by fun
tions h j (X) as follows:

5 u~X!5(
j 51

J

h j~X!uj

p~X!5(
j 51

J

h j~X!pj

, (4)

where the same spatial interpolation function is used foru andp,
uj5u(Xj ), andpj5p(Xj ).

Substituting Eq.~4! into Eqs.~1! and ~3! leads to

Fig. 1 Definition of some symbols
480 Õ Vol. 70, JULY 2003
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2pc~j!u~j!5(
j 51

J

Gj
uu~j!pj2(

j 51

J

Gj
pu~j!uj (5)

and

2pc~j!p~j!5(
j 51

J

Gj
up~j!pj2(

j 51

J

Gj
pp~j!uj , (6)

where

Gj
uu~j!5E

G
u* ~X,j!h j~X!dG~X!, (7)

Gj
pu~j!5E

G
p* ~X,j!h j~X!dG~X!, (8)

Gj
up~j!5E

G

]u* ~X,j!

]m
h j~X!dG~X!, (9)

Gj
pp~j!5E

G

]p* ~X,j!

]m
h j~X!dG~X!. (10)

As r approaches to zero, hypersingularity appears inGj
pp(j),

which requires the spatial interpolation functionh j (X) to beC1,a

around the pointj. In order to remove this requirement, the Gale
kin method is applied to Eqs.~5! and ~6!. The AGBEM formula-
tions, corresponding to the boundary nodej i , can be written as

(
j 51

J

CGi juj5(
j 51

J

GGi j
uu pj2(

j 51

J

GGi j
pu uj , (11)

(
j 51

J

CGi j pj52(
j 51

J

GG ji
pu pj1(

j 51

J

GGi j
pp uj , (12)

where

GGi j
uu 5E

G
E

G
u* ~X,j!h j~X!dG~X!h i~j!dG~j!, (13)

GGi j
pu 5E

G
E

G
p* ~X,j!h j~X!dG~X!h i~j!dG~j!, (14)

GGi j
pp 52E

G
E

G

]p* ~X,j!

]m
h j~X!dG~X!h i~j!dG~j!

52E
G
E

G

]

]m F]u* ~X,j!

]n Gh j~X!dG~X!h i~j!dG~j!,

(15)

CGi j5pE
G
h i~j!h j~j!dG~j!, (16)

in which c(j) is set equal to 0.5 forj lying on the boundary. The
subscript ‘‘G’’ denotes the variables associated with the Galer
method.

It should be noted that Eq.~13! contains only weakly singular
integrals which can be evaluated either through standard num
cal procedure or through analytical method@15#. Figure 2 shows
two special cases using linear elements. In case~a!, when integra-
tion in Eq.~14! runs along the same element~see Fig. 2(a)) with
respect to the two spatial variables,X andj,

p* ~X,j!5
]u* ~X,j!

]n
5

]u* ~X,j!

]r
~r0

•n0!50.

In case~b!, when integration in Eq.~14! runs along two adjacen
elements~see Fig. 2(b)), it leads to strongly singular integral a
the distance betweenX andj tends to zero. Such a strongly sin
Transactions of the ASME



i

l

i

r

i

n
i

n

gular integral can be evaluated through analytical procedure g
in the Appendix forGGi j

pu or by the regularization method@6#.
However, when the higher-order interpolation function is used,
analytical procedure should be used for both of these two case
as to increase the accuracy.

The hypersingular integral in Eq.~15!, which needs a complex
procedure to deal with, is evaluated here by an indirect meth
writing Eqs.~11! and ~12! in matrix form as

$@CG#1@GG
pu#%$u%5@GG

uu#$p% (17)

and

$@CG#1@GG
pu#T%$p%5@GG

pp#$u8%5@GG
pp#~$u%1$c%!5@GG

pp#$u%,
(18)

where$u% and $u8% are the displacements corresponding to$p%,
calculated from Eqs.~17! and ~18!, respectively. It has been we
recognized that Eqs.~17! and ~18! will yield the correct result
which should be unique except the rigid body movement. The
fore the only difference between$u% and $u8% is the constant
displacement$c% corresponds to$p%50 and@GG

pp#$c%50.
From Eqs.~17! and ~18! one can get

@GG
pp#$u%5~@CG#1@GG

pu#T!@GG
uu#21~@CG#1@GG

pu# !$u%
(19)

which is true for any$u% and corresponding$p%. Therefore the
relationship among@GG

pp#, @GG
pu#, and @GG

uu# for steady-state
problems can be written as

@GG
pp#5~@CG#1@GG

pu#T!@GG
uu#21~@CG#1@GG

pu# !, (20)

where as@CG# and @GG
uu# are symmetric matrices,@GG

pp# is also
symmetric.

From Eq.~17!, one can see that if no element coincides w
another one, only$p%50 can satisfy the solution for zero or con
stant$u% which makes the left part of Eq.~17! equal zero. Other-
wise, if $p%Þ0, $u% cannot be zero or constant, asp5 ]u/]n ~no
internal source or initial boundary condition is considered he!.
Therefore@GG

uu# is invertible if no element coincides with anothe
one. Equation~20! is the formulation to calculate@GG

pp# through
matrix manipulations. As matrices@CG#, @GG

uu#, and@GG
pu# have

all appeared in the AGBEM formulation, no hypersingular
needs to be considered, the indirect method is much easier c
pared with the traditional SGBEM. With Eq.~20!, an existing
AGBEM computer code can be easily modified to a SGBEM o

For the case when only BEM is used, symmetric formulat
can be established through Eqs.~17! and ~18!: Equation~17! is
applied to all those sections of the boundary where displacem
components are prescribed (G1), while Eq. ~18! is applied to the
sections where traction components are prescribed (G2). For the
case of BEM/FEM coupling procedure, both Eqs.~17! and ~18!
should be used on the interface.

2.2 Time-Domain Potential Problems. Consider a set of
discrete quantities at timetn , n51,2, . . . ,N. u(X,t) andp(X,t)
can be approximated through interpolations as@15,16#

Fig. 2 Two special cases for linear elements
Journal of Applied Mechanics
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5 u~X,t !5(
j 51

J

(
m51

N

fm~ t !h j~X!uj
m

p~X,t !5(
j 51

J

(
m51

N

gm~ t !h j~X!pj
m

, (21)

where uj
m5u(Xj ,tm) and pj

m5p(Xj ,tm), and fm, gm, hm are
interpolation functions.

Similar to Eq.~1!, the boundary integral equation can be writte
as @15,16#

4pc~j!u~j,t !5E
G
E

0

t1

u* ~X,t;j,t!p~X,t!dtdG~X!

2E
G
E

0

t1

p* ~X,t;j,t!u~X,t!dtdG~X!.

(22)

The space derivative of Eq.~22! in the direction of outward
normalm can be written as

4pc~j!p~j,t !5E
G
E

0

t1 ]u* ~X,t;j,t!

]m
p~X,t!dtdG~X!

2E
G
E

0

t1 ]u* ~X,t;j,t!

]m
u~X,t!dtdG~X!,

(23)

where

u* ~X,j!5
2c

Ac2~ t2t!22r 2
H@c~ t2t!2r #

is the fundamental solution,

p* ~X,t;j,t!5
]u* ~X,t;j,t!

]n
5

]u* ~X,t;j,t!

]r
~r0

•n0!,

H@c~ t2t!2r #

is the Heaviside function, andc is the wave velocity.
Applying the Galerkin method to Eqs.~22! and ~23! with re-

spect to the boundary nodej i , it results in

E
G
4pc~j!u~j,t !h i~j!dG~j!

5E
G
E

G
E

0

t1

u* ~X,t;j,t!p~X,t!dtdG~X!h i~j!dG~j!

2E
G
E

G
E

0

t1

p* ~X,t;j,t!u~X,t!dtdG~X!h i~j!dG~j!

(24)

and

E
G
4pc~j!p~j,t !h i~j!dG~j!

5E
G
E

G
E

0

t1 ]u* ~X,t;j,t!

]m
p~X,t!dtdG~X!h i~j!dG~j!

2E
G
E

G
E

0

t1 ]p* ~X,t;j,t!

]m
u~X,t!dtdG~X!h i~j!dG~j!.

(25)

The discrete form,
JULY 2003, Vol. 70 Õ 481
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Table 1 Time integrated kernels

Case FF
(m21)n(X,j) FI

mn(X,j) DF
(m21)n(X,j) DI

mn(X,j)

1 A1A2 2A1A22A5A7 A1

A2
2

A1A2

r
2 A1A21A6A7 2A1A22A5A7 1

r

A1~A4!
2

A2
2

A1A2

r
3 2A3A41A1A21A6A8 A3A42A1A22A5A7 A4

A2
S 2cDt

A1A41A2A3
D 2

A2

A4
S 2cDt

A1A41A2A3
D

4 0 0 0 0
N J N J

d

t

e
ter-

as

the
the
(
j 51

CGDi juj
n1 (

m51
(
j 51

GGDi j
pumnuj

m5 (
m51

(
j 51

GGDi j
uumnpj

m , (26)

(
j 51

J

CGDi j pj
n1 (

m51

N

(
j 51

J

GGD ji
pumnpj

m5 (
m51

N

(
j 51

J

GGDi j
ppmnuj

m , (27)

where

GGDi j
uumn5E

G
E

G
E

0

t1

u* ~X,tn ;j,t!gm~t!dth j~X!dG~X!

3h i~j!dG~j!, (28)

GGDi j
pumn5E

G
E

G
E

0

t1

p* ~X,tn ;j,t!gm~t!dth j~X!dG~X!

3h i~j!dG~j!, (29)

GGDi j
ppmn52E

G
E

G
E

0

t1 ]p* ~X,tn ;j,t!

]m

3fm~t!dth j~X!dG~X!h i~j!dG~j!

52E
G
E

G
E

0

t1 ]

]m

]u* ~X,tn ;j,t!

]n

3fm~t!dth j~X!dG~X!h i~j!dG~j!, (30)

CGDi j52pE
G
h i~j!h j~j!dG~j!52CGi j , (31)

in which the second subscript ‘‘D ’’ denotes time-domain prob-
lems, to distinguish it from those quantities in previous stea
state problems.

Linear time interpolation function is used for bothu andp:

gm~t!5fm~t!55
t2tm21

Dt
if tm21<t<tm

tm112t

Dt
if tm<t<tm11

0 otherwise

. (32)

Substitution of Eq.~32! into Eqs.~28! and ~29! leads to@16#
JULY 2003
y-

GGDi j
uumn5E

G
E

G
E

tm21

m

u* ~X,tn ;j,t!
t2tm21

Dt
dth j~X!dG~X!

3h i~j!dG~j!1E
G
E

G
E

tm

tm11

u* ~X,tn ;j,t!

3
tm112t

Dt
dth j~X!dG~X!h i~j!dG~j!

5
2

cDt EG
E

G
@FI

mn~X,j!

1FF
mn~X,j!#dth j~X!dG~X!h i~j!dG~j!, (33)

GGDi j
pumn5E

G
E

G
E

tm21

tm
p* ~X,tn ;j,t!

t2tm21

Dt
dth j~X!dG~X!

3h i~j!dG~j!1E
G
E

G
E

tm

tm11

p* ~X,tn ;j,t!

3
tm112t

Dt
dth j~X!dG~X!h i~j!dG~j!

5
2

cDt EG
E

G
@DI

mn~X,j!1DF
mn~X,j!#

]r

]n
h j~X!

3dG~X!h i~j!dG~j!, (34)

where expressions for the kernelsDI
mn(X,j), DF

mn(X,j),
FI

mn(X,j), and FF
mn(X,j) depend on the position of the wav

front described in the fundamental solution. They are charac
ized by the retarded timet r5tn2r /c, with respect to the time
interval considered. Four possible situations are considered
follows:

case 1:tm5tn ,tm21,t r<tm ,

case 2:tm,tn ,tm21,t r<tm ,

case 3:tm<t r ,

case 4:t r<tm21 .

The expressions corresponding to cases 1–4, obtained by
analytical method, are shown in Table 1. In order to shorten
final expressions, the following notations are used:
Transactions of the ASME
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m51
A15Ac~ tn2tm21!2r , A25Ac~ tn2tm21!1r ,

A35Ac~ tn2tm!2r , A45Ac~ tn2tm!1r ,

A55c~ tn2tm21!, A65c~ tn2tm!,

A75 lnS r

A1A21A5
D , A85 lnS A3A41A5

A1A21A6
D .

Similar to the steady-state problems, Eq.~33! contains only
weakly singular integrals which can be evaluated either thro
standard numerical procedure or through analytical method@15#.
Figure 2 shows two special cases using linear elements. In
~a!, when integration in Eq.~34! runs along the same element~see
Fig. 2(a)) with respect to the two spatial variables,X andj,

Fig. 3 One-dimensional rod under Heaviside-type forcing
function
Journal of Applied Mechanics
gh

ase

p* ~X,tn;j,t!5
]u* ~X,tn;j,t!

]n
5

]u* ~X,tn;j,t!

]r
~r0

•n0!50.

In case~b!, when integration in Eq.~34! runs along two adjacen
elements~see Fig. 2(b)), it leads to strongly singular integral a
the distance betweenX and j tends to zero andm5n. Such a
strongly singular integral can be evaluated through the analyt
procedure given in the Appendix forGGDi j

pu or by the regulariza-
tion method@6#. However, when higher-order spatial interpolatio
function is used, the analytical procedure should be used for b
of these two cases in order to increase the accuracy.

From here onward, unless causing ambiguity,GGDi j
uunn ,

GGDi j
punn , andGGDi j

ppnn will be written asGGDi j
uu , GGDi j

pu , andGGDi j
pp ,

respectively.
The hypersingular integral appearing in expression~30!, which

is difficult to deal with for direct methods, can also be evalua
by an indirect method. Writing in matrix form, Eqs.~26! and~27!
become

$@CGD#1@GGD
pu #%$u%n5@GGD

uu #$p%n1 (
m51

n21

@GGD
uu #mn$p%m

2 (
n21

@GGD
pu #mn$u%m, (35)
Fig. 4 Comparison between the results from TCBEM and SGBEM, uÄ1.4 and bÄ0.6
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$@CGD#1@GGD
pu #T%$p%n5@GGD

pp #$u%n1 (
m51

n21

@GGD
pp #mn$u%m

2 (
m51

n21

@GGD
pu #mn$p%m, (36)

where the rigid body movement need not be considered as it
been stated in the steady-state problem before.

Multiplying Eq. ~35! by (@CGD(j)#1@GGD
pu #T)@GGD

uu #21, one
gets

$@CGD~j!#1@GGD
pu #T%$p%n

5$@CGD~j!#1@GGD
pu #T%@GGD

uu #21$@CGD~j!#1@GGD
pu #%$u%n

1~@CGD~j!#1@GGD
pu # !T@GGD

uu #21

3S (
m51

n21

@GGD
pu #mn$u%m2 (

m51

n21

~@GGD
uu #mn!T$p%mD . (37)

Comparing Eqs.~36! and ~37!, and bearing in mind that no
matter what kind of$um% and$pm% are used, the results from thes
two equations for$un% and $pn% are the same, the relationsh
among@GGD

pp #mn, @GGD
pu #mn, and@GGD

uu #mn for time-domain prob-
lems can be written as

@GGD
pp #5~@CGD~j!#1@GGD

pu # !T@GGD
uu #21~@CGD~j!#1@GGD

pu # !,
(38)

@GGD
pp #mn5~@CGD#1@GGD

pu #T!@GGD
uu #21@GGD

pu #mn, (39)

wherem51,2, . . . ,n21, @GGD
pp # is a symmetric matrix.

As there is no singularity in@GGD
pp #mn (m,n), it can be calcu-

lated directly from Eq.~30! by the numerical method. Therefor
the only cost increment for the indirect method is from Eq.~38!
which appears only at the first time step. If one prefers to use
~39! for @GGD

pp #mn and write (@CGD#1@GGD
pu #T)@GGD

uu #21 as a new
matrix @A#, the additional cost increment for Eq.~39! at each time
step is the multiplication of matrix@A# with a vector~refer to Eq.
~37!!. Compared with the huge amount of matrix manipulatio
for time-domain problems, such an increment is usually not s
nificant. With Eqs.~38! and ~39!, an existing time domain AG-
BEM computer code can be easily modified to a SGBEM one

The same with steady-state problems, time domain SGB
formulation can be established through Eqs.~35! and~36!: Equa-
tion ~35! is applied to all those sections of the boundary wh
displacement components are prescribed (G1), while Eq. ~36!
isapplied to the sections where traction components are presc
(G2). For the case of BEM/FEM coupling procedure, both E
~35! and ~36! should be used on the interface.

3 Numerical Examples
Two numerical examples for time-domain potential proble

are given in this paper. Since SGBEM cannot guarantee the
bility of the dynamic scheme, the linearu method@17# is used
here. Linear time and space interpolation functions are used
both u andp.

3.1 One-Dimensional Rod. The first example is for a finite
domain problem as depicted in Fig. 3, which was presented
viously by Mansur@16#. It consists of a one-dimensional rod fixe
at one extremity and subjected to a Heaviside-type force func
applied at the other extremity. The displacementsu are assumed to
484 Õ Vol. 70, JULY 2003
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be zero atx50 and the tractionsp are also taken as null aty
50 andy5b for any timet. At x5a and t50, a loadP5Ep is
suddenly applied and kept constant until the end of the anal
(E is the Young’s modulus!. Twenty-four boundary elements with
the same lengthL j are used for the numerical model.

Comparisons between TCBEM and SGBEM results for diffe
ent points, withu51.4 andb5cDt/L j50.6 (c is the wave ve-
locity, Dt is the time step!, are shown in Fig. 4, where one can se
only slight differences. This provides a numerical proof to t
relationship among different kinds of coefficient matrices giv
inthis paper. When the linearu method is not used~i.e., u51.0),
both displacement and its space derivative at pointA(a/2,b/2)
exhibit instability as shown in Fig. 5, which means that SGBE
cannot guarantee the stability for the dynamic scheme. Aga
this background, the linearu method should be used.

3.2 Two-Dimensional Cavity. In order to show the effec-
tiveness of the proposed method for infinite domain problem
Fig. 6 gives a 2D cylindrical cavity of radiusR in an infinite
space. Att50, a boundary fluxp is suddenly applied and kep
constant until the end of the analysis. Thirty-two boundary e
ments with the same lengthl j are used in the modeling.

Time histories of displacement and its space derivative at
internal pointE, obtained from the BEM/FEM coupling formula
tion @18# and from the indirect SGBEM formulation (u51.4 and
b50.6), are show in Figs. 7a and 7b, respectively. From Fig. 7,
one can observe the good accord.

Fig. 5 Results at point A „aÕ2,b Õ2… from SGBEM, uÄ1.0 and b
Ä0.6
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4 Conclusions
The relationship among the three kinds of coefficient matric

is given in this paper, through which hypersingularity is avoid
for SGBEM. With the indirect method, it is very easy to modi
an existing AGBEM computer code to a SGBEM one. There is
limitation for the application of the indirect method. It can be us
to get symmetric BEM/FEM coupling procedure, as normally F
domain has more nodes than BE domain. It can also be used t
kinds of SGBEM problems, such as elastodynamic problem, h
transfer problem, fluid problem, etc. A similar method can

Fig. 6 2D cavity problem

Fig. 7 Results at point E„1.6R,0… from SGBEM and BEM ÕFEM
coupling method, uÄ1.4 and bÄ0.6
Journal of Applied Mechanics
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applied to evaluate the hypersingular integrals related to collo
tion BEM, or related to boundary stress calculation.

Appendix
As shown in Fig. 2, when the linear spatial interpolation fun

tion is used and the integration runs along two adjacent elem
~with subscript ‘‘1’’!, strong singularity appears in Eq.~14! as r
approaches zero. Although the numerical method can be use
the Galerkin procedure, the analytical method is given here for
inner space integration so as to increase its accuracy, as

~GGi j
pu !15E

0

l iE
0

l j

p* ~X,j!h j~X!dG~X!h i~j!dG~j!

5E
0

l iE
0

l j 1

r
~r0

•n0!S 12
h j

l j
Ddh j S 12

h j

l j
Ddh i

5E
0

l iE
0

l j h i sina

~h j1h i cosa!21~h i sina!2

3S 12
h j

l j
Ddh j S 12

h i

l i
Ddh i

5E
0

l iH 2
h i sina

2l j
@ ln~ l j

21h i
212l jh i cosa!22 ln h i #

1
l j1h i cosa

l j
S tg21

l j1h i cosa

h i sina
2tg21

cosa

sina D J
3S 12

h i

l i
Ddh i , (A1)

where one can also see that ifa50, (GGi j
pu )150. As there is no

singularity in the outer space integration in expression~A1!, the
numerical method can be used.

From Eq.~34! and Table 1, one can see that whentm5tn and
r 50, strong singularity appears inDI

mn(X,j). ThereforeGGDi j
pumn

5GGDi j
pu can be calculated analytically, as

~GGDi j
pu !15E

0

l iE
0

l j

DI
mn~X,j!~r0

•n0!h j~X!dG~X!h i~j!dG~j!

52E
0

l iE
0

l j A1A2

r
H@cDt2r #~r0

•n0!

3h j~X!dG~X!h i~j!dG~j!

52E
0

l iE
0

l jS r

A1A21A5
2

cDt

r DH@cDt2r #~r0
•n0!

3h j~X!dG~X!h i~j!dG~j!

52E
0

l iE
0

l j r

A1A21A5
H@cDt2r #~r0

•n0!h j~X!dG~X!

3h i~j!dG~j!1E
0

l iE
0

l j cDt

r
H@cDt2r #~r0

•n0!

3h j~X!dG~X!h i~j!dG~j!5D11D2, (A2)

where Dt5tn2tn21 , A15AcDt2r , A25AcDt1r , and A5
5cDt. While there is no singularity inD1 , the strongly singular
integration inD2 can be calculated analytically by a similar wa
with Eq. ~A1!, but special attention should be given to the Hea
side function,
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0

l iE
0

l j cDt

r
H@cDt2r #~r0

•n0!h j~X!dG~X!h i~j!dG~j!

5E
0

l iE
0

l 0 j cDth i sina

~h j1h i cosa!21~h i sina!2

3S 12
h j

l j
Ddh j S 12

h i

l i
Ddh i

5cDtE
0

l iH 2
h i sina

2l j
@ ln~ l 0 j

2 1h i
212l 0 jh i cosa!22 ln h i #

1
l j1h i cosa

l j
S tg21

l 0 j1h i cosa

h i sina
2tg21

cosa

sina D J
3S 12

h i

l i
Ddh i , (A3)

wherel 0 j5min$l j ,A(cDt)22(h i sina)22hi cosa%.
As there is no singularity in the outer space integration in E

~A3!, the numerical method can be used.
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Intensity of Singular Stress Fields
at the End of a Cylindrical
Inclusion
In short fiber reinforced composite it is known that the singular stress at the end of fi
causes crack initiation, propagation, and final failure. The singular stress field is c
trolled by the generalized stress intensity factors defined at the end of the inclusion. I
study the stress intensity factors are discussed for an elastic cylindrical inclusion i
infinite body under (A) asymmetric uniaxial tension in the x direction, and (B) symm
uniaxial tension in the z direction. These problems are formulated as a system of int
equations with Cauchy-type or logarithmic-type singularities, where densities of b
force distributed in infinite bodies having the same elastic constants as those of the m
and inclusion are unknown. In the numerical analysis, the unknown body force den
are expressed as fundamental density functions and weight functions. Here, fundam
density functions are chosen to express the symmetric and skew-symmetric stress
larities. Then, the singular stress fields at the end of a cylindrical inclusion are discu
with varying the fiber length and elastic ratio. The results are compared with the on
a rectangular inclusion under longitudinal and transverse tension.
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1 Introduction
In short fiber reinforced composite it is known that the singu

stress at the end of fibers causes crack initiation, propagation
final failure. Recently, Chen and Nisitani@1,2# indicated that the
singular stress field is controlled by the generalized stress in
sity factors~SIF’s! defined for inclusion corners, and Chen@3,4#
discussed the singular stress of a rectangular inclusion as a
dimensional ~2D! model. Since actual fibers always have 3
shapes and dimensions, 3D analysis is necessary to evalua
strength of composites. From this viewpoint, a cylindrical inc
sion is important as a 3D model of a fiber in matrix. In previo
studies, Kasano et al.@7# treated a rigid cylindrical inclusion, and
Hasegawa and Yoshiya@8# solved an elastic cylindrical inclusion
with rounded ends. Takao et al.@9#, Hasegawa et al.@10#, and Wu
and Du@11,12# discussed stress fields induced by uniform eig
strain given within a cylindrical domain. Usually to obtain gene
alized SIF’s for 3D problems is more difficult than to obtain no
mal SIF’s defined for ordinal cracks. Therefore, when Chen
Nisitani @3–5# applied the body force method@6# to 2D problems,
they examined two types of numerical procedures, one of whic
obtained from the values of unknown body force densities,
the other of which is from the values of stress around the inclus
corner. In both procedures the final results were extrapolated f
the results of finite numbers of collocation points@4–6#.

In this study the stress intensity factors are discussed fo
elastic cylindrical inclusion in an infinite body under~A! asym-
metric uniaxial tension in thex direction, and~B! symmetric
uniaxial tension in thez direction. The asymmetric problem~A! is
solved on the superposition of two auxiliary loads;~i! biaxial ten-
sion and~ii ! plane state of pure shear. Those problems are for
lated as a system of integral equations with Cauchy-type
logarithmic-type singularities, where densities of body force d
tributed in infinite bodies having the same elastic constants

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 3
1999; final revision, Jan. 16, 2003. Associate Editor: J. W. Ju. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Depart
of Mechanical and Environmental Engineering University of California—Sa
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four mo
after final publication of the paper itself in the ASME JOURNAL OF APPLIED ME-
CHANICS.
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those of the matrix and inclusion are unknown. In the numeri
analysis, the unknown functions of the body force densities
expressed as fundamental density functions and weight functi
Here, the weight functions are approximated as power series
stead of step or linear functions used usually in the body fo
method @3–6#. Then, the singular stress fields at the end o
cylindrical inclusion are discussed for the wide range of the fi
length and elastic ratio.

2 Theory and Solution
Consider a cylindrical bar in an infinite body under asymmet

uniaxial tension in thex direction shown in Fig. 1a. This problem
is composed of the superposition of two auxiliary loads; biax
tension in thexy plane, shown in Fig. 1c, and pure shear in thexy
plane, shown in Fig. 1d. The method of analysis will be explaine
for the problem of pure shear in thexy plane. Here,L andD are
dimensions of the inclusion, ands` is a stress at infinity. The
notations (GM ,nM) denote the shear modulus and Poisson’s ra
of the matrix, and (GI ,n I) denotes the ones of the inclusion
Rectangular coordinate (x,y,z) and cylindrical coordinate (r ,u,z)
are defined in Fig. 1. Here,~j,h,z!, ~r,f,z! are rectangular and
cylindrical coordinates where body forces are applied. The b
force method@6# is used to formulate the problem as a system
singular integral equations. Here, the fundamental solutions
stress and displacement fields when two ring forces acting s
metrically to the planez50. In this case the boundary condition
only on z>0 can be considered due to symmetry. The two ri
forces have three types@13,14#, that is, ~1! ring forces in ther
direction with the magnitude of cos 2f, ~2! ring forces in theu
direction with the magnitude of sin 2f, ~3! ring forces in thez
direction with the magnitude of cos 2f. In the following discus-
sion, how to satisfy the boundary conditions around corner A w
be explained.

The problem can be expressed by the following equations
terms of the unknown body force densities (FnM ,FtM ,FuM) and
(FnI ,FtI ,FuI) distributed at infinitesimal areardudrA in infinite
bodiesM and I. Here, bodiesM and I have the same elastic con
stants as those of the matrix and inclusion, respectively, andr A is
a distance from the corner A as shown in Fig. 1e. In the following
equation, the notation*L means integrating body forces on bo
the side and ends of the cylinder. Here, for example, the nota
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FnM(r A ,s) denotes the normal stress induced at the colloca

point s induced by the body forceFnM acting at the pointr A .
Since the integral includes the Cauchy-type or logarithmic-ty
singularities, the integration should be interpreted in the Cau
principal value sense,

2
1

2
FnM~s!2

1

2
FnI~s!1E

L
hnn

FnM~r A ,s!FnM~r A!drA

1E
L
hnn

FtM~r A ,s!FtM~r A!drA1E
L
hnn

FuM~r A ,s!FuM~r A!drA

2E
L
hnn

FnI~r A ,s!FnI~r A!drA2E
L
hnn

FtI~r A ,s!FtI~r A!drA

2E
L
hnn

FuI~r A ,s!FuI~r A!drA

52$snM
` ~s!2snI

` ~s!%cos 2u, (1a)

Fig. 1 Problem and coordinate system: „a… Uniaxial tension
perpendicular to the axis of the inclusion „x direction …; „b…
Uniaxial tension in the axis of the inclusion „z direction …; „c…
Hydrostatic tension in a plane perpendicular to the axis of the
inclusion „xy plane …; „d… Pure shear in a plane perpendicular to
the axis of the inclusion „xy plane …; „e… Coordinate system
488 Õ Vol. 70, JULY 2003
ion
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E
L
hv

FnM~r A ,s!FnM~r A!drA1E
L
hv

FtM~r A ,s!FtM~r A!drA

1E
L
hv

FuM~r A ,s!FuM~r A!drA2E
L
hv

FnI~r A ,s!FnI~r A!drA

2E
L
hv

FtI~r A ,s!FtI~r A!drA2E
L
hv

FuI~r A ,s!FuI~r A!drA

52~uuM
` 2uuI

` !sin 2u. (1b)

Equations~1a! and ~1b! enforce the boundary conditionssnM
2snI50, anduuM2uuI50, respectively; other boundary cond
tions, that is,tntM2tntI50, tnuM2tnuI50, urM 2urI 50, uzM
2uzI50, can be expressed in a similar way. In Eqs.~1a! and~1b!
snM

` anduuM
` are stress and displacement components induced

the stress at infinitys`; here we assume bodyI is also under the
stresses (s rI

` ,suI
` ,t ruI

` ), which inducesnI
` , anduuI

` in Eqs. ~1a!
and ~1b!.

The singular stress fields near corner A can be expressed by
types of body force distributions; symmetric and skew-symme
types to the bisector of the corners. Figure 2 indicates the
types of body forces distributed in the normal, tangential, a
circumferential directions to the boundary. In the vicinity of co
ner A, plain strain condition can be assumed; then, the eigenva
l1 , l2 , l3 , l4 controlling the singular stress fields is determin
from the eigenequations for 2D problems@1,2,15#. In this study

Fig. 2 Two types of body force distributed around the corner
in the „a… normal, „b… tangential, and „c… circumferential direc-
tions
Transactions of the ASME
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therefore unknown body force densitiesFn,M(r A);Fu,M(r A) in
body M and Fn,I(r A);Fu,I(r A) in body I are approximated by
using fundamental densitiesr A

l121
;r A

l421 and weight functions

Wn,M;Wu,I
III ,l4, where unknown constants arean,M; f n,I ,

Fn, j~r A!5Fn, j
I ,l1~r A!1Fn, j

I I ,l2~r A!5Wn, j
I ~r A!r A

l121
1Wn, j

I I ~r A!r A
l221

Ft, j~r A!5Ft, j
I ,l1~r A!1Ft, j

I I ,l2~r A!5Wt, j
I ~r A!r A

l121
1Wt, j

I I ~r A!r A
l221

(2)

Fu, j~r A!5Fu, j
I II ,l3~r A!1Fu, j

I II ,l4~r A!5Wu, j
I II ,l3~r A!r A

l321

1Wu, j
I II ,l4~r A!r A

l421
~ j 5M ,I !,

Wn, j
I ,l1~r A!5(

n51

M

an, j r A
n21,

Wt, j
I ,l1~r A!5(

n51

M

bn, j r A
n21, Wu, j

I II ,l3~r A!5(
n51

M

cn, j r A
n21,

(3)

Wn, j
I I ,l2~r A!5(

n51

M

dn, j r A
n21,

Wt, j
I I ,l2~r A!5(

n51

M

en, j r A
n21,

Wu, j
I II ,l4~r A!5(

n51

M

f n, j r A
n21 ~ j 5M ,I !.

Here, fundamental density functions are chosen to express
symmetric stress singularity of the forms 1/r 12l1, 1/r 12l3 and the
skew-symmetric stress singularity of the forms 1/r 12l2, 1/r 12l4.
Equations~2! and ~3! do not include the terms expressing loc

Fig. 3 „a… Typical boundary division for Eqs. „3… and „4…. „b…
Boundary division for singular integrals.
Journal of Applied Mechanics
the

al

uniform streching and shear distortion at corner A. Therefore
stresses (s rI

` ,suI
` ,t ruI

` ) applied in bodyI. In the numerical calcu-
lation, we may set the values of (s rI

` ,suI
` ,t ruI

` ) in body I so as to
produce the same strains appearing in bodyM under the stresss`.
The eigenvaluesl1 , l2 are given as the roots of the eigenequ
tions for in-plane deformation@15,2#, and the eigenvaluesl3 , l4
are given as the roots of the eigenequations for antiplane de
mation @1#. For example, the eigenequations for antiplane def
mation are shown in Eqs.~4! and ~5!.

For a symmetric state of stress singularity,

sinl~g2p!

sinlp
51

G11

G21
. (4)

For a skew-symmetric state of stress singularity,

sinl~g2p!

sinlp
52

G11

G21
, (5)

where the corner angle for matrixg53p/2 and the elastic ratio
G5GM /GI . WhenGM.GI , there is a real rootl3 of Eqs. ~4!,
but no rootsl4 of Eqs.~5!. On the contrary, whenGM,GI , there
is a real rootl4 of Eqs.~4!, but no rootsl3 of Eqs.~5!.

Figure 3a illustrates an example of boundary divisions f
L/D5102. In the numerical solutions for elliptical inclusions, w
do not have to divide the boundaries because the ‘‘fundame
densities’’ to express an elliptical inclusion exactly are availa
@16#. On the other hand, the boundary division is introduced h
because in this problem the fundamental densities are only us
near the corner. Then, the fundamental densities with singular
of symmetric and skew-symmetric types are employed on bou
aries C-B-A-D-E in Fig. 3. It is confirmed that the results are n
affected until almost to the third digit by changing a region ov
which the fundamental densities are used. Except along
boundaries C-B-A-D-E in Fig. 3, body forces are simply distri
uted in the normal, circumferential, and tangential directions w
out using symmetric and skew-symmetric distributions. On
numerical solution as shown in Eqs.~2! and ~3!, the singular in-
tegral Eqs.~1a! and~1b! are reduced to algebraic equations for t
determination of the unknown coefficients, for example,an,M
; f n,I in Eq. ~3!. These coefficients are determined from t
boundary conditions at suitably chosen collocation points. T

Table 1 Convergence of FI,l1
, FII,l2

, FIII,l3
„L ÕDÄ10, GI ÕGM

Ä102, n IÄnMÄ0.3…

Table 2 Convergence of FI,l1
, FII,l2

, FIII,l4
„L ÕDÄ10, GI ÕGM

Ä10À5, n IÄnMÄ0.3…
JULY 2003, Vol. 70 Õ 489
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Fig. 4 FI,l1
and FII,l2

for a cylindrical inclusion „solid line … and a rectangular inclusion
„broken line … under longitudinal tension „nMÄn IÄ0.3…
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stress intensity factorsKI ,l1
, KII ,l2

, KIII ,l3
, KIII ,l4

for corner A
can be obtained from the values of weight functions at the co
tip Wn

I (0), Wl
I(0), Wn

II (0), Wl
II (0), Wu

III ,l3(0), Wu
III ,l4(0). The

expressions may be found in Nisitani et al.~@5#!, and Noda et al.
~@17#!.

3 Numerical Results and Discussion
The generalized stress intensity factorsKI ,l1

, KII ,l2
, KIII ,l3

,
KIII ,l4

defined in Refs.@1#, @2# are analyzed with varying the
aspect ratioL/D and elastic ratioGI /GM . In the following dis-
cussion, dimensionless stress intensity factorsFI ,l1

;FIII ,l4
are

shown assuming Poisson’s ration I5nM50.3,

FI ,l1
5KI ,l1

/s`Ap~D/2!12l1,

FII ,l2
5KII ,l2

/s`Ap~D/2!12l2,
(6)

FIII ,l3
5KIII ,l3

/s`Ap~D/2!12l3,

FIII ,l4
5KIII ,l4

/s`Ap~D/2!12l4.

Convergence of the results are shown for the problem of p
shear in thexy plane in Fig. 1d. Table 1 shows the values ofFI ,l1

,
FII ,l2

at the cornerA(u50) and the values ofFIII ,l3
at the corner

A(u5p/4) for L/D510, GI /GM5102. Also Table 2 shows the
values ofFI ,l1

, FII ,l2
at the cornerA(u50) and the values of

FIII ,l4
at the cornerA(u5p/4) for L/D510, GI /GM51025. In

Tables 1 and 2,M is the number of collocation points at eac
boundary division, and the total number of collocation points
7M . As shown in Tables 1 and 2, TheFI ,l1

values can be deter

mined from the valuesWnM
I (0), WtM

I (0), and theFII ,l2
values

can be determined from the values ofWnM
II (0), WtM

II (0). From the
examination as shown in Tables 1 and 2, we can see the follow

~1! WhenGI /GM.1, the difference of theFI ,l1
, FII ,l2

values
obtained from different components of unknown functio
WnM

I (0), WtM
I (0) is larger, about 10%. WhenGI /GM,1, the

difference is smaller, about a few percent. Similar tendency
seen in the analysis of a 2D rectangular inclusion@4#.

~2! The average values ofFI ,l1
, FII ,l2

, which is obtained from
different components, always have good convergence forM55, 6
and look reliable.

~3! The values ofFIII ,l3
, FIII ,l4

are only a few percent com
pared with the values ofFI ,l1

, FII ,l2
.

d Mechanics
ner

ure

h
is

ing.

s

as

~4! The final results are obtained without using extrapolat
because the weight functions are approximated as power s
instead of step or linear functions@3–5# used usually in the body
force method. The convergence of the present solution is be
than the cases of Nisitani@5# and Chen@3,4#.

The following values ofFI ,l1
, FII ,l2

are obtained confirming

the convergence of the average values for various aspect
L/D and elastic ratioGI /GM .

In Table 3, the results for a cylindrical bar under uniaxial te
sion in thez direction are shown. For comparison, Table 4 sho
the results for a rectangular inclusion under longitudinal tens
obtained in the similar way of the present analysis. Chen’s res
@3# are in good agreement with Table 4. Results of Tables 3 an
are plotted in Fig. 4 as a comparison between the 3D and
models. With increasing the valueL/D, the stress intensity factor
increase and finally become saturated. For the same elastic
GI /GM , 3D and 2D results have a similar tendency with t
difference under630% in most cases.

Table 5 shows the values ofFI ,l1
, FII ,l2

at the cornerA(u

50), and Table 6 shows the ones at the cornerA(u5p/2) for
uniaxial tension of a cylindrical inclusion in thex direction. Fig-
ures 5 and 6 are the plots of Tables 5 and 6. As shown in th
tables and figures, the stress intensity factors have the larges
ues atA(u50) in most cases. From the comparison between
results of Figs. 4 and 5, it is found theFI ,l1

values for

z-directional tension are one to four times larger than the ones
x-directional tension in most cases, although theFII ,l2

values are

in the same order. From Figs. 4 and 5, it may be concluded
the stress intensity factors take saturated values at nearly the
value ofL/D; for example, whenGI /GM5102, the FI ,l1

values

become saturated whenL/D5100 in Figs. 4 and 5. In Fig. 5, for
high GI /GM , the stress intensityFI ,l1

decreases withL/D, be-

comes almost zero atL/D510, and then increases. Usually,FI ,l1

increases with increasingL/D; however, asL/D→1, the interac-
tion between both ends of the cylinder seems to makeFI ,l1

larger.

In Fig. 6, whenGI /GM5102 the stress intensityFI ,l1
changes in

sign asL/D increases, because in two auxiliary problems in Fi
1c andd, FI ,l1

depends onL/D differently. In Table 7 and Fig. 7

the results for a rectangular inclusion under transverse tension
shown. The difference between the results for Figs. 5 and 7 is v
large, in other words, it seems difficult to use 2D solution
evaluate the 3D results if the load is applied in the transve
direction.
JULY 2003, Vol. 70 Õ 491
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Fig. 5 FI,l1
and FII,l2

for a cylindrical inclusion under uniaxial tension in the x direction „at
corner A with uÄ0, nMÄn IÄ0.3…

Fig. 6 FI,l1
and FII,l2

for a cylindrical inclusion under uniaxial tension in the x direction „at corner
A with uÄpÕ2, nMÄn IÄ0.3…

Fig. 7 FI,l1
and FII,l2

for a rectangular inclusion under transverse tension, the case of plane
strain nMÄn IÄ0.3
plied Mechanics JULY 2003, Vol. 70 Õ 493
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4 Conclusion
In this paper, a cylindrical inclusion as a 3D model of a sh

fiber in composites was analyzed. Using the body force met
the problem is formulated as singular integral equations. The g
eralized stress intensity factors are calculated with varying
aspect ratioL/D and elastic ratioGI /GM . The conclusions can be
made as follows.

~1! In the numerical solution of the singular integral equatio
of the body force method, the unknown functions were appro
mated by the products of the fundamental density functions
the power series along the short segments into which wh
boundary is discretized. The convergence of the present solu
is better than the cases of Nisitani@5# and Chen@3,4#, where the
final results are obtained by using extrapolation. The average
ues ofFI ,l1

, FII ,l2
, which is obtained from different componen

of unknown functions, always have good convergence to the t
digit, and look reliable, even for the collocation number of ea
division M55, 6. The results are shown in the tables and figur

~2! When the cylindrical inclusion underz-directional tension
the FI ,l1

values are one to four times larger than the ones w
the cylindrical inclusion underx-directional tension in most case
although theFII ,l2

values are almost in the same order.
~3! From the comparison between the results of a 3D cylind

cal inclusion and a 2D rectangular inclusion, it appears though
and 2D results have a similar tendency with the difference un
630% in most cases when the load is applied in the longitud
direction. However, the difference is very large if the load is a
plied in the transverse direction. Care should be taken if the
solution is applied to evaluate the 3D results.

~4! The values ofFIII ,l3
, FIII ,l4

are only a few percent com
pared with the values ofFI ,l1

, FII ,l2
.
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Appendix: How to Evaluate Singular Integrals
In this analysis it is important to evaluate integrals in Eqs.~1a!

and ~1b! accurately because they have singularities when the
tegral interval includes boundary collocation points. In the pre
ous studies these integrals were evaluated as shown in the fo
ing way @6,18#. The integral interval is divided into three parts a
shown in Fig. 3b and Eq.~6!,

I 5E
a

b

f ~x!dx5E
a

«2«0

f ~x!dx1E
«2«0

«1«0

f ~x!dx1E
«1«0

b

f ~x!dx

5I 11I 21I 3 . (A1)

If we take suitable small values of 2«0 the integralI can be evalu-
ated as Eq.~A2!,

I 5E
2«0

«0

f ~x!dx

5E
2«0

«0 S C21

«
1C01D0 lnu«u1C1«1D1« lnu«u

1D1«2 lnu«u1¯ D
52C0«012D0~«0 ln «02«0!. (A2)
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Here,C21 , C0 , D0 are constants, which may be obtained fro
expansion forms aroundx5« with painstaking tasks. In this stud
therefore the following method is applied. First, we set

I 2«5I 2E
2«0

«0

f ~«!d«, I 4«5I 2E
22«0

2«0

f ~«!d«,

I 8«5I 2E
24«0

4«0

f ~«!d«. (A3)

These integrals can be expressed by

I 2«5I 22C0«022D0~«0 ln «02«0!5I 2C82D8«0 ln~2«0!,

I 4«5I 22C8«02D8~2«0!ln~2«0!, (A4)

I 8«5I 24C8«02D8~4«0!ln~4«0!,

whereC852(C02D0), D852D0 . Since the integralsI 2« , I 4« ,
I 8« exclude singular points, they can be evaluated accura
through normal numerical procedure. Finally, we can evaluaI
from

I 54I 2«24I 4«2I 8« . (A5)
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General Solutions of Anisotropic
Laminated Plates
Anisotropic laminates with bending-stretching coupling possess eigensolutions tha
analytic functions of the complex variables x1mky, where the eigenvaluesmk and the
corresponding eigenvectors are determined in the present analysis, along with the h
order eigenvectors associated with repeated eigenvalues of degenerate laminate
analysis and the resulting expressions are greatly simplified by using a mixed formu
involving a new set of elasticity matricesA* , B* , andD* . There are 11 distinct types o
laminates, each with a different expression of the general solution. For an infinite p
with an elliptical hole subjected to uniform in-plane forces and moments at infi
closed-form solutions are obtained for all types of anisotropic laminates in terms o
eigenvalues and eigenvectors.@DOI: 10.1115/1.1576804#
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1 Introduction
Symmetric laminates belong to the class of laminates in wh

the coupling between bending and stretching is absent. For
class, the general problem of equilibrium under various types
loads and boundary conditions can be separated into an ou
plane bending problem and an in-plane stretching/shearing p
lem. The latter is identical to the plane-stress anisotropic elast
problem. The similarity between this problem and the bend
problem of symmetric laminates was observed by Lekhnitskii@1#.
Specifically, the deflection function of bending satisfies a four
order governing differential equation that is similar to the diffe
ential equation for the Airy’s stress function. Lekhnitskii obtain
the general solution of the bending of~nondegenerate! symmetric
laminates by using the complex variable theory, in a way sim
to his investigation of two-dimensional anisotropic elasticity,@2#.

In this work, we consider anisotropic laminates that genera
manifest bending-stretching coupling. Although the literature
the numerical analysis of laminated plates is vast, there appe
be few systematic attempts to investigate the analytical repre
tation and mathematical structure of the solutions, to the ex
that such researches have been pursued both in the classical t
of isotropic plates and in the two-dimensional anisotropic elas
ity theory. Half a century after its publication, Lekhnitskii’s wor
@1# still remains the standard reference on anisotropic plates.

The mature development of linearisotropic elasticity was due
substantially to the systematic investigation of Muskhelishvili@3#
and his associates, in which the use of complex function repre
tations of general solutions, Green’s functions and integral eq
tions, are essential. In anisotropic elasticity, the representatio
broadened by using multiple complex variables involving mate
eigenvalues. Such representations are especially importan
finding singularity solutions of multimaterial wedges in compos
structures near free edges and crack tips,@4–6#, and for the
boundary element formulation of elastostatic problems,@7,8#.
However, similar representations of the general solution are p
ently available only for anisotropic laminates with simple~dis-
tinct! eigenvalues and for isotropic laminates, but not for the va
ous other classes of degenerate laminates.

In this paper, we obtain explicit analytical expressions of
general solutions of all types of anisotropic laminates. By expre

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, June 5, 20
final revision, Nov. 22, 2002. Associate Editor: J. R. Barber. Discussion on the p
should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, Departme
Mechanics and Environmental Engineering, University of California–Santa Barb
Santa Barbara, CA 93106-5070, and will be accepted until four months after
publication in the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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ing the displacements, the stress potentials and the moment p
tials in terms of complex analytic functions, the governing eq
librium equations and the constitutive relations are reduced to
algebraic eigenvalue problem, which possesses four complex
jugate pairs of eigenvalues and eigenvectors. Each simple ei
valuemk and its eigenvector determine an eigensolution conta
ing an arbitrary analytical function ofx1mky. If repeated
eigenvalues occur, then high-order eigenvectors may be need
supplement the zeroth-order eigenvectors. In such degene
cases, the eigensolutions have more complicated forms of exp
sion.

In the conventional formulation of laminated plate theory, t
constitutive relation is given by three symmetric stiffness matri
A, B, D, which reduce the equilibrium equations of the forces a
moments to a system of differential equations governing the th
displacement componentsu, v, and w, @9#. This formulation is
ill-suited for the analytical task of determining the general so
tion. In this work, amixed formulation is adopted by taking the
curvatures and the in-plane forces as the primary unknown fu
tions. The conventional stiffness matricesA, B, and D are re-
placed by new elasticity matricesA* , B* , and D* ~where A*
5A21, the other two matrices are defined by Eqs.~13c,d!, andB*
is not symmetric!. In this formulation, the determination of eigen
values and eigenvectors of coupled laminates is reduced to
eigenvalue problem associated with a 232 matrix function, which
can be solved effortlessly. It is shown, moreover, that the high
order eigenvectors and eigensolutions associated with a repe
eigenvaluem of degenerate laminates may be obtained in a f
malistic way by differentiating appropriate analytical expressio
of the lower-order eigenvectors and eigensolutions with respec
m, which is regarded provisionally as a variable prior to evalu
tion at a specific multiple eigenvalue. Therefore, all eigenvect
and eigensolutions of the various types of anisotropic lamina
may be obtained in explicit forms.

The present analysis bears a formal resemblance to the aut
recent work on plane anisotropic elasticity,@10,11#. However, the
eigenvectors in the present problem have the dimension e
whereas those in the generalized two-dimensional elasticity~in-
cluding coupling between the in-plane and the antiplane mod!
have the dimension six. The present problem yields eleven dif
ent classes of anisotropic plates, while there are only five differ
classes of materials in plane anisotropic elasticity. Each one of
eleven types possesses distinct representations of the eigenve
and of the general solution, depending on the multiplicity of t
eigenvalues, and on whether they are normal, abnormal, or
perabnormal. A classification of eight distinct types of eigenvalu
is shown in Section 5, accompanied by a simple proof that
eigenvalue can be real if the laminate has a positive-definite st

2;
per
t of

ara,
nal
03 by ASME Transactions of the ASME



n

v
a

h

l
u

e

d

t

p
a
h

i

e

i

a

of

e

energy function. In Section 7, we apply the general solution to
infinite laminate with a load-free elliptical hole subjected to u
form force and moment loads at infinity. An analytical solution
obtained forall types of laminates in terms of the respecti
eigenvectors, thereby extending the previous solution of Lu
Mahrenholtz @12# for nondegenerate laminates, in which th
eigenvectors are shown implicitly but not explicitly due to t
inherent complexity of the Stroh formalism used in their analys

2 Eigenvalues, Eigenvectors, and Eigensolutions
Let u(x,y) andv(x,y) denote the midplane tangential displac

ments of a laminated plate and letw(x,y) denote the norma
displacement. The midplane strains and curvatures are us
grouped in the ordere5$ex ,ey,2exy%

T5$u,x ,v ,y ,u,y1v ,x%
T and

k5$w,xx ,w,yy,2w,xy%
T. They are related to the stress and mom

resultants,n5$Nx ,Ny ,Nxy%
T and m5$Mx ,M y ,Mxy%

T, by the
constitutive equations of an anisotropic laminated plate

n5Ae1Bk, m5Be1Dk, (1)

where the 333 symmetric matricesA, B, andD characterize the
extensional stiffness, extension-bending coupling, and ben
stiffness, respectively,@9#.

An equilibrium solution of the plate problem with kinetic o
kinematical boundary conditions and subjected to distributed
gential and normal surface loads may be decomposed into a
ticular solution under the same distributed loads and a com
mentary problem involving boundary loads and bound
displacements only. A particular solution is any solution of t
inhomogeneous differential equations~containing the specified
distributed loads! with no regard to boundary conditions. It ma
be obtained by integrating Green’s functions~fundamental solu-
tions! for the infinite domain weighted by the distributed loa
intensities. The present paper is concerned only with the com
mentary problem, which is governed by homogeneous equilibr
equations

Nx,x1Nxy,y50, Nxy,x1Ny,y50, (2)

Mx,x1Mxy,y1Qx50, Mxy,x1M y,y1Qy50, Qx,x1Qy,y50.
(3)

These equations have the following general solution in terms
three arbitrary functionsF(x,y), C1 (x,y) andC2 (x,y):

Nx5F ,yy , Ny5F ,xx , Nxy52F ,xy , (4)

M y5C1,x , Mx5C2,y , 22Mxy5C1,y1C2,x , (5)

Qx51/2~C1,y2C2,x! ,y , Qy521/2~C1,y2C2,x! ,x . (6)

Notice thatM y , Mx , and22Mxy are expressed as the derivativ
of C1 andC2 in the same way that the midplane strainsex , ey ,
and 2exy are expressed in terms of the corresponding derivat
of the displacement functionsu andv.

We seek solutions of the six functionsu, v, w, F, C1 , andC2
in the form

x[$w,y ,2w,x ,F ,y ,2F ,x ,C1 ,C2 ,2u,2v%T5 f ~x1my!j,
(7)

wheref is an arbitrary analytic function and the complex const
m and the eight-dimensional complex vectorj
5$j1 ,j2 , . . . ,j8%

T will be determined subsequently. The supe
script T indicates the transpose operation on a matrix or a r
vector. The relations

w,xy52 f 8~x1my!mj25w,yx5 f 8~x1my!j1 ,

F ,xy52 f 8~x1my!mj35F ,yx5 f 8~x1my!mj4

require that

j152mj2 , j352mj4 . (8)

If we define
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h[$j2 ,j4%
T, (9a)

f[$w,yy ,w,xx ,2w,xy ,F ,yy ,F ,xx ,2F ,xy%
T, (9b)

u[$M y ,Mx ,22Mxy ,2ex ,2ey ,22exy%
T. (9c)

Then, from Eq.~7! follows that

f5 f 8~x1my!F~m!j5 f 8~x1my!P~m!h, (10a)

u5 f 8~x1my!E~m!j, (10b)

where

F~m![3
m 0 0 0 0 0 0 0

0 21 0 0 0 0 0 0

21 0 0 0 0 0 0 0

0 0 m 0 0 0 0 0

0 0 0 21 0 0 0 0

0 0 21 0 0 0 0 0

4 , (11a)

P~m![3
2m2 0

21 0

m 0

0 2m2

0 21

0 m

4 (11b)

E~m![3
0 0 0 0 1 0 0 0

0 0 0 0 0 m 0 0

0 0 0 0 m 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 m

0 0 0 0 0 0 m 1

4 . (11c)

Clearly,

PTE50, (12a)

YE5@0434 ,I4#, (12b)

where0n3n , In denote, respectively, zero and identity matrices
dimensionn3n and

Y~m![F 1 0 0 0 0 0

2m 0 1 0 0 0

0 0 0 1 0 0

0 0 0 2m 0 1

G . (12c)

The variablesf andu must be related by the laminate constitutiv
equation, i.e., Eq.~1!. Define the symmetric matrix

C* [F D* B*

B* T 2A* G (13a)

where

A* [A21, (13b)

B* [LBA21, (13c)

D* [L~D2BA21B!L, (13d)

L[F 0 1 0

1 0 0

0 0 22
G . (13e)

Then Eq.~1! becomes
JULY 2003, Vol. 70 Õ 497
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u5C* f, (14)

and, using Eqs.~10a,b!, one obtains

E~m!j5C* F~m!j5C* P~m!h. (15)

Comparing Eqs.~1! and~14!, one finds that the roles ofm andk
have been interchanged and their elements redefined and
ranged. Premultiplying the last equation by the matricesY and
PT, and using Eqs.~12a,b!, one has

@0434 ,I434#j5$j5 ,j6 ,j7 ,j8%
T5Y~m!C* P~m!h, (16)

M ~m!h50, (17)

whereM ~m! is the 232 symmetricmatrix defined by

M ~m![P~m!TC* P~m!. (18)

The components of the matrixM ~m! are quartic functions ofm,
i.e.,

M11~m!5$2m2,21,m%D* $2m2,21,m%T.

M12~m!5M21~m!5$2m2,21,m%B* $2m2,21,m%T, (19)

M22~m![$2m2,21,m%~2A* !$2m2,21,m%T.

Combining Eqs.~8! and ~16!, one obtains an expression of th
eight-dimensional vectorj in terms ofh5$j2 ,j4%:

j5J~m!h, (20)

where

J~m![FJ1~m!

J2~m!G , J1~m![F 2m 0

1 0

0 2m

0 1

G ,

J2~m![Y~m!C* P~m!. (21)

Equation ~17! has a nontrivial solutionh if and only if the
determinant ofM ~m! vanishes. This yields the characteristic equ
tion

d~m![M11~m!M22~m!2@M12~m!#250. (22)

It will be shown later that, if the strain energy of the laminate
positive definite for arbitrary combinations of stretching and be
ing deformations, then the polynomial Eq.~22! has no real roots.
The strain energy of the laminate is given by

U~k,e!51/2~kTm1eTn!51/2~kTDk12kTBe1eTAe!

51/2$k̂TD* k̂1nTA* n!, (23a)

where

k̂[$w,yy ,w,xx ,2w,xy%. (23b)

It is interesting to notice that the last expression of Eq.~23a! does
not involveB* .

For the functionU to be positive definite under pure bendin
and pure stretching states, respectively, the stiffness matriceD
andA must be positive definite. Positive definiteness ofU under
more general states of deformation requires, in addition, pos
definiteness ofD* 5L(D2BA21B)L or, equivalently, of D
2BA21B. Laminates with aBA21B large or comparable in mag
nitude toD may violate this condition, making the statee5k50
precarious~a state of saddle-point equilibrium!. This cannot hap-
pen if all layers are bonded together without initial stress, beca
any deformation from the initial state increases the strain ene
in every part. But it is conceivable to produce a laminate by p
straining certain layers in tension and others in compression
fore bonding the layers, so that a slight disturbance from the
erence staten5k50 will cause the laminate to curl up and t
drastically reduce the stresses in severely pre-strained la
498 Õ Vol. 70, JULY 2003
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similar to the release of subterranean stress during earthqua
Laminated plate theory is broad enough to encompass lamin
with differently prestressed layers. For such laminatesk50 still
refers to the flat state, but the statee50 cannot be identified a
priori except as the state corresponding ton50. Be it so, it is not
the principal reason for adopting the constitutive relation of E
~14! in the present theory, rather than the customary form of
~1!. The present choice is dictated essentially by the mathema
structure of the problem, and by the resulting expressions of
general solutions of laminated plates. These general solutions
obtained analytically in terms of the elements of the matricesA* ,
B* , andD* . To convert the solutions into expressions involvin
the elements ofA, B, andD would make the expressions undu
complicated.

Under the assumption of a positive-definiteU, the eigenvalues
are not real and they occur in conjugate pairs since the com
conjugate of Eq.~22! is M11(m̄)M22(m̄)2M12(m̄)250, wherem̄
denotes the complex conjugate ofm. For each rootm0 , there is at
least one nontrivial solutionh of Eq. ~17!. Equations~20! and
~21! yield the eight-dimensional constant vectorj, and Eq.~7!
gives a solution of the laminated plate containing an arbitr
analytic functionf of the complex variablex1my. A root m of the
characteristic equation will be called aneigenvalue, and the cor-
responding vectorsj and x will be called theeigenvectorand
eigensolutionassociated withm. Since the elements ofM ~m! and
J~m! are polynomials with real coefficients, it follows that ifj is
an eigenvector associated withm, then the complex conjugate
vector j̄ is an eigenvector associated with the conjugate eig
value m̄. m̄ and j̄ determine another eigensolution involving a
arbitrary complex functiong(x1m̄y). The sum of the two eigen-
solutions yield real values ofx if and only if the functionsf andg
are related by

g~x1m̄y![ f ~x1my!. (24)

When this is the case, Eqs.~4!–~6! yield real values of the forces
and moments. We will assume that the eigensolutions assoc
with a complex conjugate pair of eigenvalues are always co
bined in this way to yield real-valued physical quantities.

Consider the adjoint matrix ofM

W~m!5F M22 2M12

2M12 M11
G5P~m!T

•F 2A* 2B*

2B* T D* GP~m!,

(25)

which satisfies the identity

W~m!M ~m!5M ~m!W~m!5d~m!I . (26)

An eigenvaluem0 will be callednormal if it is not a common root
of all three equationsM11(m)5M12(m)5M22(m)50, i.e., if
M (m0), and henceW(m0), are not zero matrices. Otherwisem0
will be calledabnormal. For a normal eigenvaluem0 , W(m0) is a
matrix of rank one. Therefore, it has one and only one indep
dent column vector. Then it has at least one nonvanishing diag
element. Leth be the column containing the first nonvanishin
diagonal element ofW(m0). Equation~26! with d(m0)50 en-
sures that h satisfies ~17!, i.e., M (m0)h50. Therefore, j
5J(m0)h is an eigenvector associated withm0 , and Eq.~7! gives
the eigensolutionx.

If m0 is anabnormaleigenvalue, thenM (m0) andW(m0) are
zero matrices. Sincem0 is a common root of all elements o
M11(m)5M12(m)5M22(m)50, it must be a multiple root of
d~m!50. Equation~17! is trivially satisfied by an arbitraryh. Two
independent eigenvectors are given byj5J(m0)h, whereh may
be chosen as$1,0%T and $0,1%T. This choice yields the two col-
umns ofJ(m0) as the eigenvectors, and each may be multiplied
an arbitrary analytic function ofx1m0y to obtain a corresponding
eigensolution.
Transactions of the ASME
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3 Higher-Order Eigenvectors and Eigensolutions
Equations~17! and~20! yield one independent eigenvector for

normal eigenvalue and two independent eigenvectors for an
normal one. If these numbers are smaller than the multiplicity
the eigenvalue, then the two equations in conjunction with~7! do
not yield the complete set of eigensolutions~i.e., four complex
conjugate pairs!. In such cases, additional independent solutio
must be found. Such additional solutions are determined by r
tions different from those governing the preceding eigensolutio
and they have more complicated forms of representation involv
successive eigenvectors of higher orders~also called ‘‘generalized
eigenvectors’’ in the literature on anisotropic elasticity!. As inde-
pendent solutions, the higher-order eigensolutions are not sec
ary in status. They are equally indispensable to the general s
tion of the laminate, in the same way that a second analyt
function is indispensable to the general solution of the biharmo
equation in plane isotropic elasticity.

If an eigenvalue is of multiplicityp, and it has onlyr indepen-
dent zeroth-order eigensolutions, thenp2r higher-order indepen-
dent solutions will be sought. We consider anNth-order eigenso-
lution (1<N<p21) having the following expression:

x@N#5 (
0< j <N

~N, j !yj f ~ j !~x1my!j@N2 j #, (27)

where (N, j )[N!/(N2 j )! j !, f ( j ) denotes thejth derivative of the
complex analytic functionf, and j@1#, j@2#, . . . ,j@N# is a set of
complex constant vectors of dimension eight. Differentiating
expression and regrouping the resulting terms, one obtains

f@N#5yNf ~N11!Fj@0#1 (
0< j <N21

~N, j !yj f ~ j 11!$Fj@N2 j #

1~N2 j !F8j@N2 j 21#, (28)

u@N#5yNf ~N11!Ej@0#1 (
0< j <N21

~N, j !yj f ~ j 11!$Ej@N2 j #

1~N2 j !E8j@N2 j 21#, (29)

whereF~m! andE~m! are as given by Eqs.~11a,c!. Let

K ~m![F1 m 0 0 0 0 0 0

0 0 1 m 0 0 0 0G (30)

Then the relationsw,xy5w,yx andF ,xy5F ,yx imply

(
0< j <N

~N, j !yj f ~ j !~x1my!K ~m!j@N2 j #

1 (
0< j <N

~N, j ! jy j 21f ~ j !~x1my!K 8j@N2 j #

5 (
0< j <N

~N, j !yj f ~ j 11!~x1my!$

3K ~m!j@N2 j #1~N2 j !K 8j@N2 j 21#%50.

It is understood thatj@ j #50 if j is a negative integer. Letz5x
1my. Theny5(z2 z̄)/(m2m̄), so that the last equation involve
a polynomial function of the complex variablez̄. For this equation
to be valid in a region of thex2y plane, it is necessary that th
coefficients of the various powers ofz̄ all vanish. Hence,

K ~m!j@0#50, (31a)

K ~m!j@ j #1 j K 8j@ j 21#50, ~1< j <N!. (31b)

We now defineh@ j # as the two-dimensional vector consisting
the second and fourth elements ofj@ j #, i.e.,
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h@ j #5K 8j@ j #5F0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0Gj@ j #.

The last equation and~31a,b! may be combined into a single
expression

FK 8
K Gj@ j #5F h@ j #

2 j K 8j@ j 21#G , ~ j 50,1, . . . ,N!. (32)

This equation, after premultiplication by

F 2m 0 1 0

1 0 0 0

0 2m 0 1

0 1 0 0

G
and repeated substitutions, yields the following expression for
first four elements ofj@ j #:

@ I4 ,0434#j@ j #5J1~m!h@ j #1 j J18h@ j 21#, ~ j 51,2, . . . ,N!
(33)

whereJ1(m) was given by the second equation of~21!.
We now require that the kinetic and kinematical variables of

Nth-order generalized eigensolution be related by the lamin
constitutive relation~14!, i.e.,

u@N#5C* f@N#. (34)

Premultiplying ~34! by Y~m!, and using Eqs.~12b!, ~13!, ~21!,
~28!, ~29! andy5(z2 z̄)/(m2m̄), one obtains an expression th
may be separated into various powers ofz̄:

@0434 ,I434#j@ j #5 j Y8E~m!j@ j 21#1 j Y~m!C* P8~m!h@ j 21#

1~ j ,2!Y~m!C* P9h@ j 22#

5J2~m!h@ j #1~ j ,1!J28~m!h@ j 21#

1~ j ,2!J29~m!h@ j 22#1~ j ,3!J2-~m!h@ j 23#

3~ j 50,1, . . . ,N!.

Combining~33! with the last equation, one has

j@ j #5J~m!h@ j #1~ j ,1!J8~m!h@ j 21#1~ j ,2!J9~m!h@ j 22#

1~ j ,3!J-~m!h@ j 23#. (35)

Again, it is understood thath@ j#50 for negativej. Hence anNth-
order eigenvectorj@N# may be expressed in terms of the tw
dimensional vectorsh@0#, h@1#, . . . h@N#.

Premultiplying~34! by P(m)T and using Eqs.~12a!, ~28!, ~29!,
~35!, and ~18!, one obtains the following governing equation fo
the eigenvectors of various orders after a sequence of algeb
manipulations:

(
0< j <N

~N, j !M ~ j !~m!h@N2 j #50, ~N50,1, . . . ,p21! (36)

where M ( j ) denotes thejth derivative of the matrix defined
by Eq. ~18!.

Equation ~36! may be solved explicitly forh@ j #(1< j <N<p
21), but the form of the solution depends on whetherm is a
normal or abnormal eigenvalue. Ifm is normal, thenM ~m! and its
adjoint matrix W~m! are both symmetric matrices of rank on
HenceW~m! has at least one nonzero diagonal element and
definer to be the vector$1,0%T if uW11(m)u>uW22(m)u and to be
$0,1%T if otherwise. ThenW~m!r is a nonvanishing vector. Re
peated differentiation of Eq.~26! yields

(
0< j <N

~N, j !M ~ j !W~N2 j !~m!5d~N!~m!I ~N50,1, . . . ,L !.

(37)
JULY 2003, Vol. 70 Õ 499
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An Nth-order eigenvector is required only ifp is equal to or
greater thanN11. In that cased( j )(m)50 for 0< j <N<p21.
Hence the right-hand side of Eq.~37! vanishes. We chooseh@0#

5W(m)r, and take each higher orderh@ j # to be the correspond
ing column of W( j )(m), 1< j <N. Then all p21 equations of
~36! are satisfied. Henceh@0#, h@1#, . . . ,h@p21# and Eq.~35! de-
termine the successive eigenvectors of increasing orders:

j@0#5JWr, j@1#5~JW81J8W!r,

j@2#5~JW912J8W81J9W!r,
(38)

j@3#5~JW-13J8W913J9W81J-W!r.

Equation~27! gives the corresponding eigensolutions

x@0#5 f JWr, x@1#5 f ~JW81J8W!r1y f8JWr,

x@2#5 f ~JW912J8W81J9W!r12y f8~JW81J8W!r

1y2f 9JWr, (39)

x@3#5 f ~JW-13J8W913J9W81J-W!r13y f8~JW912J8W8

1J9W!r13y2f 9~JW81J8W!r1y3f-JWr.

Clearly, the zeroth-order eigenvectorj@0# and eigensolutionx@0#

are identical to those determined in the previous section from E
~17! and ~20!.

4 High-Order Eigensolutions Associated
With Abnormal and Superabnormal Eigenvalues

Next we consider anabnormaleigenvaluem0 with the multi-
plicity p>3, which has two independent zeroth-order eigenv
tors given by the two columns ofJ(m0) and requires, in addition
one or two higher-order eigenvectors for the casesp53 and p
54, respectively.

The higher-order eigensolutions for anormal eigenvalue, ob-
tained in the last section, were based on choosingh@ j # to be the
column ofW( j )(m0) which corresponds to a nonvanishing colum
of W(m0), 1< j <L. This procedure fails for an abnormal or s
perabnormal eigenvalue, for whichW(m0) has no nonvanishing
columns. The proper nontrivial solutions ofh@ j # then depend on
whether or notM 8(m0) is also the zero matrix. If it is not, then i
is of rank one and so is its adjoint matrixW8(m0). Being a sym-
metric 232 matrix of rank one, at least one of the two diagon
elements ofW8(m0) is not zero. We now definer̂ to be the vector
$1,0%T if uW118 (m)u>uW228 (m)u and to be$0,1%T if otherwise. Then
W[r̂TW8(m)r̂ does not vanish. We then choose

h@ j #5W~ j !~m0!r̂, ~ j 51, . . . ,p21!. (40)

Equation ~37!, in conjunction withd ( j )(m)50 for 0< j <p21,
still ensure thath@0#50, h@1#, . . . andh@p21# satisfy all equations
of ~36!. Therefore, they determine the eigenvectors and eige
lutions of the required orders via Eqs.~27! and~35!. Substitution
of ~40! into ~27! and ~35! yields expressions ofj@ j # andx@ j # that
differ formally from those of a normal eigenvalue, Eqs.~39! and
~38!, only in replacing the vectorr by r̂, i.e., in possibly making
a different choice of the column from the 832 matrixJW and its
m-derivatives to ensure nontrivial results. But the new express
for an abnormal eigenvalue also contain fewer terms becaus
terms involving the zero matrixW vanish. Furthermore, the con
tribution of the termf JW- to x@3# in the last equation of~39! to
the general solution is not different from that of a zeroth-ord
eigensolution with the eigenvectorj@0#5Jh@0#5JW- ~Since
M (m0)50, Eq. ~17! is satisfied by anarbitrary h@0#, in particular
by h@0#5JW-). Hence the term involvingJW- in the expres-
sions ofj@3# andx@3# may be absorbed into the zeroth-order eige
solutions. In fact, according to Eq.~36!, h@3# is determined by the
following governing equation:
500 Õ Vol. 70, JULY 2003
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M-~m0!h@0#13M 9~m0!h@1#13M 8~m0!h@2#1M ~m0!h@3#50.

But the last term on the left-hand side vanishes becauseM (m0) is
the zero matrix. Hence the equation imposes no restriction a
on h@3#, which may therefore be set to zero without loss of ge
erality, and that in effect throws out the termf JW- from x@3#.
Although one has the option of discarding or keeping the term
JW-, it will be retained in the following expressions ofj@3# and
x@3# to facilitate future analysis of the algebraic structure of t
solution spaces. Hence we have

j@1#5JW8r̂, (41a)

j@2#5~JW912J8W8!r̂, (41b)

j@3#5~JW-13J8W913J9W8!r̂, (41c)

x@1#5f1JW8r̂, (42a)

x@2#5 f 2~JW912J8W8!r̂12y f28JW8r̂, (42b)

x@3#5 f 3~JW-13J8W913J9W8!r̂

13y f38~JW912J8W8!r̂13y2f 39JW8r̂, (42c)

where f 1 , f 2 , and f 3 are arbitrary analytic functions ofx1m0y.
The preceding list must be supplemented by a zeroth-order ei
vector j@0# chosen from the two columns ofJ(m0), and by the
corresponding eigensolutionx@0#. The choice must be made i
such a way as to ensure thatj@0# andj@1# are linearly independent
We therefore take

j@0#5J~m0!F0 1

1 0G r̂, (41d)

x@0#5f0~x1m0!j@0#. (42d)

Besides having to replace the vectorr by r̂, another important
consequence of abnormality upon the structure of the genera
lutions is that, withJWr̂50, the term involving the highest de
rivative yNf @N#(x1my) in Eq. ~27! vanishes. Therefore, an eigen
solution originally sought as of orderN in the scheme of Eq.~27!
turns out to be effectively one order lower. Thus the factorsy3f-,
y2f 9 and y f8, which belong to a third, second, and first-ord
eigensolution, respectively, no longer appear in the expression
x@3#, x@2#, andx@1#, Eqs.~42a,b,c!. In contrast to a normal qua
druple eigenvalue, which has one eigensolution of every or
from zero to three, an abnormal quadruple eigenvalue has
zeroth-order eigensolutions, one eigensolutionx@2# effectively of
the first order, and anotherx@3# effectively of the second order
The effective order refers to the highest-order derivative of
arbitrary functionf that appears in the expression of an eigen
lution.

For an abnormal eigenvalue,x@1#5 f JW8r̂ is effectively a
zeroth-order eigensolution. It is redundant and, in the case
abnormaldoubleeigenvalue, it has been discarded in favor of t
two zeroth-order solutions whose eigenvectors are the two
umns ofJ(m0), because the latter are simpler in form. Howev
for abnormal eigenvalues of multiplicity three or four, the eige
vector j@1#5JW8r̂ is needed in the expressions of the highe
order eigensolutions, as seen in the last terms of the expressio
x@2# and x@3# in Eqs. ~42b,c!. For this reason,j@1# is included in
Eq. ~41!, while only one of the two columns ofJ(m0) is chosen in
Eq. ~41d! to complete the set of independent eigenvectors. Eq
tions ~42a,b,c,d! may be written in the matrix form
Transactions of the ASME
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$x@0#,x@1#,x@2#,x@3#%5$j@0#,j@1#,j@2#,j@3#%

3F f 0 0 0 0

0 f1 2y f28 3y2f 39

0 0 f 2 3y f38

0 0 0 f 3

G . (43)

The complete list of three eigenvectors and eigensolutions
sociated with an abnormaltriple eigenvalue are also given by Eq
~41! and~42! when the expressions ofj@3# andx@3# are removed.

An eigenvaluem0 is called superabnormal if bothM (m0) and
M 8(m0) are zero matrices. Such an eigenvalue must be a do
root of each scalar component of the matrix equationM ~m!50,
and so must bem̄0 , and their multiplicity must be four. Then
d(m0)5d8(m0)5d9(m0)5d-(m0)50 andM ~m! has the form

M ~m!5~m2m0!2~m2m̄0!2C,

whereC is a 232 constant matrix. Again, two independent eige
vectors are given by the two columns ofJ(m0). To obtain first-
order eigensolutions, we notice that forN51 and M (m0)
5M 8(m0)50, Eq. ~36! is trivially satisfied regardless ofh@0# and
h@1#. Settingh@1#50 and choosingh@0# to be, successively, the
two column of the identity matrixI2 , then Eq.~35! with j 51
yields two independent first-order eigenvectors given by the
columns of the matrixJ8(m0). Equation~27! yields the corre-
sponding first-order eigensolutions given by the two columns
the following matrix:

J8~m!F f 1 0

0 f 2
G1J~m!F y f18 0

0 y f28
G , (44)

where f 1 and f 2 are two arbitrary analytic functions.
For each eigensolution obtained in this and the previous

tion, the expressions for the midplane strains, bending and tw
ing curvatures and stress and moment resultants may be obt
from Eqs.~28! and ~29!.

5 Classification of Eigenvalues and Proof of the Com-
plexity

The preceding results imply the following classification of e
genvalues into eight types. Each type is marked by a num
showing its multiplicityp, and abnormal eigenvalues are mark
with the letter A. The symbol AA refers to a superabnormal eig
valuem0 , for which bothM (m0) andM 8(m0) are zero matrices
and thereforem0 must be a quadruple eigenvalue.

~A! Normal Eigenvalues
Type 1—A simple eigenvalue
Type 2—Normal, double eigenvalue
Type 3—Normal, triple eigenvalue
Type 4—Normal, quadruple eigenvalue

Normal eigenvalues with multiplicityp have eigenvectors an
eigensolutions of orders zero throughp21 given by Eqs.~38! and
~39!.

~B! Abnormal Eigenvalues
Type 2A—Abnormal,p52. m has two independent zeroth

order eigenvectors given by the two columns of the matrixJ~m!,
each yielding an independent eigensolution when multiplied by
arbitrary analytic function ofx1my.

Type 3A—Abnormal,p53. Two eigenvectors are given b
Eqs. ~41a,b! and the corresponding eigensolutions are given
Eqs. ~42a,b!. In addition, one zeroth-order eigenvectorj@0# and
eigensolutionx@0# are given by Eqs.~41d! and~42d!, respectively,
to ensure independence ofj@0# andj@1#.

Type 4A—An abnormal quadruple eigenvaluem with
M8~m!Þ0. Eigenvectors and eigensolutions are given, resp
tively, by the full systems of Eqs.~41! and ~42!.

~C! Superabnormal Eigenvalue
Journal of Applied Mechanics
as-
.

ble

n-

wo

of

ec-
ist-
ined

i-
ber
d
n-

-

an

by

ec-

Type 4AA—The eigenvectors are given by the two columns
J~m! and the two columns ofJ8~m!. The eigensolutions are give
by the two columns ofJ(m)^ f 3(m), f 4(m)& and the two columns
of Eq. ~44!. All isotropic plates have superabnormal eigenvalu
6 i , which are the double roots ofM11(m)50 and also of
M22(m)50, and for whichM12 vanishes identically.

We now give a proof that, if the strain energy functionU
51/2(kTm1eTn) is positive definite, then the characteristic E
~22! has no real roots. Considerk andn of the form

$w,yy ,w,xx ,2w,xy%
T5$2m2,21,m%Tk0 ,

n5$2m2,21,m%Tn0 .

Substituting into Eqs.~23a,b!, and using Eq.~19!, one obtains

2U5kTm1nTe5$k0 ,n0%F1 0

0 21GM ~m!Hk0

n0
J . (45)

If the Eq. ~22! has a real rootm, thenM ~m!h50 has a nontrivial
real solutionh. Let $k0 ,n0%

T5h. Then U vanishes for a non-
trivial state. This contradicts the assumption thatU is positive
definite.

Applying the preceding arguments to the special cases wh
either k0 or n0 but not both vanish, one also finds thatM11(m)
50 has no real roots provided thatD is positive definite, and
M22(m)50 has no real roots provided thatA is positive definite.

Hence an anisotropic laminate has four complex conjugate p
of eigenvalues, and they may or may not be all distinct. T
multiplicity of the eigenvalues, and whether they are normal,
normal, or superabnormal, determine the types of eigenvec
and eigensolutions belonging to the laminate. A laminate isnon-
degenerateif it has four complex conjugate pairs ofindependent
zeroth-order eigenvectors. Laminates are called degenerate, e
degenerate, and ultra-degenerate, respectively, if they require
two, or three conjugate pairs of higher-order eigensolutions
supplement the zeroth-order eigensolutions.

The eight different types of eigenvalues and the correspond
sets of eigensolutions logically imply a classification of all anis
tropic laminates into 11 mutually exclusive types, each with
distinctive representation of its general solution. To solve an eq
librium problem of a laminate using the general solution, o
must first determine the type to which the laminate belongs,
use the representation of the general solution appropriate to
type.

Three of the 11 types are nondegenerate, three degenerate
extra-degenerate, and one ultra-degenerate. Each type is ch
terized by a distinctive combination of eigenvalues, and o
those eigenvalues with positive imaginary parts need be m
tioned. The nondegenerate types include laminates with~a! four
simple eigenvalues,~b! two simple and one double abnormal, an
~c! two double abnormal eigenvalues. The degenerate types
clude those with~a! two simple and one double normal,~b! one
double normal and one double abnormal and~c! one simple and
one triple abnormal eigenvalue. The extra-degenerate types
clude laminates with~a! one simple and one triple normal,~b! two
double normal,~c! one quadruple abnormal and~d! one quadruple
superabnormal eigenvalue. Only laminates with a quadruple
mal eigenvalue are ultra-degenerate. For each type of lamin
the complete sets of eigenvectors and eigensolutions are obta
by combining those associated with the various eigenvalues o
laminate, as described at the beginning of this section.

6 The Derivative Rule
The expressions of the higher-order eigenvectors and eige

lutions, as derived through an algebraic analysis in the pre
work, may be obtained in a formalistic way by differentiatin
appropriateanalytical expressionsof the lower-order eigenvector
and eigensolutions with respect tom, which is regarded provision-
ally as a variable prior to evaluation at a specific multiple root
JULY 2003, Vol. 70 Õ 501
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the characteristic equation. This rule, which may be called
derivative rule, always yields correct results when applied pro
erly.

The zeroth-order eigenvector associated with an eigenvaluem0
are determined by Eqs.~17! and ~20!. These equations yield two
or one independent eigenvectors of the zeroth order, dependin
whetherm0 is an abnormal or a normal eigenvalue.

While Eqs.~7!, ~17!, and~20! determine an eigenvector and a
eigensolution only whenm is equated to a root of the characteri
tic equation, we shall temporarily suppress the identification om
with a specific eigenvalue, and regard it instead as a variable
then differentiate these equations repeatedly with respect to
variablem to obtain

x~N!5 (
0< j <N

~N, j !yj f ~ j !~x1my!j~N2 j !, (46a)

j~ j !5J~m!h~ j !1~ j ,1!J8~m!h~ j 21!

1~ j ,2!J9~m!h~ j 22!1~ j ,3!J-~m!h~ j 23!, (46b)

(
0< j <N

~N, j !M ~ j !~m!h~N2 j !50. (46c)

The superscripts ofh, j, and x, which previously appeared in
bracket symbols in Eqs.~27!, ~35!, and~36! to identify theorder
of higher eigenvectors and eigensolutions, now appear in pa
thesis and denote the order of differentiation with respect to
variable m. Otherwise, Eqs.~46a,b,c! are formally identical to
Eqs.~27!, ~35!, and~36!, respectively. Therefore, in a formalisti
way, repeated differentiation of Eqs.~7!, ~20!, and~17! yields Eqs.
~46a,b,c!, which may be converted into correct expressions of
higher-order eigenvectors and eigensolutions, i.e., Eqs.~27!, ~35!
and the solution of Eq.~36!, by merely changing thekth deriva-
tives of h, j, andx into the kth-order vectorsh@k# and j@k# and
eigensolutionx@k#. In other words, higher-order eigenvectors a
eigensolutions may be obtained from the analytical expression
the zeroth-order eigenvectors and eigensolutions, in whichm ap-
pears as a variable, by repeated differentiation, followed by ev
ation ofm at the specific multiple eigenvalue. This derivative ru
presents an exceedingly simple and formal routine for genera
higher-order eigenvectors and eigensolutions.

Notice that the vectorsr and r̂ are defined for the cases o
normal and abnormal eigenvalues, respectively, to ensure a
vanishing eigenvectorJWr in the first case andJW8r̂ in the
second case. With the exceptions of a double abnormal eigenv
which has the two columns ofJ as eigenvectors, and a supera
normal eigenvalue which has the two columns ofJ8 as additional
eigenvectors, in all other cases the eigenvectors of various or
are given byJwr or JWr̂ and theirm-derivatives. Differentiation
is to be applied to theunnormalizedzeroth-order eigenvector
Normalization, as is often done in the Stroh formalism of ani
tropic elasticity,@4#, yields complicated analytical expressions
eigenvectors, making the implementation of the derivative r
unduly cumbersome.

A trivial remark from a mathematical viewpoint is that the va
ousm-derivatives ofJwr or Jwr̂ must be evaluated at the specifi
eigenvalueafter performing differentiation, not before. Thus th
derivative rule cannot be applied to the first and second-o
expressions of Eqs.~41! and~42! because the terms involving th
vanishing matrixW~m! have already been discarded, so that f
ther differentiation of these expressions is no longer legitimat

In light of the derivative rule, the general solutions of the va
ous types of anisotropic laminates may be written in conc
forms. LetZ1 denote the 834 matrix containing the four eigen
vectorsjk associated, respectively, with the four eigenvaluesmk
having positive real parts,k51, 2, 3, 4. The eigenvalues are a
ranged so that simple eigenvalues precede multiple ones, an
eigenvectors associated with a common multiple eigenvalue
arranged in ascending orders. Let
502 Õ Vol. 70, JULY 2003
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f5$ f 1~x1m1y!, f 2~x1m2y!, f 3~x1m3y!, f 4~x1m4y!%T,
(47)

where the four arbitrary functionsf 1 , . . . ,f 4 are generally distinct
even if their arguments involve a common eigenvaluemk . The
general solution for all types of laminates may be expressed
follows:

x52 Re@Z1Df#, (48)

whereD is the identity matrix if the laminate is nondegenera
For degenerate laminates~a! and ~b!, one has

D5F 1 0 0 0

0 1 0 0

0 0 1 d/dm

0 0 0 1

G . (49)

In the degenerate case~c!, one has to replace the off-diagon
elementd/dm in Eq. ~49! by 2 d/dm. In the extra-degenerate cas
~a!, the D-operator is given by Eq.~50a! below. In the extra-
degenerate cases~b! and ~d! it is given by Eq.~50b!.

D5F 1 0 0 0

0 1 d/dm d2/dm2

0 0 1 2d/dm

0 0 0 1

G (50a)

D5F 1 d/dm 0 0

0 1 0 0

0 0 1 d/dm

0 0 0 1

G . (50b)

For ultra-degenerate laminates one has

D5F 1 d/dm d2/dm2 d3/dm3

0 1 2d/dm 3d2/dm2

0 0 1 3d/dm

0 0 0 1

G . (51)

Replacing the first row of the matrix in Eq.~51! by $1,0,0,0%, one
obtains theD-operator of the extra-degenerate case~c!.

7 An Example: Infinite Plate With an Elliptical Hole
Consider an infinite laminate with an elliptical hole defined

the boundary curve (x/a)21(y/b)251. The laminate is subject to
stress and moment resultants which approach constant li
$F ,yy ,F ,xx ,2F ,xy%5$N11,N22,N12% and $M y ,Mx ,22Mxy%
5$M22,M11,22M12% at infinity. The boundary of the hole is
load-free. This problem was solved by Lu and Mahrenholtz@12#
for anisotropic laminates whose eigenvalues are all distinct.
solution is obtained by combining a uniform solution with th
preceding limiting state of forces and moments, and a com
mentary solution. The force and moment components of
complementary solution decay to zero at infinity, while on t
boundary of the hole they nullify the boundary forces and m
ments of the uniform solution. The boundary condition of t
complementary problem may be given for the stress and mom
potentials by integrating the uniform field of forces and mome
followed by reversal of the algebraic signs. One has

$F ,y ,2F ,x ,C1 ,C2%
T52yt11xt2 , (52a)

t1[$N11,N12,2M12,M11%
T, t2[$N12,N22,2M22,M12%

T.
(52b)

We consider the complex analytic functionz5 f (z) defined by the
inverse expression
Transactions of the ASME
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2z5~a1 imb!z1~a2 imb!z21, (53)

where the parameterm will be identified subsequently with an
eigenvalue. Equation~53! is essentially identically to the mappin
used by Lekhnitskii@2# ~p. 155!. Substituting

z5e2 iu (54)

into Eq. ~53!, one obtains

z5x1my5a cosu1mb sinu. (55)

Hence the unit circle in thez-plane is mapped by Eq.~53! into the
boundary of the elliptical hole:

x5a cosu, y5b sinu. (56)

Differentiating Eq.~53! with respect tom, one has

2b sinu5 ib~z2z21!1$~a1 imb!2~a2 imb!z22%~dz/dm!.

Substitution of Eq.~54! into the last equation yieldsdz/dm50 on
the elliptical boundary. If the function implicitly defined by Eq
~53! is written asz5 f (m,z), then

d f /dm5] f /]m1y] f /]z50 (57)

on the boundary. Notice that

] f /]m52 ib~z2z21!$~a1 imb!2~a2 imb!z2%21,

] f /]z51/~]z/]z!52$~a1 imb!2~a2 imb!z2%21.

Repeated differentiation of Eq.~53!, followed by evaluation on
z5e2 iu, shows that the higher derivatives off with respect tom
also vanish on the hole boundary. This result is important for
solution of the present problem if the laminate has repeated ei
values. The expressions of the higher-order eigensolutions
complicated because they contain the derivatives off with respect
to m. This generally makes it difficult to find the appropriate com
bination of eigensolutions to fit the boundary data analytica
Since the derivatives off vanish on the hole boundary, the prese
problem is not burdened by this difficulty.

Let

f5^z1~x1m1y!,z2~x1m2y!,z3~x1m3y!,z4~x1m4y!&c,
(58)

wherezk is defined by Eq.~53!, in which the parameterm assumes
the valuemk , ^z1 , . . . ,z4& denotes the diagonal matrix having th
diagonal elementsz1 , . . . ,z4 , andc is an undetermined comple
constant vector. On the elliptical boundary,dz/dm vanishes so
that Eqs.~49!–~51! all reduce toD5I4 . Furthermore, on the sam
ellipse, allzk reduce toe2 iu irrespective ofmk . Let V denote the
434 matrix obtained by removing the first two and the last tw
rows from the matrixZ1, i.e.,

V5@0432 ,I4 ,0432#Z1. (59)

Then, on the hole boundary,

Vc~cosu2 i sinu!1V̄c̄~cosu1 i sinu!

5$F ,y ,2F ,x ,C1 ,C2%
T52b sinut11a cosut2 .

One easily obtains

c51/2V21~at22 ibt1!. (60)

Hence the solution of the complementary problem is given by

$w,y ,2w,x ,F ,y ,2F ,x ,C1 ,C2 ,2u,2v%T

5Re@Z1~D^z1 ,z2 ,z3 ,z4&!V21~at22 ibt1!#. (61)

Let Z2 and Z3 be the 634 matrices whosekth columns are ob-
tained by premultiplying thekth column of Z1 by F(mk) and
E(mk), respectively,k51, . . . ,4 ~see Eqs.~11a,c! for the defini-
tions of F andE!, and let

G[^]z1 /]z,]z2 /]z,]z3 /]z,]z4 /]z&, (62a)
Journal of Applied Mechanics
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]zk /]z52$~a1 imkb!2~a2 imkb!zk
22%21. (62b)

Then, for the complementary solution,

$w,yy ,w,xx ,2w,xy ,F ,yy ,F ,xx ,2F ,xy%
T

5Re@Z2~DG!V21~at22 ibt1!#, (63a)

$M y ,Mx ,22Mxy ,2ex ,2ey ,22exy%
T

5Re@Z3~DG!V21~at22 ibt1!#. (63b)

Notice that, for various degenerate laminates, the differential
eratorD reduces to the identity matrixI4 only on the elliptical
boundary but not in the interior region of the plate. Hence
interior solutions of degenerate laminates have more complic
forms. Notice also that Eq.~53! is a quadratic equation forz
which can be solved explicitly in terms ofm andz. Therefore, the
solutions given by Eqs.~61! and ~63a,b! are completely explicit.
Finally, the differential operatorD for generating higher-order de
rivatives involves thetotal derivatives of the functionszk associ-
ated with multiple eigenvalues, and these total derivatives h
vanishing boundary values for the present problem. In contr
the diagonal matrixG in Eqs. ~62! and ~63! involves partial de-
rivatives]zk /]z, which do not vanish on the boundary.

In the solution of Ref.@12#, the boundary conditions were sa
isfied by fitting the in-plane normal and shearing forces, the n
mal moment and the out-of-plane shearing force. This invol
expressions requiring the spatial derivatives of the functionszk .
The task is considerably simplified in the present analysis by
ting the moment potentials and the two components of¹F, which
require only the boundary values ofzk but not their normal de-
rivatives.

For laminates with a vanishing coupling stiffness matrixB ~and
thereforeB*50!, the bending solution can be obtained separat
from the in-plane solution. Consider the latter problem. Equat
~17! reduces to the scalar equationM22(m)50, which has either
two distinct pairs of complex conjugate roots or one conjug
pair of double roots. For the first case, there are two indepen
eigenvectors whose first two components$F ,y ,2F ,x% are given
by $2m1,1% and$2m2,1%, respectively. For the second~degener-
ate! case, they are given instead by$2m1,1% and$21,0%. Equation
~61! yields the solution of the complementary problem, whi
assumes the following form for the nondegenerate and degen
cases, respectively,

H F ,y

2F ,x
J 5ReF ~m22m1!21F2m1 2m2

1 1 G ^z1 ,z2&F 1 m2

21 2m1
G

3S aHN12

N22
J 2 ib HN11

N12
J D G (64a)

H F ,y

2F ,x
J 5ReF F2m1 21

1 0 GF z1 dz1 /dm

0 z1
GF 0 1

21 2m1
G

3S aHN12

N22
J 2 ib HN11

N12
J D G . (64b)

It is interesting that this solution depends on the elastic proper
of the laminate through the eigenvalues only. In particular, for
isotropic plates, Eq.~64b! with m15m25 i yields stress solutions
that are independent of the elastic moduli, a fact which is kno
to be valid if the traction data on the hole boundary have van
ing resultant forces and moments.

8 Summary and Concluding Remarks
The problem of obtaining general equilibrium solutions of a

isotropic laminated plates is completely solved through reduc
to an eigenvalue problem associated with a 232 matrix function
M ~m!. A fundamental difference that sets the present analyt
formulation apart from the Stroh-type formalism of anisotrop
JULY 2003, Vol. 70 Õ 503



.

m

t
o
a

t
i
o

b

c

u

h
o
n

t

t

m

s

m
l

s

n

e

v

u

s

d

l

d
lity
har-
ted

tion.
on

uliar
iso-

the
pera-
e

are
the

ons

rial
ari-
igen-
olu-

ary
pic
if it

lami-

tions
to

ace
es,
nted

ry

te

-

in

e

’s

the

th.

ral
elasticity is the choice of the primary set of unknown variables
contrast to the stress-function-based approach of Lekhnitskii
Muskhelishvili, the Stroh formalism starts from the equilibriu
equations governing the displacement functions,@13#. Many fun-
damental results have been obtained, historically, through the
of this formalism. Yet the expressions of the eigenvectors, wh
were obtained by the Lekhnitskii formalism in such simple a
explicit forms, become considerably more complicated in
Stroh formalism. The reason is simple. The differential equati
governing the stress functions have coefficients that are the el
compliances, which are taken as the constitutive parameters in
Lekhnitskii formalism. In contrast, the Stroh formalism uses
elastic stiffness. While the eigenvectors have simple analyt
expressions in terms of the compliance coefficients, they bec
unduly complicated in terms of the stiffness parameters.

The algebraic complexity of the stiffness-based formulation
comes more acute in the degenerate, extra-degenerate, and
degenerate cases, where the zeroth-order eigensolutions mu
supplemented by higher-order ones, and the latter have more
plicated expressions involving the lower-order eigenvectors
well. A comparison of Section 2 of this paper with Sections 3 a
4 shows that the determination of the general solution is m
simpler for nondegenerate laminates treated in existing stud
than for the various degenerate laminates that are investig
fully in this paper. It is shown that the latter results may be o
tained from the former in a formalistic way by proper use of t
derivative rule. But the implementation of this rule becomes m
cumbersome, due to the complexity of the analytical expressio
the zeroth-order eigenvectors in the Stroh formalism. Althou
many important findings concerning the algebraic structure of
solutions of anisotropic elasticity were made in the context of
Stroh formalism, most of these same results can be obtained
simpler way, and expressed in simpler forms, by using
compliance-based formalism,@11#.

The present analysis of anisotropic laminates is a mixed for
lation using the curvatures and the in-plane forces as the prim
variables. The moments and in-plane displacements or strain
treated as secondary unknowns related tof through the constitu-
tive Eq. ~14!, which involves the new elasticity matricesA* , B* ,
andD* . The reason for this choice is that the first four elements
x are the components of gradients ofw andF. They imply Eq.~8!
which, together with the constitutive relation, reduce the deter
nation of eigensolutions to a two-dimensional eigenvalue prob
associated with a 232 symmetric matrix functionM ~m!. Cases
involving multiple and abnormal eigenvalues are treated w
some modification in the analysis.

If a different choice of the primary unknown variables is mad
then one or both relations of Eq.~8! cannot be used to reduce th
dimension of the eigenvalue problem to two. The Stroh formali
has been used to derive an eigenvalue problem associated w
636 matrix function,@12#. The eigenvectors were not given i
explicit analytical form, due to the intrinsic complexity of th
expressions in terms of the conventional stiffness matrices.
though they may be obtained numerically, the resulting gen
solution is valid for a nondegenerate laminate but not for deg
erate, extradegenerate and ultra-degenerate laminates. An e
sion of that formalism to the latter cases would entail algebr
operations which are ultimately equivalent to applying the deri
tive rule to the adjoint matrix of a 434 matrix function. But the
extension is achieved much more easily in the present form
tion. Finally, Eqs.~23a,b! show that the strain energy function o
laminated plates assumes a particularly simple form in term
the matricesA* andD* . It does not involveB* ~but includes the
bending-stretching effect throughD* !, and it contains the secon
derivatives of the two scalar functionsw(x,y) andF(x,y) as the
arguments.

Anisotropic laminates are classified into 11 distinct types c
responding to the various forms of the general solution. The c
sification is based on the multiplicity of the eigenvalues a
504 Õ Vol. 70, JULY 2003
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whether a multiple eigenvaluem is normal~M ~m!Þ0!, abnormal
~M ~m!50! or superabnormal~M ~m!5M8~m!50!. The elements of
M ~m! are defined directly in terms of the elasticity matrices.A* ,
B* , and D* according to Eq.~19!. If the conventional stiffness
matricesA, B, andD, or another set of elasticity matrices is use
instead, then the conditions of abnormality and superabnorma
assume more complex expressions. This may lead to indirect c
acterizations of the various types of laminates, more complica
representations of solutions, and a less transparent classifica

Because the classification of the laminates is based purely
mathematical criteria, each class does not correspond to a pec
set of physical characteristics. For example, all homogeneous
tropic laminates belong to, but form only a small subset of,
class of extra-degenerate laminates that have a quadruple, su
bnormal eigenvaluesm0 ~this is one of the 11 classes listed at th
end Section 5 and designated as extra-degenerate~d!!. This class
is defined only by the conditionsM (m0)5M 8(m0)50 on the ma-
trix function M ~m! of Eq. ~18!, wherem0 need not be equal to6 i .
Even in the subclass where the superabnormal eigenvalues
6 i , the preceding conditions impose only two restrictions on
nine elements of the coupling matrixB* :

B11* 1B22* 2~B66* 1B12* 1B21* !50, B23* 1B32* 2~B13* 1B31* !50,

and similar restrictions on the symmetric matricesA* and D* .
Isotropic laminates are defined by much more stringent conditi
on the elasticity matrices.

Despite their lack of association with specific types of mate
symmetry properties and other physical characteristics, the v
ous classes of laminates and their peculiar eigenvalues and e
solutions are needed for correct representations of general s
tions, Green’s functions, and the integrals arising in bound
element methods. A general computational code for anisotro
laminates must include the proper representations of solutions
is expected to work for nondegenerate as well as degenerate
nates~including isotropic and quasi-isotropic ones!, because in the
latter cases the number of independent zeroth-order eigensolu
is insufficient and higher-order eigensolutions must be used
provide a complete representation.

A detailed study of the algebraic structure of the solution sp
of anisotropic laminates, including orthogonal eigenspac
pseudometrics, invariant tensors, and isomorphisms is prese
in a companion paper,@14#.
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1 Introduction
The establishment of interfacial fracture mechanics is of gr

importance, because in heterogeneous materials containing
tinct interfaces most failures occur at these interfaces. For
reason, extensive research has been done on interfacial fra
problems and continues up to the present day. Interfacial frac
mechanics is founded mainly on the solutions for interfac
cracks. Because of the mismatch between the materials on
neighboring sides of interfaces, interfacial cracks inherently p
duce mixed-mode states. Thus, in interfacial fracture mecha
the evaluation of mixed-mode states is mandatory.

Nishioka and Yasin@1# recently proposed the concept of sep
rated dynamicJ-integrals~equivalent to separated dynamic ener
release rates! for dynamic interfacial fracture mechanics. Th
separated dynamicJ-integrals have the following salient feature

i. The separated dynamicJ-integrals can be expressed in ve
tor form, @1#. Thus they can be decomposed into the co
ponents of any coordinate system.

ii. The separated dynamicJ-integrals can be expressed in pa
independent forms,@1,2#.

iii. The components of the separated dynamicJ-integrals paral-
lel to the crack direction have the physical significance
energy flows into a propagating interfacial crack tip fro
the individual material sides or, equivalently, the separa
dynamic energy release rates,@1#.

iv. The sum of the separated dynamicJ integrals corresponds to
the dynamicJ-integral derived by Nishioka and Atluri@2#,
which has the physical significance of the dynamic ene
release rate,@3#.
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MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, May 3
2001; final revision, Dec. 19, 2002. Associate Editor: B. M. Moran. Discussion
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, De
ment of Mechanical and Environmental Engineering University of California–Sa
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months
final publication of the paper itself in the ASME JOURNAL OF APPLIED MECHAN-
ICS.
Copyright © 2Journal of Applied Mechanics
eat
dis-

this
cture
ture
ial
the

ro-
ics

a-
y
e
:

-
-

th

of
m
ted

gy

In the consideration of static interfacial fracture mechanics p
sented in this paper, the concepts of the separated~static!
J-integral and separated~static! energy release rate are readi
developed from the separated dynamicJ-integral, because unde
static conditions the dynamicJ-integral naturally reduces to th
static J-integral derived by Rice@4#. Furthermore, the relations
between the separatedJ-integrals and the stress intensity facto
are obtained using the analytical solutions for the stress and
placement fields of an interfacial crack, which were derived
Sun and Jih@5#.

In addition to theJ-integral and the energy release rate, t
stress intensity factor is also widely used in fracture mechanics
order to accurately evaluate mixed-mode stress intensity fac
Nishioka and co-workers,@6–8#, developed the component sep
ration method of the dynamicJ-integral for various crack prob-
lems in homogeneous materials. In this paper, the compo
separation method of theJ-integral is developed to accurately an
conveniently evaluate mixed-mode stress intensity factors
static interfacial cracks. The component separation method of
dynamicJ-integral for evaluating mixed-mode stress intensity fa
tors of dynamic interfacial cracks will be reported elsewhere,@9#.

An alternative formulation to that proposed here was put f
ward by Yau and Wang@10#, who proposed theM1 integral
method for evaluating the mixed-mode stress intensity factors
an interfacial crack. In this method, the analytical solution for
appropriate auxiliary problem is necessary. However, the auxil
solution field is often difficult or impossible to construct for com
plicated interface problems such as curved interfaces. In cont
the component separation method does not require fictitious
iliary solution fields, which represents a great advantage of
present method over theM1 integral method.

To demonstrate the applicability of the separatedJ-integral and
the component separation method, numerical analyses for p
nent interfacial crack problems are also carried out.

2 SeparatedJ-Integrals
Now we consider a crack along a bimaterial interface~see Fig.

1!, this interface may be curved or straight. The local coordin

1,
on
art-

nta
after
003 by ASME JULY 2003, Vol. 70 Õ 505
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systemxk
0 is considered at the interfacial crack tip. The angleu0

measured from the globalX1-axis denotes the direction of th
interfacial crack.

For a static interfacial crack, the separated~static! J-integrals
can be derived by eliminating all inertia effects from the separa
dynamicJ-integrals,@1#, to give

Jk
~m!5 lim

G«
~m!→0

E
G«

~m!
@Wnk2t iui ,k#dS (1a)

5E
G~m!1Gc

~m!
1G I

~m!
@Wnk2t iui ,k#dS ~m51,2!,

(1b)

where the superscript~m! denotes the material number,W is the
strain energy density, and ( ),k5]( )/]Xk . The integral paths are
defined in Fig. 2.G«

(m) , G (m), Gc
(m) , and G I

(m) are the separated
paths for the near-field, far-field, crack surface, and interface
tegrals, respectively. In Eq.~1!, the separatedJ-integrals are ex-
pressed in the global coordinate system.

The crack-axis components of the separatedJ-integralJk
0(m) can

be evaluated by the coordinate transformation

Jk
0~m!5aklJl

~m! ~m51,2!, (2)

whereakl is the coordinate transformation tensor. The crack-a
components of the separatedJ-integralsJk

0(m) (m51,2) can also

Fig. 1 An interfacial crack in a nonhomogeneous material

Fig. 2 Definition of integral paths for an interfacial crack
506 Õ Vol. 70, JULY 2003
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be evaluated directly by the following equation, when all comp
nents in the integrands of Eqs.~1a! and~1b! are expressed in the
crack-tip coordinate systemxk

0, or whenu050:

Jk
0~m!5 lim

G«
~m!→0

E
G«

~m!
@Wnk2t iui ,k#dS (3a)

5E
G~m!1Gc

~m!
1G I

~m!
@Wnk2t iui ,k#dS ~m51,2!. (3b)

Similarly to the separated dynamicJ-integral, @1#, the crack-
axis component of the separatedJ-integralJ1

0(m) has the physical
significance of an energy flow into the interfacial crack tip fro
the materialm, passing through the separated near-field p
G«

(m) . In other words,J1
0(m) is equivalent to the separated ener

release rateG(m) from the materialm.
TheJ-integral and the energy release rate can easily be obta

by the sum of the separatedJ-integrals:

Jk8
05 (

m51

2

Jk8
0~m! . (4)

In numerical analyses, the following far-field expression f
the separatedJ-integrals is convenient after taking the lim
of G«→0.

Jk
~m!5E

G~m!1Gc
~m!

1G I
~m!

@Wnk2t iui ,k#dS, ~m51,2!. (5)

3 Separated Energy Release Rates
Using the concept of the crack closure integral, the separa

energy release rates can also be derived by

G~m!5 lim
Da→0

H 1

2Da E0

Da

@ t i
~m!~a!~ui

~m!~a1Da!

2ui
c~a1Da!!ux

2
050#dSJ ~m51,2!, (6)

wheret i
(m) is the traction acting on the material-m side along the

interface line ofa<x1
0<a1Da, ui

(m) is the crack-face displace
ment of the materialm (m51,2), andui

c is the xi
0 displacement

component at the crack tip.
Furthermore, the separated energy release ratesG(m) (m51,2)

can be evaluated from the energy balance~see Fig. 3!, as

G~m!5
1

B

dF~m!

da
5

1

B
S dP̄~m!

da
1

dP̄I
~m!

da
2

dW̄~m!

da
D ~m51,2!,

(7)

whereB is the thickness of the body, andF (m) andW̄(m) are the
fracture energy provided from materialm and the strain energy in
materialm, respectively.P̄I

(m) is the input energy from the applie
loads at the material-m side andP̄I

(m) is the work done by the
traction of the other side material through the interface.

The rates of these input energies to the materialm can be evalu-
ated by

dP̄~m!

da
5E

]V~m!2SI
~m!

t i

dui

da
dS (8)

and

dP̄I
~m!

da
5E

SI
~m!

t i

dui

da
dS (9)

where ]V(m) (5St
(m)1Su

(m)1Sc
(m)1SI

(m)) denotes the entire
boundary of the region occupied by the materialm, andSI

(m) de-
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notes the entire uncracked interface at the material-m side. These
integral paths are defined in Fig. 3. Since the continuity conditi
along the uncracked interface can be written as

ui
~1!5ui

~2! (10a)

and

t i
~1!1t i

~2!50, (10b)

the following relation holds:

dP̄I
~1!

da
1

dP̄I
~2!

da
50. (11)

Therefore the sum of the separated energy release rates
rally becomes the total energy release rateG:

G~1!1G~2!5
1

B H d~ P̄~1!1 P̄~2!!

da
2

d~W̄~1!1W̄~2!!

da J 5G.

(12)

4 Near-Tip Field of an Interfacial Crack
In the subsequent sections we derive the relations between

separatedJ-integrals and the stress intensity factors. However
the literature there are several definitions of the stress inten
factors for an interfacial crack tip. In this section we therefo
summarize the near-tip stress and displacement fields and the
nition of stress intensity factors used in this study.

In this paper, the following definitions,@11,12#, of the stress
intensity factorsK1 andK2 are employed:

@s221 is12#u505
K11 iK 2

A2pr
S r

l D
i«

, (13)

where the polar coordinate system (r ,u) is defined in Fig. 4. The
parameterl is the characteristic length that normalizes the os
latory singular term, and is usually taken as the entire crack len
( l 52a). The parameter« is the bimaterial constant, given by

Fig. 3 A bimaterial with an interfacial crack
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«5
1

2p
lnH k~1!/m~1!11/m~2!

k~2!/m~2!11/m~1!J , (14)

k~m!5H 324n~m! ~plane strain!

~32n~m!!/~11n~m!! ~plane stress!
~m51,2!J ,

(15)

wheren (m) andm (m) denote Poisson’s ratio and the shear modu
of the materialm, respectively.

The explicit near-tip stress and displacement expressions fo
interfacial crack were derived by Sun and Jih@5#. However, their
definitions of the stress intensity factors differ from Eq.~13!. Us-
ing the stress intensity factors defined by Eq.~13!, the asymptotic
in-plane stress components for the materialm side can be ex-
pressed as follows:

s i j
~m!5

1

2A2pr cosh~p«!
H K1f 1i j

~m!S u, ln
r

l
,« D

1K2f 2i j

~m!S u, ln
r

l
,« D J , ~ i j 511,22,12!. (16)

Detailed expressions of the stress components are given in
Appendix. Similarly the in-plane displacement components for
material m side are expressed by

ui
~m!5

A2pr

4pm~m! cosh~p«!
H K1g1i

~m!S u, ln
r

l
,«,k~m!D

1K2g2i

~m!S u, ln
r

l
,«,k~m!D J , ~ i 51,2!. (17)

Detailed expressions of the displacement components are
given in the Appendix.

On the other hand, the out-of-plane stress components are g
in Ref. @13# as

s1352
K3

A2pr
sin

u

2
, (18a)

s2351
K3

A2pr
cos

u

2
, (18b)

for both material sides, whereK3 is the stress intensity factor fo
out-of-plane deformation. Similarly the out-of-plane displacem
is expressed by

Fig. 4 Interfacial crack
JULY 2003, Vol. 70 Õ 507
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u3
~m!5

2K3

m~m!
A r

2p
sin

u

2
~m51,2!. (19)

It is noted that, because of the oscillatory singularity in t
asymptotic stress field, the in-plane stress intensity factorsK1 and
K2 cannot be interpreted as the mode I and mode II stress in
sity factorsK I andK II in a homogeneous material. In contrast
this, K3 is equivalent with the mode III stress intensity factor,
the case of an isotropic bimaterial.

5 Relations Between the Separated Energy Releas
Rates and the Stress Intensity Factors

For the in-plane deformation, Eq.~6! can be rewritten as

G~1!51 lim
Da→0

1

2Da E0

Da

$s22
~1!uu50~x1

0!•u2
~1!uu51p~Da2x1

0!

1s12
~1!uu50~x1

0!•u1
~1!uu51p~Da2x1

0!%dx1
0, (20a)

G~2!52 lim
Da→0

1

2Da E0

Da

$s22
~2!uu50~x1

0!•u2
~2!uu52p~Da2x1

0!

1s12
~2!uu50~x1

0!•u1
~2!uu52p~Da2x1

0!%dx1
0. (20b)

And for the out-of-plane~mode III! deformation, Eq.~6! can be
rewritten as

G~1!51 lim
Da→0

1

2Da E0

Da

s23
~1!uu50~x1

0!•u3
~1!uu51p~Da2x1

0!dx1
0,

(21a)

G~2!52 lim
Da→0

1

2Da E0

Da

s23
~2!uu50~x1

0!•u3
~2!uu52p~Da2x1

0!dx1
0.

(21b)

Then, substituting Eqs.~16! and ~17! into Eqs.~20! and ~21!, the
following relations between the separated energy release rate
the stress intensity factors are obtained: For in-plane deforma

G~m!5
ep«~11k~m!!~K1

21K2
2!

8m~m!~11e2p«!cosh~p«!
~m51,2!, (22)

and for out-of-plane deformation,

G~m!5
K3

2

4m~m!
~m51,2!. (23)

Thus, the sum of the separated energy release rates for in-p
deformation~see Eq.~22!! becomes

G5G~1!1G~2!5
1

16 cosh2~p«!
H k~1!11

m~1!
1

k~2!11

m~2! J ~K1
21K2

2!.

(24)

This agrees with the relation between the~total! energy release
rate and stress intensity factors obtained by Malyshev and
ganik @13#. Furthermore, the sum of the separated energy rele
rates for out-of-plane deformation~see Eq.~23!! is

G5G~1!1G~2!5
K3

2

4 S 1

m~1!
1

1

m~2!D . (25)

This is in agreement with the relation between the~total! energy
release rate and the stress intensity factor obtained by Willis@14#.

6 Relations Between the SeparatedJ-Integrals and the
Stress Intensity Factors

Using the asymptotic near-field solutions given by Eqs.~16!–
~19!, the separatedJ-integrals can be related to the stress intens
508 Õ Vol. 70, JULY 2003
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factors. If we use a circular path for the evaluation of the ne
field separatedJ-integrals, as shown in Fig. 5, Eq.~1a! can be
rewritten as

Jk
0~1!5 lim

r→0
E

0

p

@Wnk2t iui ,k#rdu, (26a)

Jk
0~2!5 lim

r→0
E

2p

0

@Wnk2t iui ,k#rdu. (26b)

6.1 Tangential Component of the SeparatedJ-Integral
J1

0„m…. Using the asymptotic solutions for the in-plane deform
tion, i.e., Eqs.~16! and~17! in Eqs.~26a! and~26b! with k51, the
relations between the separatedJ-integrals and the stress intensi
factorsK1 andK2 can be derived as

J1
0~1!5

~11k~1!!~K1
21K2

2!

16m~1! cosh2~p«!
, (27a)

J1
0~2!5

~11k~2!!~K1
21K2

2!

16m~2! cosh2~p«!
. (27b)

These agree with the relations between the separated energ
lease rates and stress intensity factors given by Eq.~22!. Similarly,
for the out-of-plane deformation, substituting Eqs.~18! and ~19!
into Eqs.~26a! and ~26b! gives

J1
~1!5

K3
2

4m~1!
, (28a)

J1
~2!5

K3
2

4m~2!
. (28b)

These agree with the relations between the separated energ
lease rates and stress intensity factors given by Eq.~23!.

Since the separatedJ-integrals and the separated energy rele
rates represent the energies supplied from the individual mat
sides to the tip of the actually extending crack or virtually exten
ing crack, the sum of the separated quantities becomes
J-integral or the total energy release rate. Thus, we have

J1
05J1

0~1!1J1
0~2!5~J1

~1!1J1
~2!!cosu01~J2

~1!1J2
~2!!sinu0

5G5G~1!1G~2!. (29)

For in-plane deformation, Eqs.~27a! and ~27b! can be used to
obtain theJ-integral as

J1
~0!5J1

0~1!1J1
0~2!5

1

16 cosh2~p«!
S k~1!11

m~1!
1

k~2!11

m~2! D
3~K1

21K2
2!. (30)

Fig. 5 Semicircular near-field paths for the separated
J -integrals
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This agrees with Eq.~24!. Thus, we can confirm the relation
given in Eq.~29!, and the relation between the energy release
and the stress intensity factors, as obtained by Malyshev and
gnik @13# ~see Eq.~24!!. Furthermore, for out-of-plane deforma
tion, theJ-integral from Eqs.~28a! and ~28b! is expressed by

J1
~0!5J1

0~1!1J1
0~2!5

K3
2

4 S 1

m~1!
1

1

m~2!D . (31)

This agrees with both Eq.~25! and the relation between the energ
release rate and the stress intensity factor obtained by Willis@14#.

The ratio of the energies supplied to the crack tip from
individual material sides seems to be very useful in interfac
fracture mechanics. This ratio can be evaluated from the sepa
J-integrals. For the in-plane deformation, the ratios of the se
rated quantities to their total can be expressed by

J1
0~m!

J1
0

5
G~m!

G
5S k~m!11

m~m! D Y S k~1!11

m~1!
1

k~2!11

m~2! D ~m51,2!.

(32)

Consequently, the ratio of the separatedJ-integrals or separated
energy release rates can be expressed by

J1
0~1!

J1
0~2!

5
G~1!

G~2!
5

~k~1!11!m~2!

~k~2!11!m~1!

55
E~2!

E~1!
~plane stress!

~12n~1!2
!

~12n~2!2
!

E~2!

E~1!
~plane strain!

. (33)
i
t

.
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Similarly, for out-of-plane deformation, the ratios of the separa
quantities to their total can be expressed by

J1
0~m!

J1
0

5
G~m!

G
5S 1

m~m!D Y S 1

m~1!
1

1

m~2!D ~m51,2!. (34)

Then, the ratio of the separatedJ-integrals or separated energ
release rates is given by

J1
0~1!

J1
0~2!

5
G~1!

G~2!
5

m~2!

m~1!
. (35)

It is interesting to see in Eqs.~33! and~35! that the ratios of the
separatedJ-integrals or separated energy release rates are pro
tional to the inverse of the mismatch ratio of the shear modul
Young’s moduli. Thus, the compliant material side supplies m
fracture energy to the interfacial crack tip. These ratios can
used to quantify the fracture energy supply mechanism to
interfacial crack tip.

6.2 Vertical Component of the SeparatedJ-integral J2
0„m….

For in-plane deformation, using Eqs.~16! and ~17! in Eqs.~26a!
and ~26b! with k52, the vertical components of the separat
J-integralsJ2

0(m) (m51,2) are evaluated as
J2
0~m!52 lim

r→0

H ep«~2m23! tanh~p«!FK1
2 sinS 2« ln

r

l D12K1K2 cosS 2« ln
r

l D2K2
2 sinS 2« ln

r

l D G~11k~m!!

16m~m!p« cosh~p«!
J ~m51,2!. (36)

Furthermore, from Eq.~36!, the vertical component of theJ-integral for the interfacial crack is obtained as

J2
052 lim

r→0

H tanh~p«!FK1
2 sinS 2« ln

r

l D12K1K2 cosS 2« ln
r

l D2K2
2 sinS 2« ln

r

l D G
16p« cosh~p«! F ~11k~1!!

m~1!
e2p«1

~11k~2!!

m~2!
e1p«G J . (37)
a-

dy-
ka
Because of the trigonometric functions containing the logar
mic singularity, the vertical components of the separa
J-integrals and theJ-integral ~see Eqs.~36! and ~37!! oscillate
when the near-field path shrinks to the crack tip (r→0). There-
fore, the vertical components of the separatedJ-integrals and the
J-integral cannot be related to the stress intensity factors for
interfacial crack tip.

However, if we consider a crack in a homogeneous material,
logarithmic singularity terms vanish because«50. Consequently,
the stress intensity factorsK1 and K2 reduce to the mode I and
mode II stress intensity factorsK I andK II , respectively, and Eq
~36! reduces to

J2
0~m!52

K IK II~11k!

8m
~m51,2!, (38)

wherem5m (1)5m (2) andk5k (1)5k (2). Thus, the vertical com-
ponent of theJ-integral for the homogeneous case is given by
th-
ed

the

the

J2
052

K IK II~11k!

4m
. (39)

This agrees with the relation given by Nishioka and Atluri@2#.
For out-of-plane deformation, using Eqs.~18! and ~19! in Eqs.

~26a! and ~26b! with k52, the vertical components of the sep
ratedJ-integralsJ2

0(m) (m51,2) are evaluated as

J2
0~m!50 ~m51,2!. (40)

In addition, from Eq.~38!, the vertical component of theJ-integral
becomes zero:

J2
050. (41)

7 The Component Separation Method of the
J-Integral for Extracting the Mixed-Mode Stress Inten-
sity Factors of an Interfacial Crack Tip

To extract mixed-mode stress intensity factors from the
namic J-integral and the dynamic energy release rate, Nishio
JULY 2003, Vol. 70 Õ 509
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and coworkers developed the component separation method@6#.
In this paper, the component separation method,@6#, is extended
to the case of static interfacial fracture mechanics.

Using the ratio of the stress intensity factors (a5K2 /K1), the
tangential component of theJ-integral, i.e., Eq.~30!, can be re-
written as

J1
05L~11a2!K1

2, (42)

and

L5
1

16 cosh2~«p!
S k~1!11

m~1!
1

k~2!11

m~2! D . (43)

Using Eqs.~17a! and ~17b!, the crack opening displacements
the x1

(0) and x2
(0)-directions behind the crack tip,dx and dy , are

obtained as

dy1 idx5
~K11 iK 2!

2~112i«!cosh~p«!

3S k~1!11

m~1!
1

k~2!11

m~2! D A r

2p S r

l D
i«

. (44)

Then, from Eq. ~44!, the ratio of the stress intensity facto
can be related to the ratio of crack opening displacements
follows @15#:

a5K2 /K15 lim
r→0

~12Sdy /dx!/~dy /dx1S!, (45)

S5~ tanQ22«!/~112« tanQ!, (46)

and

Q5« ln~r / l !. (47)

To calculate the ratio of the stress intensity factors it is neces
to take the limitr→0. However, it is difficult to obtain accurat
numerical results in this limit because the quantityShas logarith-
mic and oscillatory singular terms. For this reason, and to de
explicit formulas for the component separation method, we eli
nate S (S50) by taking tanQ52« in Eq. ~46!. This can be
achieved by choosing the following special characteristic leng

l̄ 5 r̄ /e«21 tan21~2«!, (48)

wherer̄ is the location at which the crack opening displaceme
are evaluated~see Fig. 6!. The ratio of the stress intensity facto
can then be accurately evaluated by

a5dx /dy . (49)

Using Eq.~49! in Eq. ~42!, the explicit formulas for the com-
ponent separation method can be derived as

Fig. 6 Crack opening displacements
510 Õ Vol. 70, JULY 2003
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K̄k5dkA J1
0

L~d1
21d2

2!
5dkAJ1

0~1!1J1
0~2!

L~d1
21d2

2!

5dkA G

L~d1
21d2

2!
, ~k51,2!,

(50)

whered15dy andd25dx ~see Fig. 6!.
The transformation to the stress intensity factors with

characteristic lengthl 52a, or to those with a desired charac
teristic length l, can simply be conducted using the followin
equation,@16#,

HK1

K2
J 5Fcosv 2sinv

sinv cosv
G H K̄1

K̄2
J , (51a)

v5« ln~ l / l̄ !. (51b)

The features of the component separation method can be s
marized as follows:

i. It can be expressed by explicit formulas.
ii. It does not require any auxiliary solution field.
iii. It is applicable using the path-independent separa

J-integrals, theJ-integral, or the energy release rate.
iv. The signs of the stress intensity factors are automatic

determined by the signs of the corresponding crack open
displacements.

v. Since its formulas do not include the oscillatory and log
rithmic singular terms, the numerical results for the stre
intensity factors are stable and accurate.

In previous studies on extracting mixed-mode stress inten
factors for interfacial cracks, Yau and Wang’sM1 integral method,
@10#, has been commonly used. However, it is sometimes diffic
to set up the auxiliary solution field that is necessary in the ap
cation of their method. For some complicated conditions, such
crack kinking and branching, it is hard to obtain the auxilia
solution. The component separation method developed here th
fore has great advantages over theM1 integral method, becaus
no auxiliary solution field is needed.

8 Numerical Analyses of Interfacial Crack Problems
In this paper, all the stress intensity factors for interfacial cra

are expressed using the characteristic lengthl 52a. Stress inten-
sity factors with a different characteristic length can be obtain
using the transformation given in Eq.~50!.

Fig. 7 An interfacial crack in an infinite bimaterial plate
Transactions of the ASME
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8.1 An Interfacial Crack in an Infinite Bimaterial Plate.
To verify the validity of the separated J integrals and the com
nent separation method, we considered an interfacial crack i
infinite bimaterial plate, as depicted in Fig. 7. The bimaterial co
sists of epoxy~material 1! and aluminum alloy~material 2!. The
properties of these materials are listed in Table 1. The crack le
was set as 2a560 mm.

The theoretical near-tip displacement field under the pl
stress condition was produced using Eqs.~17a! and ~17b! with
K15K250.18 MPa•m1/2. The theoretical displacement comp
nents were used as the corresponding nodal displacements i
finite element model~see Fig. 8!, which consists of the eight
noded isoparametric elements. The stresses and strains wer
culated using the finite element method. The separatedJ-integrals
were then calculated along the paths depicted in Fig. 8. Exce
path-independence of the separatedJ-integrals was observed. Th
J-integral value was obtained by summing the separa
J-integrals.

The stress intensity factors were converted from theJ-integral
value using the component separation method~see Eqs.~50! and
~51!!, and are listed in Table 2. The ratio of the crack open
displacements was evaluated at the corner nodes nearest t
crack tip. The numerical solutions agree excellently with the t
oretical values.

8.2 A Central Crack in a Finite Bimaterial Plate. Now,
we considered a central crack in a finite bimaterial plate subjec
a uniform applied stresss̄22, as depicted in Fig. 9. The finite
element mesh with the eight-noded isoparametric element
shown in Fig. 10~a!. The separatedJ-integrals were evaluated
using five paths around the crack tip, as shown in Fig. 10~b!. The
separatedJ-integrals showed excellent path independence. T
J-integral values were evaluated by summing the separ
J-integrals. Then, the stress intensity factors were obtained u
the component separation method~see Eqs.~50! and ~51!!. The
stress intensity factors were normalized by

Fig. 8 Finite element mesh pattern around the crack tip

Table 1 Material properties of the bimaterial plate

Material Young’s Modulus „GPa… Poisson’s Ratio

Epoxy 2.3 0.38
Aluminum Alloy 72.0 0.32

Table 2 Stress intensity factors for an interfacial crack in an
infinite plate

Theoretical Value Component Separation Method

K1 @MPa•m1/2# 0.1800 0.1795~20.27%!
K2 @MPa•m1/2# 0.1800 0.1795~20.27%!
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Fig. 9 A central interface crack in a bimaterial plate

Fig. 10 Finite element model for a finite bimaterial plate
JULY 2003, Vol. 70 Õ 511
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Fk5Kk /~ s̄22Apa!, ~k51,2!. (52)

In order to check the effect of the location at which the cra
opening displacements~see r̄ in Fig. 6! are evaluated, we firs
solved the problem depicted in Fig. 9 forE(2)/E(1)51 and 10.
The normalized stress intensity factors obtained by the compo
separation method are plotted against the distancer̄ in Figs. 11
and 12 forE(2)/E(1)51 and 10, respectively. In these cases,
nearest five-corner nodes were used for the evaluation of the c
opening displacements. The solid lines are the average value
the five results. The results show excellent independence from
distancer̄ . Thus, extrapolation to the crack tip is not necess
when the component separation method is used.

Next, we systematically changed the crack length and mism
ratio. The normalized stress intensity factors obtained by the c

Fig. 11 Variation of normalized stress intensity factor with
evaluating location „homogeneous plate …

Fig. 12 Variation of normalized stress intensity factor with
evaluating location „bimaterial plate …
512 Õ Vol. 70, JULY 2003
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ponent separation method are summarized in Table 3 and c
pared with the numerical solutions of Yuuki and Cho@17# using
the boundary element method. The difference between the pre
solutions and their solutions is defined as

Fk2Fk BEM

AF1 BEM
2 1F2 BEM

2
~k51,2!, (53)

whereFk BEM (k51,2) represents the normalized stress intens
factors obtained by Yuuki and Cho@17#. It is seen that the presen
solutions are very close to their solutions. In fact, the differenc
at most only 0.46%.

8.3 Compact Normal and Shear Specimen. Here we con-
sider the compact normal and shear~CNS! specimen devised by
Richard and Benitz@18#, as shown in Fig. 13. The loading direc
tion can be systematically changed from a loading angle off50°
to 180°. The finite element mesh pattern is shown in Fig. 14~a!.
The paths for the separatedJ-integral are shown in Fig. 14~b!. The
loading and constraint conditions are indicated in Fig. 13. T
nodal forcesP1 , P2 , and P3 were determined by the following
equilibrium conditions for forces and moments@19#:

P25P cosf (54)

P11P35P sinf (55)

Fig. 13 Compact normal and shear specimen
Table 3 Normalized stress intensity factors for a central interface crack in a finite bimaterial plate under uniform tension „ l
Ä2a…

Upper:F1 ~difference %!, Lower: F2 ~difference %!,
a/W
E(1)/E(2) 0.1 0.2 0.3 0.4 0.5

1.0 1.0035~20.25! 1.0226~20.19! 1.0561~20.15! 1.1079~20.14! 1.1852~20.13!
0.0000~0.00! 0.0000~0.00! 0.0000~0.00! 0.0000~0.00! 0.0000~0.00!

2.0 0.9978~0.14! 1.0169~20.16! 1.0501~20.23! 1.1013~20.21! 1.1774~20.25!
20.0747~20.29! 20.0742~20.28! 20.0748~20.31! 20.0771~20.39! 20.0819~20.34!

3.0 0.9903~0.12! 1.0094~20.20! 1.0423~20.22! 1.0926~20.26! 1.1673~20.25!
20.1112~20.34! 20.1101~20.38! 20.1108~20.40! 20.1139~20.39! 20.1206~20.40!

4.0 0.9840~0.14! 1.0031~20.19! 1.0357~20.25! 1.0854~20.26! 1.1588~20.27!
20.1326~20.40! 20.1310~20.43! 20.1315~20.46! 20.1349~20.39! 20.1425~20.46!

10.0 0.9644~0.20! 0.9836~20.18! 1.0152~20.24! 1.0627~20.20! 1.1322~20.19!
20.1774~20.42! 20.1741~20.36! 20.1736~20.26! 20.1768~20.30! 20.1851~20.22!

100.0 0.9426~0.28! 0.9618~20.05! 0.9922~20.17! 1.0372~20.10! 1.1023~20.15!
20.2079~20.31! 20.2027~20.16! 20.2008~0.00! 20.2028~0.07! 20.2104~0.04!
Transactions of the ASME
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P1L11P2L25P3L1 . (56)

The stress intensity factors were normalized as follows:

Fk5Kk /~ s̄Apa! ~k51,2!, (57)

wheres̄5P/(W•t), andW and t are the width and thickness o
the specimen, respectively.

First, a homogeneous aluminum alloy specimen is conside
In Fig. 15 the normalized stress intensity factors obtained us
the component separation method are plotted against the eva
ing locationr̄ . Under the pure tension loading withf590 deg, the
F2 value is exactly zero, whereas under the pure shear loa
with f50 deg, theF1 value is exactly zero. For both values of th
loading angle,f50 deg and 90 deg, the results show excelle
independence fromr̄ . Thus, the stress intensity factors can acc
rately be evaluated using the component separation method.

The normalized stress intensity factors obtained using the c
ponent separation method of theJ-integral are plotted in Fig. 16
against the loading angle. In this case, the normalized stres
tensity factorsF1 andF2 correspond to the mode I and mode

Fig. 14 Finite element model for a CNS specimen

Fig. 15 Variation of normalized stress intensity factor with
evaluating location „homogeneous CNS specimen …
Journal of Applied Mechanics
f

red.
ing
luat-

ing
e
nt
u-

m-

in-
II

correction factorsF I andF II , respectively. In addition to the pur
modes underf50 deg and 90 deg, theF1 value under another
pure shearing load,f5180 deg, is also exactly zero. Furthermor
as can also be predicted theoretically, theF1 results are exactly
symmetric with respect tof590 deg, whereas theF2 results are
exactly antisymmetric. The present results agree excellently w
the results obtained by Richard and Benitz@18#.

Next we consider a bimaterial specimen of epoxy and alu
num alloy. The properties used are the same as those liste
Table 1. Figure 17 shows the variation in the normalized str
intensity factor with the evaluating location. Once again, the
sults show excellent independence from the evaluating locatio

Figure 18 shows the variations of the normalized stress in
sity factors for various loading angles. In contrast to the homo
neous case, the mismatch of the Young’s moduli causes theF1
values to be nonzero under the pure shear loadings withf50 deg
and 180 deg, and theF2 value is also nonzero under the pu
tension loading withf590 deg.

8.4 A Curved Interfacial Crack in a Composite Material
Now we demonstrate the applicability of the separatedJ-integrals
and the component separation method to the problem of a cu
interfacial crack. For a curved interfacial crack, theM1 integral
method is difficult to apply because of the difficulty of construc
ing an appropriate auxiliary solution field.

We consider a fiber-reinforced composite material that cons
of SiC fibers and aluminum base material,@20#, as shown in Fig.
19. Using periodicity conditions, only a unit cell~see Fig. 20!
was analyzed under the plane strain condition. The Youn
modulus and Poisson’s ratio of SiC~material 2! are assumed to be

Fig. 16 Stress intensity factors versus loading angle „homo-
geneous material …

Fig. 17 Variation of normalized stress intensity factor with
evaluating location „bimaterial CNS specimen …
JULY 2003, Vol. 70 Õ 513



o

h
t

th-
r
ease
m-
E(2)5450 Gpa andn (2)50.170, respectively, whereas those
aluminum~material 1! areE(1)569 Gpa andn (1)50.333. In this
problem, two symmetrical curved interfacial cracks are cons
ered.

Figure 21 shows the finite element mesh pattern used for
analysis. Due to the symmetry conditions, only one-quarter of
cell was analyzed. The unit cell was subjected to uniform d
placements ofū50.1mm at the upper and lower boundaries. T
separatedJ-integrals were evaluated for five paths around
crack tip, as shown in Fig. 22.

Fig. 18 Stress intensity factors versus loading angle „nonho-
mogeneous material …

Fig. 19 Fiber-reinforced composite material

Fig. 20 Curved interfacial cracks around the SiC fiber
514 Õ Vol. 70, JULY 2003
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The separatedJ-integrals and theJ-integral are plotted in Fig.
23 against the path number. All of them are excellently pa
independent. The separatedJ-integral of the matrix is much highe
than that of the fiber. In other words, the separated energy rel
rate of the matrix is much higher than that of the fiber. This i

Fig. 21 Finite element mesh pattern for the fiber-reinforced
composite material

Fig. 22 Mesh pattern around the crack tip

Fig. 23 Path independence of the separated J -integrals
Transactions of the ASME
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plies that the compliant base metal provides a much larger frac
energy to the interfacial crack tip than does the stiffer fiber.

The stress intensity factors were obtained using the separ
J-integrals and theJ-integral in the formulas of the componen
separation method~see Eqs.~50! and ~51!!. The results for the
stress intensity factors are plotted against the evaluating loca
~See Fig. 24.! Excellent location independence is found, even
the curved crack. Thus, the results should be very accurate.
this case, the average stress intensity factors wereK1

590.520 MPa•m1/2 andK25245.277 MPa•m1/2.

9 Conclusions
In this paper, we first presented the concepts of pa

independent separatedJ-integrals and separated energy relea
rates. We then derived the relations between the separ

Fig. 24 Variation of stress intensity factor with evaluating lo-
cation „fiber-reinforced composite …
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J-integrals and the stress intensity factors using the asymp
solutions for an interfacial crack tip. It was shown that the pa
independent separatedJ-integrals have the physical significanc
of energy flows into an interfacial crack tip from the adjace
individual material sides or, equivalently, the separated ene
release rates.

To accurately evaluate the stress intensity factors, the com
nent separation method of theJ-integral was extended for interfa
cial crack problems. The component separation method has g
advantages over theM1 integral method that is often used i
interfacial fracture mechanics problems.

Finally, pertinent numerical analyses were carried out to de
onstrate the usefulness of the separatedJ-integrals and the com-
ponent separation method. In particular, it was shown from
separatedJ-integrals for curved interfacial cracks in a SiC fibe
reinforced aluminum base composite that the compliant b
metal provides a much larger fracture energy to the interfa
crack tip. In addition, the component separation method dem
strated accurate extraction of the stress intensity factors from
path independent separatedJ-integrals, without constructing any
auxiliary solution field.
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Appendix
On the basis of the stress intensity factors defined by Eq.~13!,

the explicit near-tip stress and displacement expressions fo
interfacial crack can be summarized as follows.

The asymptotic in-plane stress components for the materiam
side can be expressed by
s11
~m!5

K1

2A2pr cosh~p«!
Fe1«u2~322m!«pH 3 cosS u

2
1« ln

r

l D12« sinu cosS 3u

2
1« ln

r

l D2sinu sinS 3u

2
1« ln

r

l D J
2e2«u1~322m!«p cosS u

2
2« ln

r

l D G2
K2

2A2pr cosh~p«!
Fe1«u2~322m!«pH 3 sinS u

2
1« ln

r

l D
12« sinu sinS 3u

2
1« ln

r

l D1sinu cosS 3u

2
1« ln

r

l D J 1e2«u1~322m!«p sinS u

2
2« ln

r

l D G , (A1)

s22
~m!5

K1

2A2pr cosh~p«!
Fe1«u2~322m!«pH cosS u

2
1« ln

r

l D22« sinu cosS 3u

2
1« ln

r

l D1sinu sinS 3u

2
1« ln

r

l D J
1e2«u1~322m!«p cosS u

2
2« ln

r

l D G2
K2

2A2pr cosh~p«!
Fe1«u2~322m!«pH sinS u

2
1« ln

r

l D
22« sinu sinS 3u

2
1« ln

r

l D2sinu cosS 3u

2
1« ln

r

l D J 2e2«u1~322m!«p sinS u

2
2« ln

r

l D G , (A2)

s12
~m!5

K1

2A2pr cosh~p«!
Fe1«u2~322m!«pH sinS u

2
1« ln

r

l D12« sinu sinS 3u

2
1« ln

r

l D1sinu cosS 3u

2
1« ln

r

l D J
2e2«u1~322m!«p sinS u

2
2« ln

r

l D G2
K2

2A2pr cosh~p«!
Fe1«u2~322m!«pH 2cosS u

2
1« ln

r

l D
22« sinu cosS 3u

2
1e ln

r

l D1sinu sinS 3u

2
1« ln

r

l D J 2e2«u1~322m!«p cosS u

2
2« ln

r

l D G . (A3)

The in-plane displacement components for the materialm side are expressed by
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K1A2pr
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114«2 H cosS u
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2« ln
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2
2« ln
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The Mode III Crack Problem in
Microstructured Solids Governed
by Dipolar Gradient Elasticity:
Static and Dynamic Analysis
This study aims at determining the elastic stress and displacement fields around a cr
a microstructured body under a remotely applied loading of the antiplane shear (m
III) type. The material microstructure is modeled through the Mindlin-Green-Rivlin di
lar gradient theory (or strain-gradient theory of grade two). A simple but yet rigoro
version of this generalized continuum theory is taken here by considering an isot
linear expression of the elastic strain-energy density in antiplane shearing that invo
only two material constants (the shear modulus and the so-called gradient coefficien
particular, the strain-energy density function, besides its dependence upon the sta
strain terms, depends also on strain gradients. This expression derives from form
Mindlin’s theory, a form that is appropriate for a gradient formulation with no coup
stress effects (in this case the strain-energy density function does not contain any ro
gradients). Here, both the formulation of the problem and the solution method are e
and lead to results for the near-tip field showing significant departure from the predict
of the classical fracture mechanics. In view of these results, it seems that the conven
fracture mechanics is inadequate to analyze crack problems in microstructured mate
Indeed, the present results suggest that the stress distribution ahead of the tip exh
local maximum that is bounded. Therefore, this maximum value may serve as a me
of the critical stress level at which further advancement of the crack may occur. Als
the vicinity of the crack tip, the crack-face displacement closes more smoothly as
pared to the classical results. The latter can be explained physically since materials
microstructure behave in a more rigid way (having increased stiffness) as compar
materials without microstructure (i.e., materials governed by classical continuum
chanics). The new formulation of the crack problem required also new extended d
tions for the J-integral and the energy release rate. It is shown that these quantities
be determined through the use of distribution (generalized function) theory. The boun
value problem was attacked by both the asymptotic Williams technique and the
Wiener-Hopf technique. Both static and time-harmonic dynamic analyses are provid
@DOI: 10.1115/1.1574061#
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1 Introduction

The present work is concerned with the exact determination
mode III crack-tip fields within the framework of the dipolar gr
dient elasticity~or strain-gradient elasticity of grade two!. This
theory was introduced by Mindlin@1#, Green and Rivlin@2#, and
Green@3# in an effort to model the mechanical response of ma
rials with microstructure. The theory begins with the very gener
concept of a continuum containing elements or particles~called
macromedia!, which are in themselvesdeformablemedia. This
behavior can easily be realized if such a macro-particle is view
as a collection of smaller subparticles~called micromedia!. In this
way, each particle of the continuum is endowed with aninternal
displacement field, which is expanded as a power series in inte
coordinate variables. Within the above context, the lowest-or
theory~dipolar or grade-two theory! is the one obtained by retain
ing only the first~linear! term. Also, since these theories introdu

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Apr. 2
2002; final revision, Dec. 19, 2002. Associate Editor: B. M. Moran. Discussion
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, De
ment of Mechanical and Environmental Engineering University of California–Sa
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months
final publication of the paper itself in the ASME JOURNAL OF APPLIED MECHAN-
ICS.
Copyright © 2Journal of Applied Mechanics
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dependence on strain and/or rotation gradients, the new mat
constants imply the presence of characteristic lengths in the
terial behavior, which allow the incorporation of size effects in
stress analysis in a manner that the classical theory cannot af

The Mindlin-Green-Rivlin theory and related ideas, after a fi
development and some successful applications mainly on s
concentration problems during the sixties~see, e.g., Mindlin and
Eshel@4#, Weitsman@5#, Day and Weitsman@6#, Cook and Weits-
man@7#, Herrmann and Achenbach@8#, and Achenbach et al.@9#!,
have also recently been employed to analyze complex problem
materials with microstructure~see, e.g., Vardoulakis and Sule
@10#, Fleck et al.@11#, Lakes @12#, Vardoulakis and Georgiadis
@13#, Wei and Huthinson@14#, Begley and Huthinson@15#, Exa-
daktylos and Vardoulakis@16#, Huang et al.@17#, Zhang et al.
@18#, Chen et al.@19#, Georgiadis and Vardoulakis@20#, Georgia-
dis et al.@21,22#, Georgiadis and Velgaki@23#, and Amanatidou
and Aravas@24#!. More specifically, recent work by the author an
co-workers@13,20–23#, on wave-propagation problems showe
that the gradient approach predicts types of elastic waves tha
not predicted by the classical theory~SH and torsionalsurface
waves in homogeneous materials! and also predictsdispersionof
high-frequency Rayleigh waves~the classical elasticity fails to
predict dispersion of these waves atany frequency!. Notice that
all these phenomena are observed in experiments and are
predicted by atomic-lattice analyses~see, e.g., Gazis et al.@25#!.
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Thus, based on existing gradient-type results, one may conc
that the Mindlin-Green-Rivlin theory extends the range of app
cability of continuum theories in an effort towards bridging t
gap between classical~monopolar or nongeneralized! theories of
continua and theories of atomic lattices.

In the present work the concept adopted, following the afo
mentioned ideas, is to view the continuum as a periodic struc
like that, e.g., of crystal lattices, crystallites of a polycrystal
grains of a granular material. The material is composed wholly
unit cells ~micromedia! having the form of cubes with edges o
size 2h. This size is therefore an intrinsic material length. W
further assume~and this is a rather standard assumption in stud
applying the Mindlin-Green-Rivlin theory to practical problem!
that the continuum ishomogeneousin the sense that the relativ
deformation~i.e., the difference between the macrodisplacem
gradient and the microdeformation—cf. Mindlin@1#! is zero and
the microdensity does not differ from the macrodensity. Then,
formulate the mode III crack problem by considering an isotro
and linear expression of the strain-energy densityW. This expres-
sion in antiplane shear and with respect to a Cartesian coord
systemOx1x2x3 readsW5m«p3«p31mc(]s«p3)(]s«p3), where
the summation convention is understood over the Latin indic
which take the values 1 and 2 only, («13,«23) are the only iden-
tically nonvanishing components of the linear strain tensor,m is
the shear modulus,c is the gradient coefficient~a positive con-
stant accounting for microstructural effects!, and ]s( )
[]( )/]xs . The problem is two-dimensional and is stated in t
plane (x1,x2). The above strain-energy density function is t
simplest possible form of case II in Mindlin’s@1# theory and is
appropriate for a gradient formulation withno couple-stress ef-
fects, becauseW is completelyindependentupon rotation gradi-
ents. Indeed, by referring to a strain-energy density function
depends upon strains and strain gradients in a three-dimens
body ~the Latin indices now span the range~1,2,3!!, i.e., a func-
tion of the formW5(1/2)cpqs j«pq«s j1(1/2)dpqs jlmkpqsk j lm with
(cpqs j ,dpqs jlm) being tensors of material constants andkpqs
5]p«qs[]p«sq , and by defining the Cauchy~in Mindlin’s nota-
tion! stress tensor astpq5]W/]«pq and the dipolar stress tenso
~a third-rank tensor! as mpqs5]W/](]p«qs), one may observe
that the relationsmpqs5mp(qs) andmp[qs]50 hold, where ( ) and
@ # as subscripts denote the symmetric and antisymmetric par
a tensor, respectively. Accordingly, couple stresses do not ap
within the present formulation by assuming dipolar~internal!
forces with vanishing antisymmetric part~more details on this are
given in Section 2 below!. A couple-stress, quasi-static solution
the mode-III crack problem was given earlier by Zhang et al.@18#.
Note in passing that in the literature one may find mainly t
types of approaches: In the first type~couple-stress case! the
strain-energy density depends on rotation gradients and ha
dependence upon strain gradients of the kind mentioned ab
~see, e.g.,@11,17–19,23#!, whereas in the second type the stra
energy density depends on strain gradients and has no depen
upon rotation gradients~see, e.g.,@13,16,20–22#!. Exceptions
from this trend exist of course~see, e.g.,@5–7#! and these works
employ a more complicated formulation based on form III
Mindlin’s theory, @1#.

Here, in addition to the quasi-static case, we also treat the ti
harmonic dynamical case, which is pertinent to the problem
stress-wave diffraction by a pre-existing crack in the body. In
latter case, besides the standard inertia term in the equatio
motion, a micro-inertia term is also taken into account~in a con-
sistent and rigorous manner by considering the proper kine
energy density! and this leads to anexplicit appearance of the
intrinsic material lengthh. We emphasize that quasi-static a
proaches cannot include explicitly the size of the material cel
their governing equations. In these approaches, rather, a ch
teristic length appears in the governing equations only through
gradient coefficientc ~which has dimensions of@ length#2) in the
gradient theory without couple-stress effects or the ratio~h/m!
518 Õ Vol. 70, JULY 2003
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~which again has dimensions of@ length#2) in the couple-stress
theory without the effects of collinear dipolar forces, whereh is
the couple-stress modulus andm is the shear modulus of the ma
terial. Of course, one of the quantitiesc or ~h/m! also appears
within a dynamic analysis, which therefore may allow for an i
terrelation of the two different characteristic lengths~the one in-
troduced in the strain energy and the other introduced in the
netic energy—see relative works by Georgiadis et al.@22# and
Georgiadis and Velgaki@23#!. Indeed, by comparing the forms o
dispersion curves of Rayleigh waves obtained by the dipo
~‘‘pure’’ gradient and couple-stress! approaches with the ones ob
tained by the atomic-lattice analysis of Gazis et al.@25#, it can be
estimated thatc is of the order of (0.1h)2, @22#, andh is of the
order of 0.1mh2, @23#.

The mathematical analysis of the dynamical problem here p
sents some novel features related to the Wiener-Hopf techn
not encountered in dealing with the static case. The Wiener-H
technique is employed to obtain exact solutions in both cases,
also the Williams technique is employed for an asymptotic de
mination of the near-tip fields. Also, since the gradient formu
tion exhibits asingular-perturbationcharacter, the concept of
boundary layeris employed to accomplish the solution. On th
other hand, the gradient formulation demands extended definit
of the J-integral and the energy release rate. It is further prov
by utilizing some theorems of distribution theory, that both ene
quantities remain bounded despite the hypersingular behavio
the near-tip stress field. Finally, physical aspects of the solu
are discussed with particular reference to the closure of the c
faces and the nature of cohesive tractions.

2 Fundamentals of the Dipolar Gradient Elasticity
A brief account of the Mindlin-Green-Rivlin theory,@1–3#, per-

taining to the elastodynamics of homogeneous and isotropic
terials is given here. If a continuum with microstructure is view
as a collection of subparticles~micromedia! having the form of
unit cells ~cubes!, the following expression of the kinetic-energ
density ~kinetic energy per unit macrovolume! is obtained with
respect to a Cartesian coordinate systemOx1x2x3 , @1#,

T5
1

2
ru̇pu̇p1

1

6
rh2~]pu̇q!~]pu̇q!, (1)

wherer is the mass density, 2h is the size of the cube edges,up is
the displacement vector,]p( )[]( )/]xp , (˙)[]( )/]t with t de-
noting the time, and the Latin indices span the range~1,2,3!. We
also notice that Georgiadis et al.@22# by using the concept of
internal motions have obtained~1! in an alternative way to that by
Mindlin @1#. In the RHS of Eq.~1!, the second term representin
the effects of velocity gradients~a term not encountered within
classical continuum mechanics! reflects the greater detail with
which the dipolar theory describes the motion.

Next, the following expression of the strain-energy density
postulated:

W5
1

2
cpqs j«pq«s j1

1

2
dpqs jlmkpqsk j lm , (2)

where (cpqs j ,dpqs jlm) are tensors of material constants,«pq
5(1/2)(]puq1]qup) is the linear strain tensor, andkpqs5]p«qs
is the strain gradient. Notice that in the tensorscpqs j anddpqs jlm
~which are of even rank! the number of independent componen
can be reduced to yield isotropic constitutive relations. Such
isotropic behavior is considered here. Again, the form in~2! can
be viewed as a more accurate description of the constitutive
sponse than that provided by the classical elasticity, if one thi
of a series expansion forW containing higher-order strain grad
ents. Also, one may expect that the additional term~or terms! will
be significant in the vicinity of stress-concentration points wh
the strain undergoes very steep variations.

Then, pertinent stress tensors can be defined by taking
variation ofW
Transactions of the ASME
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tpq5
]W

]«pq
, (3a)

mpqs5
]W

]kpqs
[

]W

]~]p«qs!
, (3b)

wheretpq5tqp is the Cauchy~in Mindlin’s notation! stress tensor
andmpqs5mpsq is the dipolar~or double! stress tensor. The latte
tensor follows from the notion ofmultipolar forces, which are
antiparallel forces acting between the micro-media contained
the continuum with microstructure~see Fig. 1!. As explained by
Green and Rivlin@2# and Jaunzemis@26#, the notion of multipolar
forces arises rather naturally if one considers a series expan
for the mechanical powerM containing higher-order velocity gra
dients, i.e.,M5Fpu̇p1Fpq(]pu̇q)1Fpqs(]p]qu̇s)1 . . . , where
Fp are the usual forces~monopolar forces! within classical con-
tinua and (Fpq ,Fpqs, . . . ) are the multipolar forces~dipolar or
double forces, triple forces and so on! within generalized con-
tinua. In this way, the resultant force on an ensemble of sub
ticles can be viewed as being decomposed intoexternalandinter-
nal forces with the latter ones being self-equilibrating~see Fig. 1!.
However, these self-equilibrating forces~which are multipolar
forces! producenonvanishingstresses, the multipolar stresses. E
amples of force systems of the dipolar collinear or noncollin
type are given, e.g., in Jaunzemis@26# and Fung@27#.

As for the notation of dipolar forces and stresses, the first in
of the forces denotes the orientation of the lever arm between
forces and the second index the orientation of the pair of
forces; the same meaning is attached to the last two indices o
stresses, whereas the first index denotes the orientation o
normal to the surface on which the stress acts. The dipolar fo
Fpq have dimensions of@force#@length#; their diagonal terms are
double forces without moment and their off-diagonal terms
double forces with moment. The antisymmetric partF [ pq]
5(1/2)(xpFq2xqFp) gives rise to couple stresses. Here, we
not consider couple-stress effects emphasizing that this is com
ible with the particular choice of the form ofW in ~2!, i.e., a form
dependent upon the strain gradient but completely indepen
upon the rotation gradient.

Further, the equations of motion and the tractionboundary c
ditions along a smooth boundary can be obtained either f
Hamilton’s principle~Mindlin @1#! or from the momentum balanc
laws and their application on a material tetrahedron~Georgiadis
et al. @22#!:

]p~tpq2]smspq!5rüq2
rh2

3
~]ppüq!, (4)

Fig. 1 Monopolar „external … and dipolar „internal … forces act-
ing on an ensemble of subparticles in a material with micro-
structure
Journal of Applied Mechanics
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nq~tqs2]pmpqs!2Dq~npmpqs!1~Dlnl !npnqmpqs1
rh2

3
nr~] r üs!

5Ps
(n) , (5a)

nqnrmqrs5Rs
(n) , (5b)

where body forces are absent,Dp( )5]p( )2npD( ), D( )
5nl] l( ), ns is the unit outward-directed vector normal to th
boundary,Ps

(n) is the surface force per unit area~monopolar trac-
tion!, andRs

(n) is the surface double force per unit area~dipolar
traction!.

Finally, it is convenient for calculations to introduce anoth
quantity, which is a kind of ‘‘balance stress’’~see Eq.~7! below!,
and is defined as

spq5tpq1apq , (6)

whereaqs5(rh2/3)(]qüs)2]pmpqs. With this definition, Eq.~4!
takes the more familiar form

]pspq5rüq . (7)

Notice thatspq is not an objective quantity since it contains th
acceleration terms (rh2/3)(]qüs). These micro-inertia terms als
are responsible for the asymmetry ofspq . This, however, does
not pose any inconsistency but reflects the role of micro-ine
and the nonstandard nature of the theory. In the quasi-static c
where the acceleration terms are absent,spq is an objective tensor.
On the other hand, the constitutive equations should defini
obey the principle of objectivity~cf. Eqs.~9! and ~10! below!.

Now, the simplest possible form of constitutive relations is o
tained by taking an isotropic version of the expression in~2! in-
volving only three material constants. This strain-energy den
function reads

W5
1

2
l«pp«qq1m«pq«pq1

1

2
lc~]s«pp!~]s«qq!

1mc~]s«pq!~]s«pq!, (8)

and leads to the constitutive relations

tpq5ldpq«ss12m«pq , (9)

mspq5c]s~ldpq« j j 12m«pq!, (10)

where~l,m! are the standard Lame´’s constants,c is the gradient
coefficient~material constant with dimensions of@ length#2), and
dpq is the Kronecker delta. Equations~9! and ~10! written for a
general three-dimensional state will be employed below only
an antiplane shear state.

In summary, Eqs.~4!, ~5!, ~9!, and~10! are the governing equa
tions for the isotropic dipolar-gradient elasticity with no coup
stresses. Combining~4!, ~9!, and~10! leads to the field equation o
the problem. Pertinentuniquenesstheorems have been proved fo
various forms of the general theory~Mindlin and Eshel @4#,
Achenbach et al.@9#, and Ignaczak@28#! on the basis ofpositive
definitenessof the strain-energy density. The latter restriction r
quires, in turn, the following inequalities for the material co
stants appearing in the theory employed here~Georgiadis et al.
@22#!: (3l12m).0, m.0, c.0. In addition, stability for the
field equation in the general inertial case was proved in@22# and
to accomplish this the conditionc.0 is a necessary one~we
notice incidentally that some heuristic gradient-like approac
not employing the rigorous Mindlin-Green-Rivlin theory appear
in the literature that take a negativec—their authors, unfortu-
nately, do not realize that stability was lost in their field equatio!.
Finally, the analysis in@22# provides the order-of-magnitude est
mate (0.1h)2 for the gradient coefficientc, in terms of the intrin-
sic material lengthh.
JULY 2003, Vol. 70 Õ 519
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3 Formulation of the Quasi-Static Mode III Crack
Problem, the J-Integral, and the Energy Release Rate

Consider a crack in a body with microstructure under a qu
static antiplane shear state~see Fig. 2!. As will become clear in the
next two sections, the semi-infinite crack model serves in
boundary layertype of analysis of any crack problem provide
that the crack faces in the problem under consideration are
tion free. It is assumed that the mechanical behavior of the bod
determined by the Eqs.~4!, ~5), (9), and~10! of the previous
section. AnOxyzCartesian coordinate system coincident with t
systemOx1x2x3 utilized previously is attached to that body, an
an antiplane shear loading is taken in the direction ofz-axis. Also,
a pure antiplane shear state will be reached, if the body has
form of a thick slab in thez-direction. In such a case, the follow
ing two-dimensional field is generated:

ux5uy50, (11a)

uz[wÞ0, (11b)

w[w~x,y!, (11c)

and Eqs.~8)–(10! take the forms

W5m~«xz
2 1«yz

2 !1mcF S ]«xz

]x D 2

1S ]«xz

]y D 2

1S ]«yz

]x D 2

1S ]«yz

]y D 2G ,
(12)

txz5m
]w

]x
, (13a)

tyz5m
]w

]y
, (13b)

mxxz5mc
]2w

]x2 , (14a)

mxyz5mc
]2w

]x]y
, (14b)

myxz5mc
]2w

]x]y
, (14c)

myyz5mc
]2w

]y2 . (14d)

Further,~4! provides the equation of equilibrium

]

]x S txz2
]mxxz

]x
2

]myxz

]y D1
]

]y S tyz2
]mxyz

]x
2

]myyz

]y D50,

(15)

which along with~13! and~14! leads to the following field equa
tion of the problem

Fig. 2 A crack under a remotely applied antiplane shear load-
ing. The contour G surrounding the crack tip serves for the
definition of the J -integral.
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c¹4w2¹2w50, (16)

where¹25(]2/]x2)1(]2/]y2) and¹45¹2¹2. Finally, one may
utilize spq defined in~6! for more economy in writing some equa
tions in the ensuing analysis. The antiplane shear componen
this quantity are as follows:

sxz5mS ]w

]x D2mc¹2S ]w

]x D , (17a)

syz5mS ]w

]y D2mc¹2S ]w

]y D . (17b)

Assume now that the cracked body is under aremotelyapplied
loading that is alsoantisymmetricabout thex-axis ~crack plane!.
Also, the crack faces are traction-free. Due to the antisymmetr
the problem, only the upper half of the cracked domain is cons
ered. Then, the following conditions can be written along t
plane (2`,x,`,y50):

tyz[tyz2
]mxyz

]x
2

]myyz

]y
2

]myxz

]x
50 for ~2`,x,0,y50!,

(18)

myyz50 for ~2`,x,0,y50!, (19)

w50 for ~0,x,`,y50!, (20)

]2w

]y2 50 for ~0,x,`,y50!, (21)

where~18! and~19! directly follow from Eqs.~5! ~notice also that
~18! can be written assyz2(]myxz/]x)50 by using thespq
quantity!, tyz is defined as thetotal monopolarstress, and~20!
together with~21! always guarantee an antisymmetric displac
ment field w.r.t. the line of the crack prolongation. The definiti
of the stresstyz follows from ~5a!. The problem described by
~11)–(21! will be considered by both the asymptotic William
method and the exact Wiener-Hopf technique. Notice finally t
no difficulty will arise by having zero boundary conditions alon
the crack faces since, eventually, the solution will be matched
regions where gradient effects are not dominant~i.e., for x
@c1/2) with the K III field of the classical theory and in this wa
the remote loading will appear in the solution.

Next, we present the new extended definitions of theJ-integral
and the energy release rateG. These definitions of the energ
quantities are pertinent to the present framework of dipolar gra
ent elasticity and to the aforementioned case of a crack in a qu
static antiplane shear state. By following relative concepts fr
Rice @29,30#, we first introduce the definition

J5E
G
S Wdy2 P̄z

(n)
]w

]x
dG2R̄z

(n)DS ]w

]x DdG D , (22)

whereG is a two-dimensional contour surrounding the crack
~see Fig. 2!, whereas the monopolar and dipolar tractionsP̄z

(n) and
R̄z

(n) on G are given as

P̄z
(n)5nq~tqz2]pmpqz!2Dq~npmpqz!1~Dlnl !npnqmpqz,

(23a)

R̄z
(n)5npnqmpqz. (23b)

In the above expressions,np with components (nx ,ny) is the unit
outward-directed vector normal toG, the differential operatorsD
andDp were defined in Section 2,W is the strain-energy density
function given by~12!, and the indices (l ,p,q) take the valuesx
andy only.

Of course, the above expressions for the tractions onG are
compatible with Eqs.~5!. Further, it can be proved that the inte
gral in ~22! is path independent by following Rice’s,@29#, proce-
dure. Path independence is of great utility since it permits al
nate choices of integration paths that may lead to a dir
Transactions of the ASME
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evaluation ofJ. We should mention at this point that~22! is quite
novel within the present version of the gradient theory~i.e., a form
without couple stresses!, but expressions forJ within the couple-
stress theory were presented before by Atkinson and Leppin
@31#, Zhang et al.@18#, and Lubarda and Markenscoff@32#. In
particular, the latter work gives a systematic derivation of cons
vation integrals by the use of Noether’s theorem. Finally, we
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tice that the way theJ-integral will be evaluated below is quite
different than that by Zhang et al.@18#. Indeed, use of the theory
of distributions in the present work leads to a very simple way
evaluateJ ~see Section 7 below!.

As for the energy release rate~ERR! now, we also modify the
classical definition in order to take into account a higher-or
term that is compatible with the present strain-gradient framew
G5 lim
Dx→0

E
0

DxF tyz~x,y50!•w~x,y50!1myyz~x,y50!•
]w~x,y50!

]y Gdx

Dx
, (24)
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whereDx is the small distance of a crack advancement.
Of course, any meaningful crack-tip field given as solution

an associated mathematical problem, should result in afinite value
for the energy quantities defined above. Despite the strong si
larity of the stress field obtained in Sections 5 and 6, the result
Section 7 prove thatJ andG are indeed bounded.

4 Asymptotic Analysis by the Williams Method
As is well known, Williams@33,34# ~see also Barber@35#! de-

veloped a method to explore the nature of the stress and disp
ment field near wedge corners and crack tips. This is acc
plished by attaching a set of (r ,u) polar coordinates at the corne
point and by expanding the stress field as an asymptotic serie
powers ofr . By following this method here we are concerned,
a way, only with the field components in the sharp crack at v
small values ofr , and hence we imagine looking at the tip regio
through a strong microscope so that situations like the ones,
on the left of Fig. 3~i.e., a finite length crack, an edge crack or
crack in a strip! appear to us like the semi-infinite crack on th
right of this figure. The magnification is so large that the oth
surfaces of the body, including the loaded remote boundaries
pear enough far away for us to treat the body as an ‘‘infin
wedge’’ with ‘‘loading at infinity.’’ The field is, of course, a com
plicated function of (r ,u) but near to the crack tip~i.e., as r
→0) we seek to expand it as a series of separated variable te
each of which satisfies the traction-free boundary conditions
the crack faces.

In view of the above, we consider the following separated fo
w(r ,u)5r v11u(u), where the displacement satisfies~16!. Fur-
ther, if only the dominant singular terms in~16! are retained, the
PDE of the problem becomes¹4w50, where ¹45¹2¹2

5(]2/]r 2 1 1/r ]/]r 1 1/r 2]2/]u2)2. Also, in view of the defini-
tions of stresses as combinations of derivatives ofw and by re-

Fig. 3 William’s method: the near-tip fields of „i… a finite length
crack, „ii … an edge crack, and „iii … a cracked strip correspond to
the field generated in a body with a semi-infinite crack
to
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taining again only the dominant singular terms, the boundary c
ditions tyz(x,y560)50 andmyyz(x,y560)50 will give at u
56p

S ]2

]r 2 1
1

r 2

]2

]u2 1
1

r 2D ]w

]u
50, (25a)

S 1

r

]

]r
1

1

r 2

]2

]u2Dw50. (25b)

In addition, the pertinent antisymmetric solution~i.e., with odd
behavior inu! to the equation¹4w50 has the following genera
form:

w5r v11~A1 sin@~v11!u#1A2 sin@~v21!u#!, (26)

wherev is ~in general! a complex number and (A1 ,A2) are un-
known constants. Now,~25! and~26! provide theeigenvalueprob-
lem

~v11!cos@~v11!p#•A123~v21!cos@~v21!p#•A250,
(27a)

~v11!sin@~v11!p#•A11~v23!sin@~v21!p#•A250.
(27b)

For a nontrivial solution to exist, the determinant of the coe
cients of (A1 ,A2) in the above system should vanish and th
gives the result: sin(2vp)50⇒v50,1/2,1,3/2,2, . . . . Next, by
observing from~12! that the strain-energy density W behaves
most as (]2w/]r 2) or, by using the formw(r ,u)5r v11u(u), no
worse thanr v21, we conclude that the maximum eigenvalue a
lowed by theintegrability condition of the strain-energy density i
v51/2.

The above analysis suggests that the general asymptotic
tion is of the formw(r ,u)5r 3/2u(u), which by virtue of~26! and
~27b! becomes

w~r ,u!5Ar3/2@3sin~u/2!25 sin~3u/2!#, (28)

whereA[2A1 and the other constant in~26! is given by~27b! as
A253A1 /5. The constantA ~amplitude of the field! is left un-
specified by the Williams technique but still the nature of t
near-tip field has been determined. Finally, the total monopo
stress has the following asymptotic behavior:

tyz~x,y50!5O~x23/2! as x→10. (29)

This asymptotic behavior will also be corroborated by the res
of the exact analysis in the next section.

5 Exact Analysis by the Wiener-Hopf Method
An exactsolution to the problem described by~11!–~21! will

be obtained through two-sided Laplace transforms~see, e.g., van
der Pol and Bremmer@36# and Carrier et al.@37#!, the Wiener-
JULY 2003, Vol. 70 Õ 521
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Hopf technique~see, e.g., Roos@38# and Mittra and Lee@39#! and
certain results from the theory of distributions~see, e.g., Gel’fand
and Shilov@40# and Lauwerier@41#!.

The direct and inverse two-sided Laplace transforms are
fined as

f * ~p,y!5E
2`

`

f ~x,y!e2pxdx, (30a)

f ~x,y!5
1

2p i EBr
f * (p,y)epxdp, (30b)

whereBr denotes the Bromwich inversion pathwithin the region
of analyticity of the functionf * (p,y) in the complexp-plane.
Transforming~16! with ~30a! gives the ODE

c
d4w*

dy4 1~2cp221!
d2w*

dy2 1~cp42p2!w* 50. (31)

The above equation has the following general solution tha
bounded asy→1`

w* ~p,y!5B~p!• exp~2by!1C~p!• exp~2gy! for y>0,
(32)

where B(p) and C(p) are yet unknown functions,b[b(p)
5(«22p2)1/2 with « being a real number such that«→10, and
g[g(p)5@(1/c)2p2#1/2[(a22p2)1/2 with a5(1/c)1/2. In fact,
introducing « facilitates the introduction of the branch cuts f
b5(2p2)1/2-cf. @20# and @37# for this procedure as applied t
related situations. To obtain a bounded solution asy→1`, the
p-plane should be cut in the way shown in Fig. 4. This introdu
tion of branch cuts secures that the functions~b,g! are single-
valued and that Re(b).0 and Re(g).0 along the Bromwich path

Fig. 4 Branch cuts for the functions „b,g…
522 Õ Vol. 70, JULY 2003
de-

is

r

c-

The transformed expressions for the stresses that enter
boundary conditions are also quoted~for convenience, thesyz
quantity is employed in the boundary conditions!

syz* ~p,y!52mBbe2by, (33)

myyz* ~p,y!5m~Bcb2e2by1Ccg2e2gy!, (34)

myxz* ~p,y!52mp~Bcbe2by1Ccge2gy!. (35)

Next, in preparation for formulating the Wiener-Hopf equatio
the one-sided Laplace transforms of the unknown total monop
stresstyz(x.0,y50) ahead of the crack tip and the unknow
crack-face displacementw(x,0,y50) are defined

T1~p!5E
0

`

tyz~x,y50!e2pxdx[E
0

`Fsyz~x,y50!

2
]myxz~x,y50!

]x Ge2pxdx, (36)

W2~p!5E
2`

0

w~x,y50!e2pxdx. (37)

Further, we assume the followingfiniteness conditions at x
→6`: utyz(x,y50)u,M• exp(2pTx) for x→1` and uw(x,y
50)u,N• exp(pWx) for x→2`, where (M ,N,pT ,pW) are posi-
tive constants. As a consequence,T1(p) is analytic and defined in
the right half-plane2pT,Re(p) ~the ‘‘plus’’ half-plane!, while
W2(p) is analytic and defined in the left half-plane Re(p),pW
~the ‘‘minus’’ half-plane!.

Then, enforcement of boundary conditions results in the follo
ing equations:

T1~p!5syz* ~p,y50!2p•myxz* ~p,y50!, (38)

W2~p!5w* ~p,y50!. (39)

The above equations along with the equation]2w* (p,y50)/]y2

50, Eqs.~33!–~35! and the general solution in~32! provide an
algebraic system of three equations in four unknowns~the func-
tionsT1, W2, B, C). Finally, eliminatingB andC in this system
leads to the following Wiener-Hopf problem

T1~p!

~a1p!1/252mcp2~a2p!1/2
•L~p!•W2~p!, (40)

where the kernel functionL(p) is given as

L~p!52cp2F11
12cp2

cp2

~a22p2!1/2

~«22p2!1/2G . (41)

The next target will be to determine bothT1 andW2 from the
single Eq.~40!. This will be effected through the use of elemen
of the theories of complex variables, integral transforms, and
tributions ~theorem of analytic continuation, extended Liouville
theorem, Abel-Tauber asymptotic theorems, transforms of dis
butions!. First, we check that the functionL(p) has no zeros in the
complex plane. This was found independently by using both
principle of the argument, @37#, and the program
MATHEMATICA™. We notice that unlike the current static cas
the counterpart kernel function in the dynamic case exhibits
~nonextraneous! zeros, a fact that modifies somehow the stand
Wiener-Hopf method. Further, we find that the asymptotic beh
ior of the kernel is limupu→`L(p)523/2 and this leads us to in
troduce a modified kernel given asN(p)52(2/3)•L(p), which
possesses the desired asymptotic property limupu→`N(p)51. In-
deed, this new form of the kernel facilitates itsproduct splitting
by the use of Cauchy’s integral theorem. The Wiener-Hopf eq
tion takes now the form

T1~p!

~a1p!1/25S 2
3

2D ~2mc!p2~a2p!1/2N~p!•W2~p!, (42)
Transactions of the ASME
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Fig. 5 Contour integrations for the factorization of the kernel function in Eq.
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and the kernel is written as the following product of two analy
and nonzero functions defined in pertinent half-plane domain
the complex plane,@38,39#,

N~p!5N1~p!•N2~p!, (43)

where

N1~p!5expH 2
1

2p i ECl

ln@N~z!#

z2p
dzJ , (44a)

N2~p!5expH 1

2p i ECr

ln@N~z!#

z2p
dzJ . (44b)

The use of Cauchy’s integral theorem is depicted in Fig. 5.N1(p)
is analytic and nonzero in Re(p).2« andN2(p) is analytic and
nonzero in Re(p),«. The original integration paths (Cl ,Cr) ex-
tend parallel to the imaginary axis in the complexz-plane. Finally,
an alteration of the integration contour~also depicted in Fig. 5!
along with use of Cauchy’s theorem and Jordan’s lemma allo
taking as equivalent integration paths the (Cl8 ,Cr8) contours
around the branch cuts extending along2a,z,2« and «,z
,a. This eventually leads to the following forms of the sectio
ally analytic functionsN6(p):

N6~p!5expH 1

p E
0

a

arctanF ~a22z2!3/2

z3 G dz

z6pJ , (45)

with the propertyN1(2p)5N2(p).
With the product factorisation in hand, Eq.~42! takes the fol-

lowing form that defines a functionE(p):

T1~p!

N1~p!•~a1p!1/25
3mc

2
p2~a2p!1/2N2~p!•W2~p![E~p!.

(46)

The above equation definesE(p) only in the strip2«,Re(p)
,0. But the first member in the equation is a nonzero anal
function in Re(p).2«, and the second member is a nonzero a
lytic function in Re(p),0. Then, in view of the theorem of ana
lytic continuation~or identity theorem for single-valued analyt
functions!, the two members define one and the same function
is analytic over the wholep-plane,@38,39#. In other words,E(p)
is anentire function. Polynomial and exponential functions are t
types of entire functions. The case of an exponential function~i.e.,
a function of the form exp@g(p)#, whereg(p) is a polynomial!
should be excluded because such a function has anessential sin-
gularity at infinity. Indeed, an exponential growth of the functio
involved in ~46! would result in violating the so-callededge con-
dition, i.e., the condition of bounded energy density around
geometrical singularity~crack edge! in the physical domain.
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Therefore,E(p) should be a polynomial since only algebra
growth of the fields in the neighborhood of the crack tip is
lowed. Further, determining the coefficients of this polynom
will lead to the desired decoupling ofT1(p) andW2(p). Below,
we determine the form ofE(p) by the use of asymptotic analysis

In particular, we will use theorems of the Abel and Tauber ty
having the form

lim
x→0

f ~x!↔
LT

lim
upu→`

f * ~p!, (47)

lim
x→`

f ~x!↔
LT

lim
upu→0

f * ~p!, (48)

where the symbol↔
LT

means that the image functionf * (p) and the
original function f (x) are connected through theone-sided
Laplace-transform relationsf * (p)5*0

` f (x)e2pxdx and f (x)
5(1/2p i )*Br f * (p)epxdp, andp is a complex variable which in
~47! and~48! tends to infinity or zero along paths in the pertine
half-plane of convergence~analyticity!. Relations~47! and ~48!
hold under certain conditions given, e.g., in@36#. Also, the ex-
tended Liouville’s theorem,@39#, will be utilized. Referring to
~46!, this states that ifT1(p)•@N1(p)•(a1p)1/2#215O(pn) and
(3mc/2)p2(a2p)1/2N2(p)•W2(p)5O(pj) in the respective
half-planes of analyticity, thenE(p) is a polynomial of degree no
exceeding the minimum of~@n#,@j#!, where the symbol@ # denotes
the integral part of a number.

Now as a first possibility of the near-tip behavior, one m
adopt a behavior of the total monopolar stress and the crack-
displacement that is analogous to the classical fracture mecha
behavior, viz.

tyz~x,y50!5O~x21/2! as x→10, (49a)

w~x,y50!5O~x1/2! as x→20. (49b)

This field gives by ~47! and the transformation formula

xk↔
LT

G(k11)•p2k21 ~with G( ) being the Gamma function an
k.21), @36,38#, the following asymptotic behavior in the trans
form domain

T1~p!5O~p21/2! as upu→`, (50a)

W2~p!5O~p23/2! as upu→`. (50b)

Then, Liouville’s theorem leads to the conclusion thatE(p)50,
which, however, is an inadmissible result since it shows that
stress field is zero everywhere~although the cracked body is unde
loading!. Therefore, the possibility of a near-tip behavior given
~49! should be discarded.
JULY 2003, Vol. 70 Õ 523
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Next, prompted by the results of the Williams asympto
method obtained before, i.e., the results in~28! and~29!, we con-
sider the following possibility of near-tip behavior

tyz~x,y50!5O~x23/2! as x→10, (51a)

w~x,y50!5O~x3/2! as x→20. (51b)

Here, certain results of the theory of generalized functions will
employed concerning transforms ofsingular distributions,
@40,41#. In this connection, we note that the distributionx1

l for
Re(l).21 is identified with the functionx1

l 5xl for x.0 and
x1

l 50 for x,0. For other values of the complex parameterl ~of
course,l here is not to be confused with the Lame´ constant! it is
defined by analytic continuation of the functional^x1

l ,h&
[*0

`xlh(x) dx, whereh(x) is a test function. In this way, a dis
tribution is obtained for all complex values ofl with the excep-
tion of l521,22,23, . . . . In a similar manner,x2

l is defined
by starting fromx2

l 50 for x.0 andx2
l 5uxul for x,0. Then,

~51! and the transformation formulaxl↔
LT

G(l11)•p2l21 ~with
lÞ21,22,23, . . . ), @40,41#, provide the following asymptotic
behavior in the transform domain:

T1~p!5O~p1/2! as upu→`, (52a)

W2~p!5O~p25/2! as upu→`. (52b)

Further the extended Liouville’s theorem leads to the conclus
that E(p)5E0 , where E0 is a constant. As shown below thi
constant will be determined from conditions at remote regions
the physical plane. The previous result is mathematically adm
sible, while any other case like, e.g.,tyz(x,y50)5O(x21) or
O(x22) asx→10 is precluded since even analytic continuati
fails to define one-sided Laplace~or Fourier! transforms of the
associated singular distributions~cf. Gel’fand and Shilov@40#, p.
171!. Of course, it remains to prove that the field in~51! gives a
boundedvalue for the energy quantities ofJ-integral and ERR,
despite the hypersingular character of stress. This will be show
Section 7. Finally, the requirement of boundedness of energy
pressions is not only to be imposed on physical grounds but
generally~Ignaczak@28# and Knowles and Pucik@42#! a necessary
condition for uniqueness.

Our task now is to determineE0 . As in the work of Zhang et al.
@18#, a matching procedure is followed that equates theinner so-
lution limx→`tyz(x,y50), as obtained by the present gradie
analysis, with theouter solution K III /(2px)1/2 provided by the
conventional fracture mechanics.K III is the stress intensity facto
for each specific problem treated by the conventional fracture
chanics. The latter field~singular solution! dominates over an are
that is relatively close to the crack tip but lies outside the dom
where gradient effects are pronounced. We notice the followin
support of the assertion that this procedure is indeed reason
~i! as shown below the stress behaves astyz5O(x21/2) for x
→`, ~ii ! the very form of the field Eq.~16! exhibits the singular-
perturbation character of the gradient formulation and there
suggests aboundary layerapproach~Van Dyke@43#! to the crack
problem~one may observe that an extremely small quantity—
coefficientc—multiplies the higher-order term, which is the on
introduced by the nonconventional formulation!. Finally, one may
observe that this concept is in some respects similar to the
introduced by Rice@44# in analyzing small scale yielding around
crack tip.

The transformed total monopolar stressT1(p) is given by~46!
as

T1~p!5E0•N1~p!•~a1p!1/2, (53)

an expression that holds forall values of the Laplace transform
variable p in the right half-plane. For the moment, we need
evaluate only limupu→0T1(p) in order to obtain then
limx→`tyz(x,y50) by ~48!. One way to obtain the expression o
524 Õ Vol. 70, JULY 2003
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limupu→0N1(p) is to use limupu→0N(p) and perform a product fac
torization of the latter limit byinspection. This way is easier than
finding limupu→0N1(p) from ~45!. Indeed, one may obtain firs
from ~41! and the definition ofN(p) the limit limupu→0N(p)
52(3c1/2)21(«22p2)21/2 and then

lim
upu→0

N1~p!5S 2

3c1/2D 1/2 1

~«1p!1/2. (54)

Further, a combination of~53! and ~54! provides the limit

lim
upu→0

T1~p!5E0•S 2

3cD 1/2 1

p1/2, (55)

which by ~48! and the transformation formulaxk↔
LT

G(k11)
•p2k21 ~with k.21) allows writing

lim
x→1`

tyz~x,y50!5E0•S 2

3cD 1/2 1

~px!1/2. (56)

Finally, matching the above expression withK III /(2px)1/2 pro-
vides the value of the constant asE05K III (3c)1/2/2.

In view of the above, we record the final transformed expr
sions~valid for all p in the pertinent half-plane of convergenc!
for the total monopolar stress ahead of the tip and the crack-
displacement

T1~p!5
K III ~3c!1/2

2
N1~p!•~a1p!1/2, (57)

W2~p!5
K III

~3c!1/2mp2~a2p!1/2
•N2~p!

, (58)

where it is reminded thata5(1/c)1/2, andN1(p) andN2(p) are
given by ~45!. Exact expressions for the original functionstyz(x
.0,y50) andw(x,0,y50) can be derived from~57! and ~58!
through one-sided Laplace-transform inversions. Such an in
sion will be performed in Section 8, where we elaborate more
the stress ahead of the crack tip providing the exact expres
and several comparisons. In closing now this section, we give
near-tip asymptotic expressions oftyz(x.0,y50) andw(x,0,y
50). These expressions, however, suffice for the evaluation
the J-integral and the ERR and possess also much practical
portance as explained below.

The limits of the expressions in~57! and ~58! for upu→` are
found to be

lim
upu→`

T1~p!5
K III ~3c!1/2

2
p1/2, (59)

lim
upu→`

W2~p!5
K III

~3c!1/2m

1

p5/2, (60)

which by the inversions p1/2↔
LT

@G(21/2)#21x23/2

52(2p1/2)21x23/2 and p25/2↔
LT

@G(5/2)#21(2x)3/2

54(3p1/2)21(2x)3/2 give the following near-tip field

lim
x→10

tyz~x,y50!52
K III ~3c!1/2

4p1/2

1

x3/2, (61)

lim
x→20

w~x,y50!5
4K III

3~3pc!1/2m
~2x!3/2. (62)

In view of the fact thatK III is the stress intensity factor obtaine
by a classical elasticity analysis for the same crack problem~same
geometry and loading! as that considered through the dipolar gr
dient approach, Eqs.~61! and ~62! provide a kind ofcorrespon-
dence principle. This correspondence principle connects any cl
sical fracture mechanics solution~through the pertinentK III value
Transactions of the ASME
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obtained for each specific problem! with the near-tip field result-
ing by the nonclassical gradient formulation of the problem
question. Thus, a host of classical fracture mechanics solution
crack problems may serve within a nonclassical gradient fra
work as well.

Three final notices pertain to the form of the above asympt
field. First, the cusp-like closure of the crack faces~a closure
smoother than the one predicted by the classical theory! implied
by ~62! is not unusual in experiments~see, e.g., Mills@45# and
Elssner et al.@46#!. Secondly, an aggravation of the stress field
compared to the respective result of the conventional theory~this
aggravation appears here through the strongerx23/2 singularity! is
not unusual in analyses with nonclassical effects~see, e.g., the
couple-stress results of Bogy and Sternberg@47# and Zhang et al.
@18#!. In addition, Prakash et al.@48# have provided an analysi
and experimental evidence supporting the possibility of anx23/2

stress singularity in dynamic crack initiation. All this eviden
shows that deviations from predictions of classical fracture m
chanics are possible in some situations and are, at least, wort
investigation. Of course, by no means we claim that the result
~61! and ~62! carry over to other situations like, e.g., the pla
strain/stress case. An appropriate dipolar gradient analysis fo
latter case is needed to give the answer. Thirdly, the minus sig
the RHS of ~61! shows that the asymptotic gradient crack-
stress field has a cohesive-traction nature. This point will be
ther elaborated in Section 8 below. It will be shown also in S
tion 8 that~61! dominates only within an extremely small regio
adjacent to the crack tip.

6 Evaluation of the J-Integral and the Energy Release
Rate „ERR…

The evaluation of the energy quantities is accomplished her
using Fisher’s theorem,@49#, concerning the product of distribu
tions. For theJ-integral, we also consider the new rectangul
shaped contourG ~see Fig. 6! with vanishing ‘‘height’’ along the
y-direction and with«→10. This change of contour permits us
ing solely the asymptotic near-tip field in~61! and ~62!. Notice
that Zhang et al.@18# in evaluating the ERR for a mode III crac
problem with couple stresses followed a rather involved met
based on earlier work by Bueckner@50#. It seems that the proce
dure followed here is simpler and more direct. Indeed, taking i
account~14d!, ~18!, ~19!, and~21!, the definitions in~22! and~24!
provide the following integral for both energy quantities:

J5G5 lim
«→10

H 2 E
2«

«

tyz~x,y50!•
]w~x,y50!

]x
dxJ . (63)

Now, by using the solution~61! and ~62!, we obtain

Fig. 6 Rectangular-shaped contour surrounding the crack tip
for the evaluations of the J -integral and the energy release rate
Journal of Applied Mechanics
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J5G5 lim
«→10

H 2~21!
K III ~3c!1/2

4p1/2

3
4K III

3~3pc!1/2m

3

2 E2«

«

~x1!23/2~x2!1/2dxJ . (64)

Further, the product of distributions inside the integral is obtain
through the use of Fisher’s theorem,@49#, i.e., of the operational
relation (x2)l(x1)212l52pd(x)@2 sin(pl)#21 with lÞ21,
22,23, . . . andd(x) being the Dirac delta distribution. Then, i
view of the fundamental property of the Dirac delta distributi
that *2«

« d(x)dx51, Eq. ~64! provides the result

J5G5
K III

2

2m
, (65)

which shows that theJ-integral and the ERR arebounded~despite
the hypersingular nature of the near-tip stress! and identical with
the respective classical elasticity result. Our findings sugg
therefore that, at least for the one-parameter theory of microst
ture employed here, theoverall energy situation~rate of total po-
tential energy! of the cracked body is not affected by the mater
microstructure and only thelocal crack-tip field is influenced.

7 Exact Expression for the Stress Ahead of the Crack
Tip

In this section we elaborate more on the stress ahead of
crack tiptyz(x.0,y50) and its nature, and also provide compa
sons of the exact expression with both the asymptotic form in~61!
and the classicalx21/2 field. First, an exact one-sided Laplac
transform inversion ofT1(p) in ~57! will be obtained.

One may write formally

tyz~x.0,y50!5
K III ~3c!1/2

2

1

2p i EBr
@N1~p!•~a1p!1/2#epxdp

[
K III ~3c!1/2

2

1

2p i
I , (66)

where the integration variable takes values only in the half-pl
Re(p).2« («→10) and any line, in this half-plane, parallel t
the Im(p)-axis may serve as the Bromwich path. TheI -integral
defined above depends uponx andc. I is evaluated by deforming
the integration path in the left half-plane~see Fig. 7! where the
integrand is nonanalytic, exploiting in this way the existence
branch cuts for the functionsN1(p) and (a1p)1/2. Noting the
property limupu→`N1(p)51 and also thatN1(p)5N(p)/N2(p)
~cf. Eq. ~43!!, the I -integral is written by Cauchy’s theorem as

Fig. 7 Contour integration for the evaluation of the complex
integral in Eq. „66…
JULY 2003, Vol. 70 Õ 525
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Fig. 8 Graphs of the exact gradient „total monopolar stress …, asymptotic gradient „total
monopolar stress …, and classical K III field solutions in normalized forms
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1

2p i
I 52

1

2p i H i E
p/2

p

R3/2 expS i
3w

2
2ax1RxeiwDdw

1 i E
2`

2a

N1~p!•~ ua1pu!1/2epxdp

1E
2a

0 @ReN~p!2 i Im N~p!#~ ua1pu!1/2epx

N2~p!
dp

1E
0

2a @ReN~p!1 i Im N~p!#~ ua1pu!1/2epx

N2~p!
dp

2 iE
2a

2`

N1~p!•~ ua1pu!1/2epxdp1 i E
2p

2p/2

R3/2

3expS i
3w

2
2ax1RxeiwDdwJ , (67)

whereR is the radius of the two quarter-circular paths having
center at the pointp52a ~see Fig. 7! and the anglew is defined
by the relationp1a5R•exp(iw). Also, R→` in the left half-
plane, and ReN(p)52cp2/3 and ImN(p)52(12cp2)(a2

2p2)1/2@3upu#21 for p real andupu<a. Further, it can be shown

1

2p i
I 5

1

p H E
0

a @ Im N~p!#~a2p!1/2e2px

N1~p!
dx

2E
a

`

N2~p!•~p2a!1/2e2pxdp1R3/2e2ax

3E
p/2

p

exp~Rx•cosw!•cosS 3w

2
1Rx•sinw DdwJ .

(68)

The third integral inside the braces vanishes asR→` and it is
interesting to note that although the conditions for Jordan’s lem
are not met by the integrand in~66!, the contribution of the
quarter-circular paths is zero because of the existence of
LY 2003
a

ma

the

branch cut for the function (a1p)1/2. Therefore, the total mo-
nopolar stress ahead of the crack tip is found from the follow
expression involving two real integrals:

tyz~x,y50!5
K III ~3c!1/2

2p H E
0

a @ Im N~p!#~a2p!1/2e2px

N1~p!
dx

2E
a

`

N2~p!•~p2a!1/2e2pxdpJ . (69)

It can be checked that both integrals are convergent. Also, a
merical evaluation of these integrals can easily be accomplis
Finally, the above expression can be written in a more conven
dimensionless form as

tyz~x,y50!

5
K III 3

1/2

2pc1/4 H E
0

1 @ Im N~p!#~12p!1/2 exp~2c1/2xp!

N1~p!
dp

2E
1

`

N2~p!•~p21!1/2 exp~2c1/2xp!dpJ , (70)

where

N6~p!5expH 1

p E
0

1

arctanF ~12z2!3/2

z3 G 1

z6p
dzJ , (71)

Im N~p!5
2~12p2!3/2

3p
for 0<p<1. (72)

The graph of the exact gradient expression for the total m
nopolar stress ahead of the crack tip in the normalized fo
(2pc1/4tyz/3

1/2K III ) versusc21/2x is given in Fig. 8. In the same
figure the normalized graphs of the asymptotic gradient solu
(2p1/2c3/4/2x3/2) and the classical K III field solution
(2p/3x)1/2c1/4 versusc21/2x are also shown. The latter two graph
are provided for the purpose of comparison with the exact gra
ent stress distribution. Also, Fig. 9 presents the variation of
exact stress, in the normalized form (2ptyz /(3c)1/2K III ) with
(x/h), where 2h is the size of the unit cell of the structure
material ~intrinsic material length—see Section 2!. The two
Transactions of the ASME
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Fig. 9 Variation of the exact total monopolar stress „according to the gradient theory …

with „x Õh … for the cases cÄh 2 and cÄ„0.01h …2. The graphs depict that the cohesive zone
is small as compared to the intrinsic material length h and that the stress ahead of the
cohesive zone exhibits a bounded maximum.
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graphs of Fig. 9 were obtained for the relationsc5(0.01h)2 and
c5h2. As mentioned in the Introduction, the study by Georgia
et al. @22# gives the estimatec5(0.1h)2. Thus, in the latter case
the stress graph will be in between the two graphs of Fig. 9.
purpose of presenting these two graphs is to make apparen
boundsof the region ahead of the tip at which the stress takes
negative values for possible relations between the gradient c
ficient c and the intrinsic lengthh.

On Fig. 8 now, an immediate observation is that the asympt
gradient solution is inaccurate except for the region very nea
the crack tip. Another observation is that the exact gradient str
field tends to the classicalK III stress field at points lying outsid
the domain where the effects of microstructure are pronoun
i.e., for x@c1/2. However, in the near-tip region where the di
tance from the crack-tip is comparable to the lengthc1/2, the two
fields differ radically indicating therefore that material microstru
ture is a significant factor in the fracture behavior of solids. T
behavior of the exact solution depicted in Fig. 8 reminds som
how typical boundary layerbehavior as, e.g., that found for th
surface pressure near the leading edge of a Joukowski airfoil~Van
Dyke @43#!. In particular, the following remarks deserve mo
attention. Forx,0.5c1/2, the stresstyz(x.0,y50) takes on nega-
tive values exhibiting therefore acohesive-tractioncharacter
along the prospective fracture zone~see, e.g.,@51,52# for the na-
ture of fracture cohesive zones!. However, in view of the relation
betweenc andh, the lengthLc ~cohesive-zone length of the orde
of 0.5c1/2) along whichtyz,0 is extremelysmall. For instance,
even if h is rather large, sayh5231024 m ~case of a
geomaterial—see@13#!, for c5(0.1h)2 we have Lc50.05h
51025 m. The same conclusion can also be reached by obser
the graphs of Fig. 9 which show thatLc is a very small fraction of
h. It is also interesting to note thatLc does not vary appreciably
althoughc varies over a wide range, i.e., fromc5(0.01h)2 to c
5h2. Therefore, the lengthLc can be considered practically equ
to zero and be ignored. Accordingly, the domain of dominance
thex23/2-singularity being of extremely small size can be cons
ered of no physical importance. Instead, one may attribute ph
cal importance to the solution outside the cohesive zone, wh
the stress exhibits a maximum that isbounded. This maximum
may serve as a measure of the critical stress level at which fur
advancement of the crack may occur. In other words, this resu
the present gradient formulation of the crack problem permit
Mechanics
is

he
t the
on

oef-

tic
r to
ss-

ed,
-

c-
he
e-

e

e

r

ing

l
of

d-
ysi-
ere

ther
t of
s a

simple statement of the fracture criterion. Of course, the class
fracture mechanics analysis does not possess this feature sinc
stress maximum is unbounded at the crack-tip positionx50 and
the stress drops monotonically forx.0 with no anylocal maxi-
mum. Finally, outside the cohesive zone, the stresstyz(x.Lc ,y
50) predicted by the gradient theory is lower than that predic
by the classical elasticity theory.

8 Dynamical Time-Harmonic Mode III Crack Prob-
lem

We consider again the semi-infinite crack configuration of S
tion 4 but now assume a dynamical antiplane shear state.
transient problem leads to an extremely difficult mathemati
initial/boundary value problem. Here, as a first step we deal w
the time-harmonicinertial crack problem which, to our knowl
edge, consists the first attempt to analyze a dynamical crack p
lem within gradient elasticity. The more general transient solut
may follow from the present one through Fourier synthesis. I
also expected that the basicspatial behavior of the solution~e.g.,
the order of singularities and the near-tip behavior! will be re-
tained in the transient case as well. Within classical elastic
problems involving cracks under remotely applied time-harmo
loading have been considered by, among others, Cherepanov@53#
and Freund@54#.

The cracked body is subjected to a remotely applied tim
harmonic loading and the crack faces are traction-free. In view
the general expressions given in Section 2, Eqs.~12)–(14! remain
the same but~11! and ~15)–(17! are replaced by

ux5uy50, (73a)

uz[wÞ0, (73b)

w[w~x,y,t !5w~x,y!•exp~ iVt !, (73c)

]

]x S txz2
]mxxz

]x
2

]myxz

]y D1
]

]y S tyz2
]mxyz

]x
2

]myyz

]y D
5r

]2w

]t2 2
rh2

3
¹2S ]2w

]t2 D , (74)

c¹4w2g¹2w2k2w50, (75)
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sxz5mg
]w

]x
2mc¹2S ]w

]x D , (76a)

syz5mg
]w

]y
2mc¹2S ]w

]y D , (76b)

where V is the frequency of the time-harmonic state,g5(1
2V2(rh2/3m)), and k5(V/V) with V5(m/r)1/2 being the
shear-wave velocity in the absence of gradient effects~i.e., in
classical elasticity!. Equation ~75! is the field equation of the
problem. It is called metaharmonic and appears also in the p
lem of bending vibrations of thin plates~Vekua@55#!. More details
about it can be found in@13,20#. In what follows, as is standard in
time-harmonic problems, it is understood that all field quantit
are to be multiplied by the factor exp(iVt) and that the real part o
the resulting expression is to be taken.

The above equations are also supplied by the boundary co
tions ~18!–~21!. The resulting boundary value problem is attack
again by the Wiener-Hopf method. First, transforming~75! with
(30a) gives the ordinary differential equation

c
d4w*

dy4 1~2cp22g!
d2w*

dy2 1~cp42gp22k2!w* 50, (77)

with the following general solution~bounded asy→1`)

w* ~p,y!5B~p!•exp~2b̄y!1C~p!•exp~2ḡy! for y>0,
(78)

where

b̄[b̄~p!5 i ~p21s2!1/2 (79a)

with

s5
@~g214ck2!1/22g#1/2

~2c!1/2 .0, (79b)

ḡ[ḡ~p!5~t22p2!1/2 (80a)

with

t5
@~g214ck2!1/21g#1/2

~2c!1/2 .0. (80b)

In the above equations,B(p) and C(p) are unknown functions,
and the complexp-plane should be cut in the way shown in Fi
10. Finally, the Laplace-transformed stresses that enter the bo
ary conditions are found to be

syz* ~p,y!52mc~t2Bb̄e2b̄y2s2Cḡe2ḡy!, (81)

myyz* ~p,y!5mc~Bb̄2e2b̄y1Cḡ2e2ḡy!, (82)

myxz* ~p,y!52mcp~Bb̄e2b̄y1Cḡe2ḡy!. (83)

Next, to formulate the Wiener-Hopf equation, the same ‘‘ha
line’’ transforms are defined as in~36! and ~37!. Also, ~38! and
~39! apply in the present case too. The usual procedure of el
nating the functions (B,C) in the system of equations resultin
from the transformed boundary conditions leads then to the
lowing Wiener-Hopf equation

T1~p!5
mc

x2 b̄ḡ~ b̄32ḡ3!•W2~p!, (84)

wherex25(g214ck2)1/2/c is a positive real constant depende
upon the material properties and the frequency. Notice also
x25(s21t2)5ḡ22b̄2.

Further, since a product factorization of the functionḡ is im-
mediately accomplished by inspection asḡ(p)5(t1p)1/2(t
2p)1/2, Eq. ~84! takes the form
528 Õ Vol. 70, JULY 2003
ob-

es

ndi-
d

.
und-

lf-

mi-
g
fol-

nt
that

T1~p!

~t1p!1/252
mc

x2 ~t2p!1/2~s21p2!•L̄~p!•W2~p!, (85)

where the kernel functionL̄(p) is given as

L̄~p!5~s21p2!1
~t22p2!3/2

i ~s21p2!1/2. (86)

Now, contrary to the static case analyzed in Section 6, the ke
function in the present dynamic case exhibits two zeros in
complex plane. This was found through a rather involved pro
dure using the principle of the argument,@37#, and taking care of
the behavior and the branch cuts of the functions (b̄,ḡ). In addi-
tion, a check was made by the symbolic progra
MATHEMATICA™. Thus, the functionL̄(p) exhibits the~non-
extraneous! zeros

6Z56H g

2c
1 i F ~g2/4c2!1~k2/c!

3 G1/2J 1/2

, (87)

and, in addition, has the asymptotic behavior limupu→`L̄(p)
→3x2/2. Next, the functionM (p) is introduced as

M ~p!5
2

3x2

~t22p2!•L̄~p!

p22Z2 , (88)

which no longer exhibits zeros and also has the desired asymp
property limupu→`M (p)→1. This new form of the kernel permits
its product factorization through Cauchy’s integral theorem.

In view of the above, the Wiener-Hopf equation of the proble
becomes

Fig. 10 Branch cuts for the functions „b̄,ḡ…
Transactions of the ASME
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T1~p!•~t1p!1/2

~p1Z!
52

3mc

2

~s21p2!~p2Z!

~t2p!1/2 M ~p!•W2~p!,

(89)

and the kernel is written as the following product of two analy
and nonzero functions defined in pertinent half-plane domain
the complex plane

M ~p!5M 1~p!•M 2~p!, (90)

where

M 1~p!5expH 2
1

2p i ECl81Cl9

ln@M ~z!#

z2p
dzJ , (91a)

M 2~p!5expH 1

2p i ECr81Cr9

ln@M ~z!#

z2p
dzJ . (91b)

The use of Cauchy’s integral theorem to accomplish~90! is de-
picted in Fig. 11. Notice that Cauchy’s theorem still applies in t
case of anonsimplecontour ~a contour with self-intersections!
because the number of intersections is finite~see for the genera
result in, e.g., Ablowitz and Fokas@56#!. M 1(p) is analytic and
nonzero in Re(p).0 and M 2(p) is analytic and nonzero in
Re(p),0. The integration path (Cl81Cl9) begins from the pointS
at (2 is1 i«), with « real such«→10, and runs along the entir
imaginary axis~along the two cuts, it runs parallel to them on th
right! and around the cut along the positive real axis. The integ
tion path (Cr81Cr9) begins from the pointS, it runs along the
entire imaginary axis~along the two cuts, it runs parallel to them
on the left! and around the cut along the negative real axis. B
integration paths end at the pointS, and the second path is con
sidered a continuation of the first so that Cauchy’s theorem
applied and~90! is obtained. In both cases, the quarter-circu
paths at infinity have a zero contribution according to Jorda
lemma. Finally, the small semi-circular paths around the bra
points have a zero contribution.

Then, with the formal product factorization in hand, Eq.~89! is
written under the following form that defines a functionĒ(p):

T1~p!•~t1p!1/2

~p1Z!•M 1~p!
52

3mc

2

~s21p2!~p2Z!

~t2p!1/2 M 2~p!•W2~p!

[Ē~p!. (92)

The above equation strictly holds along the segment of the im
nary axis (Re(p)50,2s,Im(p),s) and Ē(p) is therefore de-
fined only along this segment. This restriction of the validity
the Wiener-Hopf equation to afinite segment only~notice that in
the static case treated before and invariably in crack probl
within classical elasticity—both static and dynamic—the Wien
Hopf equation holds along an infinite line or strip! is another

Fig. 11 Contour integrations for the factorization of the kernel
function defined in Eq. „88…
Journal of Applied Mechanics
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novel feature of the present mathematical problem. Still, the th
rem of analytic continuation applies and leads us to conclude
Ē(p) is an entire function. Working also along the same lines
those in the respective analysis of the previous static case, we
that the near-tip stress and displacement fields behave as in~51!.
Results analogous to the ones in the static case can be fu
obtained from the basic analysis of this section.

9 Conclusions
The present work was concerned with the exact determina

of mode III crack-tip fields in a microstructured body under
remotely applied loading. The material microstructure was m
eled according to the Mindlin-Green-Rivlin theory of generaliz
elastic continua~dipolar gradient or strain-gradient theory o
grade two!. A simple but yet rigorous version of this theory wa
employed by considering an isotropic linear expression of
elastic strain-energy density in antiplane shearing that invol
only two material constants~the shear modulus and the gradie
coefficient!. The formulation of the problem and the solutio
methods were exact. The boundary value problem was attacke
the Wiener-Hopf technique but the asymptotic Williams techniq
was also employed in a preliminary analysis. Both static and tim
harmonic dynamic analyses were provided. A singul
perturbation character was exhibited within the gradient formu
tion and the concept of a boundary layer was employed.

The results for the near-tip field showed significant depart
from the predictions of the classical fracture mechanics. In p
ticular, it was found that cohesive stresses develop in the im
diate vicinity of the crack tip and that, ahead of the small cohes
zone, the stress distribution exhibits a local maximum that
bounded. This maximum value may serve, therefore, as a mea
of the critical stress level at which further advancement of
crack may occur. In addition, the crack-face displacement clo
more smoothly, in the vicinity of the crack tip, as compared to
classical result. The new formulation of the crack problem
quired also new extended definitions for theJ-integral and
the energy release rate. The determination of these quan
was made possible through the use of the theory of general
functions.

A final notice pertains to the possibility of generalizing th
present analysis by considering a continuum theory of even hig
order than that of dipolar gradient theory. The next step could
a tripolar theory. The dipolar theory involves doublets of forc
~double forces! as ‘‘internal’’ forces. The tripolar theory will in-
volve rather doublets of moments~triple forces!. Besides the fact
that the latter generalized forces possess a not so clear phy
meaning, the increased complexity of such a theory does not
much hope for treating practical problems.
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Gradient Elasticity Theory for
Mode III Fracture in Functionally
Graded Materials—Part I: Crack
Perpendicular to the Material
Gradation
Anisotropic strain gradient elasticity theory is applied to the solution of a mode III cr
in a functionally graded material. The theory possesses two material characte
lengths,, and ,8, which describe the size scale effect resulting from the underlin
microstructure, and are associated to volumetric and surface strain energy, respect
The governing differential equation of the problem is derived assuming that the s
modulus is a function of the Cartesian coordinate y, i.e., G5G~y!5G0egy, where G0
and g are material constants. The crack boundary value problem is solved by mea
Fourier transforms and the hypersingular integrodifferential equation method. The
gral equation is discretized using the collocation method and a Chebyshev polyn
expansion. Formulas for stress intensity factors, KIII , are derived, and numerical result
of KIII for various combinations of,, ,8, and g are provided. Finally, conclusions are
inferred and potential extensions of this work are discussed.@DOI: 10.1115/1.1532321#
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1 Introduction
Classical~local! continuum theories possess no intrinsic leng

scale. Typical dimensions of length are generally associated
the overall geometry of the domain under consideration. T
classical elasticity and plasticity are scale-free continuum theo
in which there is no microstructure associated with mate
points,@1#. In contrast, strain gradient theories enrich the class
continuum with additional material characteristic lengths in or
to describe the size~or scale! effects resulting from the underlin
ing microstructures. Recent work on strain gradient theories
account for size~or scale! effects in materials can be found in th
articles by Wu@2#, Fleck and Hutchinson@3#, Lakes@4,5#, Smy-
shlyaev and Fleck@6#, and Van Vliet and Van Mier@7#. Recent
applications of gradient elasticity to fracture mechanics inclu
the work by Fannjiang et al.@8#, Paulino et al.@9#, Exadaktylos
et al.@10#, Vardoulakis et al.@11#, Aifantis @12#, Zhang et al.@13#,
Hwang et al.@14#, and the review paper by Hutchinson and Eva
@15#. The present work focuses on anisotropic strain gradient e
ticity theory for fracture problems in functionally graded materia
~FGMs!. To the best of the authors’ knowledge, this is the first~or
one of the first! solutions for FGMs with gradient terms.

The emergence of FGMs is the outcome of the need to acc
modate material exposure to nonuniform service requireme
These multiphased materials feature gradual transition in com
sition and/or microstructure for the specific purpose of controll
variations in thermal, structural, or functional properties. The s
tial variation of microstructure is accomplished through nonu
form distribution of the reinforcement phase with different pro
erties, sizes, and shapes, as well as by interchanging the rol
reinforcement and matrix~base! materials in a continuous manne

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Oct. 1
2000; final revision, Sept. 6, 2001. Associate Editor: B. M. Moran. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departme
Mechanical and Environmental Engineering University of California–Santa Barb
Santa Barbara, CA 93106-5070, and will be accepted until four months after
publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
th
ith
us

ries
ial
cal
er

to
e

de

ns
las-
ls

om-
nts.
po-
ng
a-

ni-
p-
s of

r.

This concept is illustrated by Fig. 1, which shows an FGM with
continuously graded microstructure. Typical examples of FG
include ceramic/ceramic~e.g., MoSi2 /SiC @16# and TiC/SiC@17#!,
and metal/ceramic~e.g., Nb/Nb5Si3 @18# and Ti/TiB @19#!, sys-
tems. Comprehensive reviews on several aspects of FGMs ca
found in the articles by Markworth et al.@20#, Erdogan@21#, and
Hirai @22#, and in the book by Suresh and Mortensen@23#.

This paper presents a linkage between gradient elasticity
graded materials within the framework of fracture mechanics. T
remainder of the paper is organized as follows. First, the con
tutive equations of anisotropic gradient elasticity for nonhomo
neous materials subjected to antiplane shear deformation
given. Then, the governing partial differential equations~PDEs!

8,
the
nt of
ara,
nalFig. 1 Functionally graded material „FGM… with continuously
graded microstructure
003 by ASME JULY 2003, Vol. 70 Õ 531
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are derived and the Fourier transform method is introduced
applied to convert the governing PDE into an ordinary differen
equation~ODE!. Afterwards, the crack boundary value problem
described and a specific complete set of boundary condition
given. The governing hypersingular integrodifferential equation
derived and discretized using the collocation method. Next, v
ous relevant aspects of the numerical discretization are desc
in detail. Subsequently, numerical results are given, conclus
are inferred, and potential extensions of this work are discus
Two appendices supplement the paper. One contains the len
expression of the regular kernel in the final~governing! hypersin-
gular integrodifferential equation, and the other provides so
useful formulas for evaluating hypersingular integrals and co
puting stress intensity factors~SIFs!.

2 Constitutive Equations of Gradient Elasticity
This section introduces the notation and constitutive equat

of gradient elasticity, which will be used to investigate antipla
shear cracks in functionally graded materials~FGMs!. In three-
dimensional space, the displacement components are defined

ux[u, uy[v, uz[w, (1)

and for antiplane shear problems, the following relations hold

u5v50, w5w~x,y!. (2)

Strains are defined as

e i j 5
1

2 S ]ui

]xj
1

]uj

]xi
D , (3)

where both the indicesi and j run through (x1 ,x2 ,x3)
5(x,y,z). For antiplane shear problems, the nontrivial strains

exz5
1

2

]w

]x
, eyz5

1

2

]w

]y
. (4)

Casal@24–26# has established the connection between surf
tension effects and anisotropic gradient elasticity theory. Fo
material graded in they-direction, the Casal’s continuum can b
extended so that the strain-energy density has the following f

W5
1
2l~y!e i i e j j 1G~y!e i j e j i 1G~y!,2~]ke i j !~]ke j i !

1,8nk]k@G~y!e i j e j i #, ,.0, (5)

which has been generalized for an FGM with Lame´ moduli l
[l(y) andG[G(y). Moreover,]k5]/]xk . When the formula-
tion is derived by means of a variational principle~or principle of
virtual work!, terms associated with, undertake a volume inte
gral, and terms associated with,8 can be reduced to a surfac
integral using the divergence theorem. In this sense, the cha
teristic length , is responsible for volumetric strain-gradie
terms, and the characteristic,8 is responsible for surface strain
gradient terms. Moreover,nk , ]knk50, is a director field equal to
the unit outer normalnk on the boundaries.

The Cauchy stressest i j , the couple stressesmki j and the total
stressess i j are defined as

t i j 5]W/]e i j (6)

mki j5]W/]e i j ,k (7)

s i j 5t i j 2]kmki j . (8)

For homogeneous materials~i.e., l and G constants!, the stress
fields are expressed in terms of strains and strain derivatives

s i j 5lekkd i j 12G~e i j 2,2¹2e i j ! (9)

t i j 5lekkd i j 12Ge i j 12G,8nk]ke i j (10)

mki j52G~,8nke i j 1,2]ke i j !. (11)
532 Õ Vol. 70, JULY 2003
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As pointed out by Chan et al.@27#, the constitutive equations o
gradient elasticity for FGMs have a different form from the on
above. Thus, for FGMs with material gradation along the Ca
sian coordinatey, the constitutive equations of gradient elastici
are

s i j 5l~y!ekkd i j 12G~y!~e i j 2,2¹2e i j !22,2@]kG~y!#~]ke i j !

(12)

t i j 5l~y!ekkd i j 12G~y!e i j 12,8nk@e i j ]kG~y!1G~y!]ke i j #

(13)

mki j52,8nkG~y!e i j 12,2G~y!]ke i j . (14)

Note that the Cauchy stressest i j are influenced by a term con
taining the spatial derivative of the shear modulus, and so are
total stressess i j . The term ‘‘22,2@]kG(y)#(]ke i j )’’ that appear
in ~12!, but not in ~9!, can be interpreted as the interaction b
tween the material gradation and the nonlocal strain gradient
fect, which will play a role in the governing partial differentia
equation~PDE! ~17! discussed in the next section. Moreover, ifl
andG are constants, the constitutive equations for homogene
materials~see Vardoulakis et al.@11#, Exadaktylos et al.@10#, and
Fannjiang et al.@8#! are recovered as a particular case of E
~12!–~14!. If the shear modulusG is a function ofy ~see Fig. 2!
and a mode III problem is under consideration, then each com
nent of the stress field can be written as,@27#:

sxx5syy5szz50, sxy50

sxz52G~y!~exz2,2¹2exz!22,2@]yG~y!#~]yexz!Þ0

syz52G~y!~eyz2,2¹2eyz!22,2@]yG~y!#~]yeyz!Þ0 (15)

mxxz52G~y!,2]xexz

mxyz52G~y!,2]xeyz

Fig. 2 Mode III crack in a functionally graded material
Transactions of the ASME
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myxz52G~y!~,2]yexz2,8exz!

myyz52G~y!~,2]yeyz2,8eyz!.

Again, it is worth pointing out that there is an extra term insxz
andsyz as compared to the homogeneous material case~see Vard-
oulakis et al.@11# p. 4534!.

3 Governing Partial Differential Equation
By imposing the only nontrivial equilibrium equation

]sxz

]x
1

]syz

]y
50, (16)

the following partial differential equation~PDE! for general form
of G(y) is obtained:

]

]x FG~y!S ]w

]x
2,2¹2

]w

]x D G1
]

]y FG~y!S ]w

]y
2,2¹2

]w

]y D G
2,2F]2G~y!

]y2

]2w

]y2 1
]G~y!

]y

]3w

]y3 1
]G~y!

]y

]3w

]x2]yG50.

(17)

If the shear modulusG is an exponential function ofy, i.e.,

G[G~y!5G0egy, (18)

then ~17! can be simplified as

2,2¹4w22g,2¹2
]w

]y
1¹2w2g2,2

]2w

]y2 1g
]w

]y
50, (19)

or in a factored form

S 12g,2
]

]y
2,2¹2D S ¹21g

]

]yDw50. (20)

In terms of the differential operator notation,~20! can be writ-
ten in the form as

HgLgw50; Hg512g,2
]

]y
2,2¹2, Lg5¹21g

]

]y
,

(21)

whereHg is the perturbed Helmholtz operator,Lg is the perturbed
Laplacian operator, and the two operators commute, i.e.,HgLg
5LgHg . Thus, the PDE~20! can be considered as a double pe
turbation of the composition of the Helmholtz and harmon
equations,

~12,2¹2!¹2w50, (22)

that is, one perturbation is to the Helmholtz operator
2,2¹2), and the other perturbation is to the Laplacian opera
¹2. Both the Helmholtz and the Laplacian operators are invar
under ‘‘rigid-body motions.’’ However, FGMs bring in the pertu
bation and destroy such invariance. By settingg→0 in ~20!, one
gets~22!, which is the PDE for gradient elasticity.

Another viewpoint of the perturbation is focused on the role
the characteristic length,. By taking ,→0 ~at the level of the
differential equation!, we obtain a lower order of PDE,

Table 1 Governing partial differential equations „PDEs… in an-
tiplane shear problems
Journal of Applied Mechanics
r-
ic

(1
tor
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-

of

S ¹21g
]

]yDw50,

i.e., the perturbed harmonic equation, which has been investig
by Erdogan and Ozturk@28#. However, because the correspondi
term to the coefficient,2 affects the highest differential in the
governing PDE~19!, a singular perturbation is expected as t
limit ,→0 is considered. By taking bothg→0 and ,→0, we
obtain the harmonic equation for classical elasticity. Various co
bination of parameters, andg with the corresponding governing
PDE are listed in Table 1.

4 Fourier Transform
Let the Fourier transform be defined by

F~w!~j!5W~j!5
1

A2p
E

2`

`

w~x!eixjdx. (23)

The inverse Fourier transform theorem gives

F 21~W!~x!5w~x!5
1

A2p
E

2`

`

W~j!e2 ixjdj, (24)

wherei 5A21. Now let us assume that

w~x,y!5
1

A2p
E

2`

`

W~j,y!e2 ixjdj, (25)

i.e., w(x,y) is the inverse Fourier transform of the functio
W(j,y).

Considering each term in Eq.~17! term by term, and using Eq
~25!, one obtains

2,2¹4w52,2S ]4w~x,y!

]x4 12
]4w~x,y!

]x2]y2 1
]4w~x,y!

]y4 D
5

2,2

A2p
E

2`

` S j4W~j,y!22j2
]2W

]y2 1
]4W

]y4 De2 ixj dj

(26)

22g,2¹2
]w

]y
522g,2S ]3w~x,y!

]x2]y
1

]3w~x,y!

]y3 D
522

g,2

A2p
E

2`

` S 2j2
]W~j,y!

]y
1

]3W

]y3 De2 ixj dj

(27)

¹2w5
]2w~x,y!

]x2 1
]2w~x,y!

]y2

5
1

A2p
E

2`

` S 2j2W~j,y!1
]2W

]y2 De2 ixj dj (28)

2g2,2
]2w~x,y!

]y2 52
g2,2

A2p
E

2`

` ]2W~j,y!

]y2 e2 ixj dj (29)

g
]w~x,y!

]y
5

g

A2p
E

2`

` ]W~j,y!

]y
e2 ixj dj. (30)

Equations~26! to ~30! are added~according to Eq.~19!!, and after
simplification, the governing ordinary differential equation~ODE!
is obtained:

F,2
d4

dy4 12g,2
d3

dy3 2~2,2j21g2,211!
d2

dy2 2g~112,2j2!
d

dy

1~,2j41j2!GW50. (31)
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5 Solutions of the Ordinary Differential Equation
The corresponding characteristic equation to the ordinary

ferential equation~ODE! ~31! is

,2l412g,2l32~2,2j21g2,211!l22g~112,2j2!l

1~,2j41j2!50, (32)

which can be further factored as

@,2l21g,2l2~11,2j2!#~l21gl2j2!50. (33)

Clearly the four rootsl i ( i 51,2,3,4) of the polynomial~33!
above can be obtained as

l15
2g

2
2

Ag214j2

2
, l25

2g

2
1

Ag214j2

2
, (34)

l35
2g

2
2Aj21g2/411/,2, l45

2g

2
1Aj21g2/411/,2,

(35)

where we letl1,0 andl3,0. As g→0, we recover the roots
found by Vardoulakis et al.@11# and Fannjiang et al.@8#. The roots
l1 and l2 correspond to the solution of the perturbed harmo
equation, and the rootsl3 andl4 match with the solution of the
perturbed Helmholtz’s equation. Various choices of paramete,
and g with their corresponding mechanics theories and mate
types are listed in Table 2.

By taking account of the far-field boundary condition

w~x,y!→0 as Ax21y2→1`, (36)

and withy.0 ~the upper half plane!, one obtains

W~j,y!5A~j!el1y1B~j!el3y. (37)

Accordingly, the displacementw(x,y) takes the form

w~x,y!5
1

A2p
E

2`

`

@A~j!el1y1B~j!el3y#e2 ixjdj. (38)

Both A(j) andB(j) are determined by the boundary condition

6 Boundary Conditions
Figure 2 shows the geometry of the mode III crack problem

which a functionally graded material~FGM!, with shear modulus
G(y)5G0egy, bonded to a half-space is considered. Thus
problem reduces to the upper half-plane, andy50 is treated as the
boundary. By the principle of virtual work, the following mixe
boundary conditions can be derived:

H syz~x,0!5p~x!, uxu,a

w~x,0!50, uxu.a

myyz~x,0!50, 2`,x,1`,

(39)
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which are adopted in this paper. One may observe that the
two boundary conditions~BCs! in ~39! are from classical elastic
ity, e.g., linear elastic fracture mechanics~LEFM!. The last BC
regarding the couple-stressmyyz is needed as the higher orde
theory is considered.

7 Hypersingular Integrodifferential Equation
Approach

By taking account of the symmetry along thex-axis, we may
consider thatw(x,y) takes the following general solution form
~for the upper half-plane!:

w~x,y!5
1

A2p
E

2`

`

@A~j!el1y1B~j!el3y#e2 ixjdj, y>0

5
1

A2p
E

2`

`

@A~j!e2(g1A4j21g2)y/2

1B~j!e2(g1A4j21g214/,2)y/2#e2 ixjdj, y>0, (40)

whereA(j) and B(j) need to be determined from the bounda
conditions~39!. As Eq.~40! provides the form of the solution fo
w(x,y), it can be used in conjunction with Eq.~15! such that

syz~x,y!52G~y!~eyz2,2¹2eyz!22,2@]yG~y!#~]yeyz!

5
G~y!

A2p
E

2`

`

l1~g,j!A~j!e2(g1Ag214j2)y/22 ixjdj,

y>0. (41)

Notice that the term associated withB(j) has been dropped ou
from syz(x,y). Moreover,

myyz~x,y!52G~y!S ,2
]eyz

]y
2,8eyzD , y>0,

5
G~y!

A2p
E

2`

`

$~,2l1
22,8l1!A~j!el1y1~,2l3

2

2,8l3!B~j!el3y%e2 ixjdj

5
G~y!

A2p
E

2`

`

$cA~g,j!A~j!e2(g1Ag214j2)y/2

1cB~g,j!B~j!e2(g1A4j21g214/,2)y/2%e2 ixjdj, (42)

where
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cA~g,j!5,2l1
22,8l1

5
g

2
~g,21,8!1

1

2
~g,21,8!Ag214j21,2j2,

(43)

and

cB~g,j!5,2l3
22,8l3

5,2j21
g

2
~g,21,8!11

1
1

2
~g,21,8!A4j21g214/,2. (44)

In order to derive the Fredholm integral equation, we define
density as the slope function

f~x!5]w~x,01!/]x. (45)

The second boundary condition in~39!, and Eq.~45!, imply that

f~x!50, uxu.a, (46)

and

E
2a

a

f~x!dx50, (47)

which is the single-valuedness condition. The definition~45!, to-
gether with Eq.~40!, lead to

1

A2p
E

2`

`

~2 i j!@A~j!1B~j!#e2 ixjdj5f~x!, 2`,x,`.

(48)

By inverting the Fourier transform and using~46!, one obtains

~ i j!@A~j!1B~j!#5
21

A2p
E

2`

`

f~x!eixjdx, 2`,x,`

5
21

A2p
E

2a

a

f~ t !ei jtdt. (49)

The last boundary condition in~39!, imposed onmyyz(x,y),
provides the following pointwise relationship betweenA(j) and
B(j):

B~j!52
,2j21~g,21,8!Ag2/41j21g~g,21,8!/2

,2j2111@~g,21,8!/2#~g1A4j21g214/,2!
A~j!

5r~g,j!A~j!, (50)

where the notationr(g,j) is introduced here, i.e.,

r~g,j!52
,2j21~g,21,8!Ag2/41j21g~g,21,8!/2

,2j2111@~g,21,8!/2#~g1A4j21g214/,2!
.

(51)

Substituting~50! into ~49!, one obtains

A~j!5
21

A2p i j
F 1

11r~g,j!G E2a

a

f~ t !ei jtdt, (52)

where

1

11r~g,j!
5

,2j2111@~g,21,8!/2#~g1A4j21g214/,2!

11@~g,21,8!/2#~A4j21g214/,22A4j21g2!
.

(53)
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ReplacingA(j) in Eq. ~41! and using the~first! boundary condi-
tion for syz ~that is, limy→01syz(x,y)5p(x), uxu,a) in ~39!, one
obtains the following integral equation in limit form:

lim
y→01

G~y!

2p E
2`

` F 2l1~g,j!

i j~11r~g,j!!G
3F E

2a

a

f~ t !ei jtdtGe2(g1Ag214j2)y/22 ixjdj

5p~x!, uxu,a. (54)

By rearranging the order of integration, we obtain

lim
y→01

G~y!

2p E
2a

a

f~ t !E
2`

` 2l1~g,j!

~ i j!@11r~g,j!#

3e2(g1Ag214j2)y/2ei j(t2x)djdt

5p~x!, uxu,a, (55)

which can be rewritten as

lim
y→01

G

2p E
2a

a

f~ t !E
2`

`

K~j,y!ei j(t2x)djdt5p~x!, uxu,a,

(56)

with the kernel

K~j,y!5
2l1~g,j!

i j@11r~g,j!#
e2(g1Ag214j2)y/2. (57)

Asymptotic analysis allows splitting of the kernelK(j,y) into
the singular@K`(j,y)5 limuju→`K(j,y)# and nonsingular parts:

(58)

where~asy is set to zero!

K`~j,0!5
uju
i j H F5,2g2

8
1

,8g

4
112S ,8

2l D
2G

1
2g,21,8

2
uju1,2j2J , (59)

and K(j,0)2K`(j,0), denoted byN(j,0)5N(j), can be ex-
pressed as a fraction:

N~j,0!5N~j!5
P~j!

Q~j!
, (60)

with P(j) andQ(j) described in Appendix A.
Substitution of Eq.~59! into ~56!, in the sense of distribution

theory,@29#, leads to

lim
y→01

E
2`

`

K`~j,y!ei j(t2x)dj

5
22,2

~ t2x!3 2
p

2
~2,2g1,8!d8~ t2x!

1
5,2g2/81,8g/4112@,8/~2, !#2

t2x
,

and to the following hypersingular integral equation:
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(61)

where the regular kernel is

k~x,t !5E
0

`

N~j!sin@j~ t2x!#dj (62)

with N(j) described in Eq.~60!. Figure 3 permits to graphically
evaluate the behavior of the integrand of Eq.~62!. Clearly, such
kernel is oscillatory, but the magnitude of oscillation decrea
and tend to zero asj increases, i.e., limj→` N(j)sin@j(t2x)#50.
Another point that we need to be cautious about in Eq.~62! is the
behavior atj50 of N(j)5P(j)/Q(j) asQ(j) has the factorj in
the denominator. However, this would not affect the integrabi
of the integrand in Eq.~62! because of the term sin@j(t2x)#. Thus
limj→0 N(j)sin@j(t2x)# exists and is finite, which depends on th
values oft, x, ,, ,8, andg.

As a result of distribution theory,@29#, the differentiation of a
delta function,d(t), has the following property:

E
2`

`

d8~ t2x!f~ t !dt52f8~x!. (63)

Thus one may rewrite Eq.~61! as

(64)
Y 2003
es

ity
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which is an integrodifferential equation with both hypersingu
and Cauchy singular kernels. In addition to the single-valuedn
condition condition in ~47!, the integrodifferential Eq.~64!
is solved under the physical constraint~‘‘smooth closure
condition’’!:

f~a!5f~2a!50, (65)

so that the solution can be found uniquely~see Refs.@8# and@30#!.

8 Numerical Solution
The numerical solution of the mode III fracture boundary val

problem is accomplished by means of the collocation meth
@31,32#. The process of obtaining the numerical solution of E
~64! can be divided into the following steps:

• Normalization,
• representation of the density function,
• Chebyshev polynomial expansion,
• evaluation of the derivative of the density function,
• formation of the linear system of equations,
• evaluation of singular and hypersingular integrals, and
• evaluation of nonsingular integral.

Relevant details for each of the above items are given below.

8.1 Normalization. By the following change of variables,

s5@2/~d2c!#@ t2~c1d!/2#,

one may convert the integral*c
dg(t)dt into the form of

*21
1 f (s)ds. Because the crack surface is located in the ran

(2a,a), a convenient change of variables becomes

t/a5s and x/a5r ,

which is the normalization of the variablest andx, respectively.
Thus Eq.~64! can be written in normalized fashion as
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(66)

where

F~r !5f~ar !, P~r !5p~ar !, K~r ,s!5ak~ar,as!.

As clearly seen in Eq.~66!, the quantities,/a, ,8/a, andag are
dimensionless parameters. Thus the following dimensionless
rameters are defined:

,̃5,/a, ,̃85,8/a, g̃5ag, (67)

which will be used in the numerical implementation and resul

8.2 Representation of the Density Function. The next step
of the numerical approach to the~normalized! hypersingular inte-
gral Eq. ~66! is to establish the actual behavior of the unknow
density functionF(s) around the two crack tipss561. For ex-
ample, the governing integral equation in classical linear ela
fracture mechanics~LEFM! has Cauchy singularity if the slop
function, sayF(s)LEFM , is chosen to be the unknown densi
function. A well-known representation is,@31,32#,

F~s!LEFM5 f ~s!/A12s2, usu,1,

where f (61)Þ0. For the cubic hypersingular integral, Eq.~66!,
the representation ofF(s) is found to be,@8#,

F~s!GE[F~s!5g~s!A12s2, (68)

whereg(61) is finite,g(61)Þ0, and the subscript GE stands fo
gradient elasticity. Thus by approximatingg(s), one can find the
numerical solution toF(s).

8.3 Chebyshev Polynomial Expansion. The approximation
of g(s) in Eq. ~68! is accomplished by means of Chebyshev po
nomial expansions. Either Chebyshev polynomials of the fi
kind Tn(s), or of the second kindUn(s), may be employed in the
approximation, i.e.,

g~s!5(
n50

`

anTn~s! or g~s!5(
n50

`

AnUn~s!. (69)

The coefficientsans or Ans are determined numerically by th
collocation method. As shown by Chan et al.@33#, the two expan-
sions should lead to the same numerical results. In this paper
expansion usingUn(s) is adopted, i.e.,

F~s!5A12s2(
n50

`

AnUn~s!, (70)

whereUn(s) is defined, as usual, by

Un~s!5
sin@~n11!cos21~s!#

sin@cos21~s!#
, n50, 1, 2, . . . . (71)

Satisfaction of the single-valuedness condition~47!, or equiva-
lently, *21

1 F(s) ds50, requires that the following relation holds

A050. (72)

8.4 Evaluation of the Derivative of the Density Function.
The termF8(r ) in Eq. ~66! is evaluated using the expansion~70!
and the fact that
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d

dr
@Un~r !A12r 2#52

n11

A12r 2
Tn11~r !, n>0. (73)

Thus

F8~r !5
d

dr FA12r 2(
n50

`

AnUn~r !G
5

21

A12r 2 (n50

`

~n11!AnTn~r !. (74)

8.5 Formation of the Linear System of Equations. The
strategy to determine the coefficientsAns consists of forming a se
of linear algebraic equations. ReplacingF(s) in ~66! by the rep-
resentation~70!, and using~74! one obtains the governing integra
equation in discretized form:

(75)

Notice that the running indexn starts from 1 instead of 0~see
~72!!.

8.6 Evaluation of Singular and Hypersingular Integrals.
The governing integrodifferential Eq.~64!, and its discretized ver-
sion, Eq. ~75!, contain both Cauchy singular and hypersingu
integrals~cubic singularity!, which need to be evaluated. Erdoga
et al. @31,32# have presented formulas for evaluating Cauchy s
gular integrals, and Chan et al.@34# have presented formulas fo
evaluating a broad class of hypersingular integrals, which ge
alizes previous derivations,@31,32,35#, in the literature. Here,
such integrals are interpreted in the finite-part sense, and liste
Appendix B ~Eq. ~93! to ~95!!.

8.7 Evaluation of Nonsingular Integral. Combining all
the results obtained so far in the numerical approximation,
may rewrite Eq.~75! in the following form:

2 ,̃2

2~12r 2!
(
n51

`

An@~n21n!Un11~r !2~2n213n12!Un21~r !#

2F11
5,̃2g̃2

8
1

,̃8g̃

4
2S ,̃8

2,̃
D 2G(

n51

`

AnTn11~r !

1(
n51

`
An

p
E

21

1

A12s2Un~s!K~r ,s!ds

2
,̃812,̃2g̃

2A12r 2 (
n51

`

An~n11!Tn11~r !5
P~r !

G
, ur u,1.

(76)

Thus the last step for applying the collocation method consist
evaluating the~regular! integral in~76!, which is actually a double
integral, i.e.,
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21

1

A12s2Un~s!K~r ,s!ds

5E
21

1

A12s2Un~s!ak~ar,as!ds

5E
21

1

A12s2Un~s!E
0

`

aN~j!sin@aj~s2r !#djds.

The integral along@0, `! is a Fourier sine transform, and can b
efficiently evaluated by applying fast Fourier transform~FFT!
@36#. The integral along@21,1# can be readily obtained by th
Gaussian quadrature method,@37#.

9 Stress Intensity Factors„SIFs…
Since the~macroscopic! propagation of a crack starts around

tips, it is very important to study and determine the SIFs at b
crack tips. In classical linear elastic fracture mechanics~LEFM!,
the stresssyz(x,0) has 1/Ax2a singularity asx→a1 ~or 1/Ax1a,
asx→2a2), and thus SIFs are defined and can be calculated

K III ~a!5 lim
x→a1

A2p~x2a!syz~x,0!, ~x.a!, (77)

and

K III ~2a!5 lim
x→2a2

A2p~2a2x!syz~x,0!, ~x,2a!.

(78)

However, the same definition may not hold for strain-gradi
elasticity becausesyz(x,0) may have a stronger singularity,@13#.
Thus SIFs will be redefined in the development below.

First, note that the limit in Eqs.~77! and~78! is taken from the
region outside the crack surfaces toward both tips, and the inte
Eq. ~64! is the expression forsyz(x,0) which is valid foruxu.a as
well as uxu,a, i.e.,

syz~x,0!5
G

p E
2a

a H 22,2

~ t2x!3 1
5,2g2/81,8g/4112~,8/, !2/4

t2x

1k~x,t !J f~ t !dt1
G

2
~,812,2g!f8~x!, uxu.a.

(79)

Second, after normalization and with the density functionF(t)
expanded by Chebyshev polynomials of the second kindUn ,
some integral formulas, which are useful for deriving SIFs, ne
to be developed forur u.1 ~Chan et al.@34#!, and are listed in
Appendix B~see Eqs.~96! to ~98!!. Notice that the highest singu
larity in the Eqs.~96! to ~98! appears in the last term in Eq.~98!,
and it has singularity (r 221)23/2 as r→11 or r→212. Moti-
vated by such asymptotic behavior, we generalize the SIFs
strain gradient elasticity from those of classical LEFM. Thus

,K III ~a!5 lim
x→a1

2A2p~x2a!~x2a! syz~x,0!, (80)

,K III ~2a!5 lim
x→2a2

2A2p~x1a!~x1a!syz~x,0!. (81)

Therefore, the following formulas for the normalized mode
SIFs in the strain-gradient elasticity theory may be derived:

,K III ~a!5 lim
x→a1

2A2p~x2a!~x2a!syz~x,0!, ~x.a!

5 lim
r→11

2A2p~ar2a!~ar2a!syz~ar,0!, ~r .1!

52aApa G0 lim
r→11

A2~r 21!~r 21!
22,2

pa2
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3E
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1 F~s!

~s2r !3 ds, ~r .1!. (82)

After cancellation of the common terms, Eq.~82! can be contin-
ued by introducing formula~98!, and using the representatio
~70!, i.e.,

K III ~a!52A2paS 22,

a DG0 lim
r→11

~r 21!3/2(
n50

N
2~n11!

2

3S r 2
ur u
r

Ar 221D n21F nS 12
ur u

Ar 221
D 2

1

r 2
ur u
r

Ar 221

Ar 2213
GAn

5Apa ~,/a!G0 (
n50

`

~n11!An . (83)

Similarly,

K III ~2a!5Apa ~,/a!G0 (
n50

`

~21!n~n11!An . (84)

Formulas~83! and ~84! will be used to obtain numerical result
for SIFs.

10 Results and Discussion
The boundary value problem illustrated in Fig. 2 is conside

for all the examples in this paper. To validate the present form
lation, consider the case where,, ,8→0 in a certain special limit
sense~see Fannjiang et al.@8#!, so that the classical elasticity so
lution is represented. The results for classical stress intensity
tors ~SIFs! ~Eqs.~77! and ~78!! are given in Table 3. It is clearly
seen from Table 3 that the present results are in agreement
those of Erdogan and Ozturk@28#. Note that the SIFs decreas
monotonically asg increases. Moreover, it is interesting to inve
tigate the asymptotic behavior of the SIFs asg→6`. As g→`
the stiffness of the medium increases indefinitely and, under fi
loading (p0), the crack-opening displacement and the SI
K III (a) tend to zero. Similarly, asg→2` the stiffness of the

Table 3 Variation of classical „normalized … stress intensity
factors „SIFs… with the material gradation parameter g̃ÄgÕa
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medium decreases indefinitely, and consequentlyK III (a) tend to
infinity. These physically expected trends can be observed
Table 3.

Once the slope function is found numerically using the rep
sentation~68!, the crack displacement profilew(r ,0) can be ob-
tained as

w~r ,0!5E
21

r

F~s!ds5E
21

r

A12s2(
n50

N

AnUn~s!ds. (85)

Figure 4 shows the normalized crack displacement profile in
infinite medium of homogeneous material (g50) under uniform
crack surface loading for,̃50.2 and,̃850. Notice that the crack
tips form a cusp with zero enclosed angle and zero first deriva
of the displacement at the crack tips~see~65!!. This crack shape is
similar to the one obtained by Barenblatt@38# using ‘‘cohesive
zone theory,’’ but without the assumption regarding existence
interatomic forces.

Fig. 4 Full crack displacement profile in an infinite medium of
homogeneous material „g̃Ä0… under uniform crack surface
shear loading syz„x ,0…ÄÀp 0 with choice of „normalized … ø̃
Ä0.2 and ø̃8Ä0

Fig. 5 Crack surface displacement under uniform crack sur-
face shear loading syz„x ,0…ÄÀp 0 and shear modulus G„y …
ÄG0egy with choice of „normalized … ø̃Ä0.05, ø̃8Ä0, and various
g̃. The dashed line stands for the homogeneous material case
„g̃Ä0….
Journal of Applied Mechanics
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The solutions obtained in this study for a nonhomogene
half-plane having shear modulusG[G(y), y.0, is also valid for
the corresponding infinite medium in whichy50 is a plane of
symmetry~see Fig. 2!, i.e.,

G~2y!5G~y!.

Unless otherwise stated, uniform loading is considered on
crack face, i.e.,syz(x,0)52p0 , and the normalizationp0 /G0 has
been employed.

Further normalized crack displacement profiles for vario
combinations of the gradient parameters (,̃,,̃8) and material gra-
dation parameter (g̃) are presented in Fig. 5 to Fig. 8. Figures
and 6 show crack displacement profiles for selected values o,̃,
,̃8, and variousg. Figure 5 considers,̃50.05, ,̃850 and thus
r5,8/,50; while Fig. 6 considers,̃50.20, ,̃850.04 and thus
r5,8/,50.2. In both graphs, the broken lines stand for the h
mogeneous material (g50) in a gradient elastic medium. A com

Fig. 6 Crack surface displacement under uniform crack sur-
face shear loading syz„x ,0…ÄÀp 0 and shear modulus G„y …
ÄG0egy with choice of „normalized … ø̃Ä0.2, ø̃8Ä0.04, and vari-
ous g̃. The dashed line stands for the homogeneous material
„g̃Ä0… in a gradient elastic medium.

Fig. 7 Crack surface displacement profiles under uniform
crack surface shear loading syz„x ,0…ÄÀp 0 and shear modulus
G„y …ÄG0egy with choice of „normalized … ø̃8Ä0.05, g̃Ä0.1, and
various ø̃. The values of ø̃ are listed in the same order as the
solid-line curves.
JULY 2003, Vol. 70 Õ 539
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parison between Figs. 5 and 6 permits to assess the influen
the gradient parameters (,,,8) on the displacement solution
Moreover, asg increases the displacement magnitude decrea
which is consistent with similar results by Erdogan and Ozt
@28# using classical elasticity to model mode III cracks in fun
tionally graded materials~FGMs!.

Figure 7 shows crack displacement profiles for,̃850.05, g̃
50.10 and various,̃. As ,̃ increases, the displacement diminish
monotonically, or alternatively the crack becomes stiffer, in co
parison to the classical elasticity theory.

Fig. 8 Crack surface displacement profiles under uniform
crack surface shear loading syz„x ,0…ÄÀp 0 and shear modulus
G„y …ÄG0egy with choice of „normalized … ø̃Ä0.05, g̃Ä0.1, and
various ø̃8. The values of ø̃8 „and rÄøÕø8… are listed in the same
order as the solid-line and dashed-line „rÄ0… curves repre-
senting the strain gradient results.
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Figure 8 shows crack displacement profiles for,̃50.05, g̃
50.10 and various,̃8. As is apparent from this figure, by main
taining the values of the relative volume energy parameter,̃ con-
stant, the crack stiffening effect becomes more pronounced as
relative surface energy parameter,̃8 increases in the range@0,,̃).
It is worth mentioning that, from energy considerations, the
rameter,̃8 can take negative values,@39#. Note from Fig. 8 that
the effect of a negative,̃8 leads to a more compliant crack. I
general, this is a desirable property of the mathematical mode
regards to describing experimental results and data.

Fig. 9 Crack surface displacement profiles under discontinu-
ous loading p „x Õa…ÄÀ1¿0.5 sgn „x Õa… and shear modulus
G„y …ÄG0egy with choice of „normalized … ø̃Ä0.05, g̃Ä0.2, and
various rÄøÕø8. The values of r are listed in the same order as
the solid-line and dashed-line „rÄ0… curves representing the
strain gradient results.
Table 4 Convergence of „normalized … generalized stress intensity factors „SIFs… for a mode III crack

Table 5 Normalized generalized stress intensity factors „SIFs… for a mode III crack
at various values of l̃ , l̃ 8, and g̃
Transactions of the ASME
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Figure 9 shows crack displacement profiles considering disc
tinuous loading

p~x!52110.5 sgn~x!

and ,̃50.05, g̃50.2, and variousr5,8/,. Similar comments to
those regarding Fig. 8 can be made with respect to Fig. 9. M
over, qualitatively the results displayed in Figs. 7 to 9 are in agr
ment with those of Vardoulakis et al.@11# for homogeneous
materials.

Table 4 shows a convergence study for~normalized! general-
ized SIFs~see Eqs.~80!, ~81!, and~83!, ~84!! involving nongraded
(g̃50) and graded (g̃Þ0) gradient elastic materials considerin
both ,̃850 and,̃8Þ0 (,̃8.0). Note that as the number of co
location points (N) increases, the generalized SIF results co
verge for both materials~i.e., nongraded and graded!. However,
the convergence is worse for the case,̃8Þ0 than for the case
,̃850. The condition number for all the examples investigated
always satisfactory.

Table 5 lists the generalized SIFs~see Eqs.~80!, ~81!! for gra-
dient elastic materials considering various values of the mate
parameterg and usingN561 collocation points in the numerica
solution. Notice that the SIF monotonically decreases asg in-
creases, which is in full agreement with the early results for c
sical elasticity considering nonhomogeneous materials~see Table
3!. Consider, for example, the caseg̃50. In this case, the crack
stiffening is due to the characteristic material lengths,̃ and ,̃8
( ,̃8.0) of the structured medium which are responsible for low
generalized SIFs (,1.0) and, consequently, lower energy relea
rates during crack propagation. The results indicate that a hig
external load, as compared to that of the classical case, mu
applied on the crack surfaces~or on the remote boundaries! to
propagate it in a material with microstructure.

A few comments about the determination of characteris
lengths in continua with microstructure are in order. Shi et al.@40#
have presented a brief discussion on determination of such len
in the context of Fleck and Hutchinson’s@3# strain gradient theory,
which is a generalization of Mindlin’s higher-order continuu
theory, @41,42#. Experimental work in the field include, for ex
ample, micro-torsion by Fleck et al.@43#, microbending by Stolk-
ens and Evans@44#, and microindentation by Nix@45#. The char-
acterization of actual materials, with respect to strain grad
length-scale~s!, is an ongoing research topic of much interest a
impact in the field of applied mechanics.

11 Concluding Remarks
This paper has presented a theoretical framework and co

sponding computational implementation for modeling antipla
shear cracks in functionally graded materials~FGMs! using strain
gradient elasticity~Casal’s continuum!, which includes both volu-
metric and surface energy terms. The characteristic lengths~, and
,8, respectively! associated to these terms are assumed to be
stant, and the material shear modulus is assumed to vary expo
tially ~see Eq.~18!!. In this study, the crack is considered to b
perpendicular to the material gradient. The present hypersing
integrodifferential equation approach leads to a numerically tr
table solution of the fracture problem, and relevant fracture
rameters have been investigated. These results include, fo
ample, crack displacement profiles and generalized stress inte
factors. A parametric study including various gradation parame
~g! and strain gradient parameters (,̃,,̃8) has been conducted an
discussed. A natural extension of this work is the solution of
antiplane shear crack where the crack is parallel to the mat
gradation. Another potential extension consists of investiga
the mode I fracture problem.

Acknowledgments
We acknowledge the support from the USA National Scien

Foundation ~NSF! through grants CMS-9996378~previously
Journal of Applied Mechanics
on-

re-
ee-

g
-
n-

is

rial
l

as-

er
se
her
t be

tic

gths

-

ent
nd

rre-
ne

on-
nen-
e
ular
ac-
pa-

ex-
sity

ers
d
an
rial
ing

ce

CMS-9713798! from the Mechanics & Materials Program, an
DMS-9600119 from the Applied Mathematics Program. The fi
author would like to thank Prof. Y. F. Dafalias, form the Unive
sity of California at Davis, for his encouragement and valua
suggestions to this work.

Appendix A

The Regular Kernel. The regular kernelN(j,0) described in
Eq. ~60! can be expressed as the fractionP(j)/Q(j). Q(j) is
given by

Q~j!52 i j~Aj21g2/411/,21Aj21g2/41g1,8/,2!.
(86)

P(j) can be expressed as

P~j!5P4~j!1P3~j!1P2~j!1P1~j!1P0~j! (87)

in which

P4~j!5,2j23~Aj21g2/411/,2Aj21g2/41j2

2ujuAj21g2/411/,22ujuAj21g2/4!, (88)

P3~j!5
1
2~g,21,8!j2~Aj21g2/411/,21Aj21g2/4!

2~g,21,8!uju3, (89)

P2~j!5@11g~g,21,8!#Aj21g2/411/,2Aj21g2/4

1F11
1

4
g2,22

1

2 S ,8

, D 2

2
1

2
g,8Gj2

2F11
5

8
g2,22S ,8

2, D 2

1
1

4
g,8G

3uju~Aj21g2/411/,21Aj21g2/4!, (90)

P1~j!5
1

2
g~11g2,21g,8!Aj21g2/411/,2

1Fg

2
~11g2,21g,8!1

,8

,2GAj21g2/4

2S g1
,8

,2D F11
5

8
g2,22S ,8

2, D 2

1
1

4
g,8G uju, (91)

P0~j!5
1

4
,2g41

3

4
g21

1

4
g3,81

1

2

g,8

,2 . (92)

Appendix B

Singular and Hypersingular Integrals. Closed-form solu-
tions for evaluating singular and hypersingular integrals are p
vided here and can also be found in Chan et al.@34#. Those inte-
grals are interpreted in the finite-part sense.

The solution of the crack boundary value problem requires
following formulas. Thus forur u,1, we have

(93)

(94)
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The calculation of stress intensity factors requires the follow
formulas. Thus, forur u.1, we have

1

p E
21

1 Un~s!A12s2

s2r
ds52S r 2

ur u
r

Ar 221D n11

, n>0

(96)

1

p E
21

1 Un~s!A12s2

~s2r !2 ds52~n11!S 12
ur u

Ar 221
D

3S r 2
ur u
r

Ar 221D n

, n>0

(97)

1

p
E

21

1 Un~s!A12s2

~s2r !3 ds

5
21

2
~n11!S r 2

ur u

r
Ar 221D n21

3F nS 12
ur u

Ar 221
D 2

1

r 2
ur u

r
Ar 221

Ar 2213
G , n>0.

(98)
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Green’s Functions and Boundary
Integral Analysis for Exponentially
Graded Materials: Heat
Conduction
Free space Green’s functions are derived for graded materials in which the the
conductivity varies exponentially in one coordinate. Closed-form expressions are obt
for the steady-state diffusion equation, in two and three dimensions. The correspo
boundary integral equation formulations for these problems are derived, and the th
dimensional case is solved numerically using a Galerkin approximation. The resu
test calculations are in excellent agreement with exact solutions and finite ele
simulations.@DOI: 10.1115/1.1485753#
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1 Introduction
Functionally graded materials~FGMs! are an important area o

materials science research, with potentially many important ap
cations, e.g., super-heat resistance materials for thermal ba
coatings and furnace liners, vehicle and personal body arm
electromagnetic sensors, and graded refractive index material
optical applications. In an ideal FGM, the material properties m
vary smoothly in one dimension~e.g., are constant in~x, y! but
vary with z!. As an example, having a smooth transition regi
between a pure metal and pure ceramic would result in a mat
that combines the desirable high temperature properties and
mal resistance of a ceramic, with the fracture toughness o
metal. Comprehensive reviews of current FGM research may
found in the articles by Hirai@1#, Markworth et al.@2# and Paulino
et al. @3#, and the book by Suresh and Mortensen@4#.

Computational analysis can be an effective method for des
ing specific FGM systems, and for understanding FGM behav
For homogeneous media, boundary integral equation meth
~e.g.,@5#! have been used extensively. However, the reformula
in terms of integral equations relies upon having, as eithe
closed form or a computable expression, a fundamental solu
~Green’s function! of the partial differential equation. Application
of the boundary integral technique has therefore been limi
almost exclusively, to homogeneous, or piecewise homogene
media.

The fundamental solutions traditionally employed in bound
integral analysis for homogeneous materials are ‘‘free spa
Green’s functions: They satisfy the appropriate differential eq
tion everywhere in space, except at the site where a point

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Dec. 1
2000; final revision, Oct. 30, 2001. Associate Editor: M.-J. Pindera. Discussion
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, De
ment of Mechanical and Environmental Engineering University of California–Sa
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months
final publication of the paper itself in the ASME JOURNAL OF APPLIED MECHAN-
ICS.
Copyright © 2Journal of Applied Mechanics
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driving force is applied. Derivations for some of the basic Gree
functions can be found in@5,6#. There has also been work in th
direction of deriving Green’s functions for a general nonhomo
neous material~@7–11#!. Steady-state heat conduction with an a
bitrary spatially varying conductivity has recently been inves
gated ~@12,13#! and has generated some debate in the litera
~@14,15#!. In most cases, exact Green’s functions are only obtai
under certain restrictions.

In the present paper, we derive free space fundamental solu
for both the two-dimensional and three-dimensional FGM Lapla
equation, assuming that the thermal conductivity varies expon
tially. The corresponding boundary integral equation formulati
which turns out to be somewhat different from the homogene
media case, is also obtained, and numerical results based up
Galerkin approximation are presented. Relatively little attent
has been paid to obtaining Green’s functions for the special c
of graded materials: A Green’s function for a special type of el
todynamics problem was obtained by Vrettos@16#, and exponen-
tial grading was also considered in@11#. The two-dimensional
Green’s function results have appeared in conjunction with a c
vective heat transfer problem in ahomogeneousmaterial
~@17,18#!, and moreover@19# essentially contains the Green
functions derived herein~obtained in a different manner!. How-
ever, the analysis employed in this paper for heat conduction in
exponential FGM will carry over to the important case of elast
ity ~@20#!, and thus it is deemed useful to present this altern
derivation in detail.

This paper is organized as follows. The three-dimensio
Laplace equation is treated in Section 2.1, and the tw
dimensional case in Section 2.2. Section 3 discusses some
results from a Galerkin numerical implementation of the bound
integral formulation, and Section 4 contains some concluding
marks. Finally, in the Appendix it is shown that the integral equ
tions and Green’s functions can be suitably modified to allow
a Symmetric-Galerkin implementation. Complete formulas for
three-dimensional reformulated fundamental solutions and t
first and second derivatives, for the case that the thermal con
tivity is real, are also given in this Appendix.
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2 Green’s Functions
Steady-state isotropic heat conduction in a solid is governed

the equation

¹•~k¹f!50. (1)

Here f5f(x,y,z) is the temperature function, and w
assume the functionally graded material is defined by the ther
conductivity

k~x,y,z!5k~z!5k0e22iaz, (2)

wherea is real. This assumption of a purely imaginary expone
is apparently necessary for the derivation that follows. Howe
once the solution is obtained, it is readily seen to be valid for a
complexa. Substituting Eq.~2! into Eq. ~1!, one obtains that the
temperature satisfies

¹2f22iafz50, (3)

wherefz denotes the derivative with respect toz.
The Green’s function equation can be derived by construc

the integral equation corresponding to Eq.~3!. Following the stan-
dard procedure, Eq.~3! is multiplied by an arbitrary function
f (x,y,z)5 f (Q) and integrated over a bounded volumeV. Inte-
grating by parts, and denoting the boundary ofV by S, one ob-
tains

05E
V
f ~Q!~¹2f~Q!22iafz~Q!!dVQ .

5E
S
H f ~Q!

]

]n
f~Q!2f~Q!

]

]n
f ~Q!

22ianz~Q!f~Q! f ~Q!J dQ1E
V
f~Q!~¹2f ~Q!

12ia f z~Q!!dVQ , (4)

where n(Q)5(nx ,ny ,nz) is the unit outward normal forS. If
f (Q)5G(P,Q) satisfies the Green’s function equation~the ad-
joint to Eq. ~3!!

¹2G~P,Q!12iaGz~P,Q!52d~Q2P!, (5)

whered is the Dirac delta function, the remaining volume integ
becomes simply2f(P). Thus we obtain the governing bounda
integral equation

f~P!1E
S
f~Q!S ]

]n
G~P,Q!12ianzG~P,Q! DdQ

5E
S
G~P,Q!

]

]n
f~Q!dQ, (6)

which differs in form from the usual integral statements by t
presence of the additional term multiplyingf(Q). With obvious
changes~e.g., line integrals instead of surface integrals!, the above
equations are equally valid for two dimensions. We first derive
Green’s function for three dimensions.

2.1 Three Dimensions. Let f̂ (v) denote the Fourier trans
form of a functionF(Q),

f̂ ~v!5E
R3

F~Q!e2 i v"QdQ (7)

wherev5(vx ,vy ,vz) is the transform variable and the dot re
resents the inner product. Transforming Eq.~5! and solving for
Ĝ(v) ~the transform ofG with respect toQ!, yields

Ĝ~v!5
e2 i v"P

v212avz
, (8)
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wherev25v"v. Applying the inverse transform, one obtains

G~P,Q!5
1

~2p!3 E
R3

ei v"~Q2P!

v212avz
dw, (9)

wheredw is shorthand for the three-dimensional differential e
ment, i.e.,dw5dvxdvydvz . Changing variables

vz→vz2a (10)

and settingR5Q2P, Rz5Qz2Pz , we obtain

G~P,Q!5
1

~2p!3 e2 iaRzE
R3

ei v"R

v22a2 dv, (11)

which can be conveniently split into two terms,

G~P,Q!5
e2 iaRz

~2p!3 F ER3

ei v"R

v2 dv1a2E
R3

ei v"R

v2~v22a2!
dvG .

(12)

The first integral is Eq.~9! with a50, and is therefore recognize
as the Green’s function for the Laplace equation~constant k!, the
point source potential:

e2 iaRz

~2p!3 E
R3

ei v"R

v2 dv5
e2 iaRz

4pr
, (13)

wherer 5iRi5iQ2Pi is the distance between the source po
P and the field pointQ.

To evaluate the second term in Eq.~12!, it is convenient to
employ spherical coordinates~r,u,c!, with, however, the axis de-
fining the polec50 taken as the directionR/r instead of the
z-axis ~see Fig. 1!. The integration limits are 0,r,`, 0<c
<p, and 0<u<2p; however, for the residue calculations to fo
low, it will be much more convenient to have2`,r,` and 0
<c<p/2. With the standard limits, the residue calculation mu
shift half-planes depending upon the sign of cos(c); more impor-
tantly, starting atr50 would force consideration of contour
along the imaginary axis, necessary to work with the imagin
part of the exponential. In comparison, ifr varies over the entire
real axis, a simple semicircle in the upper half-plane suffices.
this end,if the functionf satisfiesf (r,c)5 f (2r,p2c), then

E
0

`E
0

p

f ~r,c!dcdr

5E
0

`E
0

p/2

f ~r,c!dcdr1E
0

`E
p/2

p

f ~r,c!dcdr

5E
0

`E
0

p/2

f ~r,c!dcdr1E
0

`E
0

p/2

f ~r,p2c!dcdr

Fig. 1 Spherical coordinate system for evaluating the v
integral
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5E
0

`E
0

p/2

f ~r,c!dcdr1E
2`

0 E
0

p/2

f ~2r,p2c!dcdr

5E
2`

` E
0

p/2

f ~r,c!dcdr. (14)

It will turn out that the function to be integrated satisfies the abo
constraint, and thus the modified limits of integration forr andc
can be employed. As mentioned above, this greatly simplifies
residue procedures for ther integration.

Noting thatv"R5rr cos(c) and that, other than this exponen
tial, the integrand is a function ofv2 and independent ofu, this
second term therefore becomes

a2e2 iaRz

~2p!2 E
0

p/2

sin~c!dcE
2`

` eirr cos~c!

r22a2 dr. (15)

Using the contour shown in Fig. 2, ther integration is a
straightforward exercise in residue calculus, yielding

E
2`

` eirr cos~c!

r22a2 dr52
p

a
sin~ar cos~c!!. (16)

The final integration,

2
p

a E
0

p/2

sin~c!sin~ar cos~c!!dc, (17)

follows from a simple change of variables, and thus the sec
term is seen to be

e2 iaRz cos~ar !

4pr
2

e2 iaRz

4pr
. (18)

Including Eq.~13!, we find the simple result

G~P,Q!5
e2 iaRz cos~ar !

4pr
. (19)

Although this result was derived assuming thata is real, it is a
simple matter to check by direct calculation that Eq.~19! satisfies
Eq. ~5! for any complexa. It is useful, especially for the discus
sion of the two-dimensional case that follows, to observe that

G~P,Q!5e2 iaRz
e2 iar

4pr
(20)

is an equally valid solution of Eq.~5! for a real. Moreover, the
added sin(ar)/r term is regular asr→0, and thus does not alter th
delta function atQ5P. Replacinga by ib0 , whereb0 is real, we
obtain

Fig. 2 Contour in the complex plane used to compute the r
integration
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G~P,Q!5
eb0~r 1Rz!

4pr
(21)

as the Green’s function fork(z)5e2b0z.
In the derivation of the boundary integral equation, a sphereS«

of radius« centered at the interior pointP would be removed from
V, and the integration overS would include the surface of this
sphere. The limit as«→0 of the integral

E
S«

H G~P,Q!
]

]n
f~Q!2f~Q!

]

]n
G~P,Q!

22ia~f~Q!G~P,Q!!nzJ dQ (22)

must therefore be considered. However, forr→0,

]

]n
G~P,Q!'

]

]n

1

4pr
(23)

and the«50 limit does indeed produce the correct value2f(P).
Finally, it is useful to note that Eq.~18! can, from the point of

view of the singularity atr 50, be considered as a remainder ter
That is, the singularity for the FGM Green’s function is entire
contained within Eq.~13!, the homogeneous steady-state solutio
as Eq.~18! is regular atr 50.

2.2 Two Dimensions. The Green’s function
g(xQ ,zQ ;xP ,zP) for the two-dimensional equation,

fxx1fzz22iafz50, (24)

is expected to behave as log(r), and as this function does not di
off at infinity, the above Fourier transform approach is doomed
fail. However, this fundamental solution can be viewed as
response seen at the point (xQ,0,zQ) to a uniform distribution of
charge along they-axis. This response should be the result
integrating the three-dimensional Green’s function over this a
which for the homogeneous case takes the form

1

4p E
2`

` dyP

~~xQ2xP!21yP
2 1~zQ2zP!2!1/2. (25)

The fact that the integral doesn’t exist is a minor inconvenien
that is remedied by doing the analysis for]G/]xQ ~@21#!. The
integral of this function with respect toyP does exist, and fol-
lowed by an integration overxQ , the correct log(r) result is ob-
tained, wherer is now the two-dimensional distance.

With this framework in mind, we observe that the thre
dimensional functionally graded material~FGM! Green’s func-
tion, in the form of Eq.~20!, is e2 iaRz times the fundamenta
solution for the Helmholtz Eq.~3!. Since this prefactor is indepen
dent of yP , integrating out this coordinate as in Eq.~25!, we
expect that the two-dimensional FGM Green’s function is giv
by

g~xQ ,zQ ;xP ,zP!5
i

4
e2 iaRzH0

1~ar !. (26)

Here,H0
1 is the zeroth-order first kind Hankel function~@22#!, well

known to be the solution of the Helmholtz equation in two dime
sions. This expectation can be established simply by differen
ing Eq. ~26! and checking that

gxx1gzz12iagz50, (27)

for QÞP ~this is the two-dimensional analogue of the Gree
function equation, Eq.~5!!. That this differentiation also yields a
delta function atQ5P follows from the known behavior ofH0

1

for the Helmholtz equation. Finally, it should be noted that t
two-dimensional boundary integral equation becomes
JULY 2003, Vol. 70 Õ 545
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f~P!1E
S
f~Q!S ]

]n
g~P,Q!12ianzg~P,Q! DdQ

5E
S
g~P,Q!

]

]n
f~Q!dQ, (28)

which corresponds to Eq.~6! with G(P,Q) ~three-dimensional
case! replaced byg(P,Q) ~two-dimensional case!.

2.3 Extensions. As it may be useful to have the materi
properties vary in more than one component~@23#!, it is worth
noting that the above analysis extends to a more general expo
tial variation for k,

k~x,y,z!5k0e22i a"Q, (29)

where a5(ax ,ay ,az). The three-dimensional Green’s functio
is now given by

Gxyz~P,Q!5
e2 i a"R cos~~a"a!r !

4pr
. (30)

Comparing this with Eq.~19!, it is not surprising that the two-
dimensional result in this case~again dropping out the
y-coordinate! becomes

gxz~xQ ,zQ ;xP ,zP!5
i

4
e2 i a"RH0

1~~a"a!r !. (31)

2.4 Galerkin Approximation. The numerical results pre
sented in the next section utilize the Galerkin approximation~@5#!
to reduce the integral equation to a finite system of equatio
Here we briefly review this technique, starting by rewriting E
~6! as

P~P![f~P!1E
S
f~Q!S ]

]n
G~P,Q!12ianzG~P,Q! DdQ

2E
S
G~P,Q!

]

]n
f~Q!dQ50. (32)

As is usual, basis shape functionsc j (Q) are used to interpolate
the boundary from the element nodal coordinates, and to appr
mate the surface potential and flux in terms of nodal values,

S~h,j!5(
j

~xj ,yj ,zj !c j~h,j!

f~Q!5(
j

f jc j~Q! (33)

]f

]n
~Q!5(

j
S ]f

]n D
j

c j~Q!.

The numerical results reported herein employ a six-noded q
dratic triangular element, defined using the right triangle para
eter space~h, j!, h>0, j>0, h1j<1. The shape functions ar
given by

c1~h,j!5~12h2j!~122h22j! c4~h,j!54h~12h2j!

c2~h,j!5h~2h21! c5~h,j!54hj (34)

c3~h,j!5j~2j21! c6~h,j!54j~12h2j!.

In a Galerkin approximation, these shape functions are emplo
as weighting functions for enforcing Eq.~32! ‘‘on average,’’ i.e.,

E
S
ck~P!E

S
P~P!dP50. (35)

When the approximations in Eq.~33! are incorporated into this
equation, the resulting finite system of equations can be
cretized and solved numerically.
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It should also be noted that, unlike the Green’s functi
1/(4pr ) for the Laplace equation~homogeneous problem!, nei-
ther Eq.~20! nor Eq.~26! is a symmetric function ofP andQ. It
would therefore appear impossible to have a symmetric-Gale
approximation~@24–28#!, as this formulation demands a symme
ric Green’s function. However, as shown in the Appendix, a slig
reworking of the equations and the kernel functions restores a
the necessary symmetry properties. This Appendix also prov
formulas for all of the kernel functions: temperature and fl
equations in two and three dimensions.

3 Numerical Examples
The three-dimensional steady-state fundamental solution

been incorporated into a boundary element method~BEM! algo-
rithm. As noted above, the integral Eq.~6! is numerically approxi-
mated via the~nonsymmetric! Galerkin method~see Eq.~35!!,
together with standard six-node isoparametric quadratic triang
elements to interpolate the boundary and boundary functions.
the numerical examples, the conservation Eq.~1! will be taken as
energy conservation in a functionally graded media under the c
dition of steady-state heat conduction without volumetric gene
tion. To validate the numerical implementation, solutions to t
test problems are presented below: In the first, the domain
simple cube and the exact solution is known; the second invo
a curved geometry which may be more representative of an ac
systems component.

3.1 Unit Cube: Linear Heat Flux. For the first example
problem, the geometry is a unit cube with the origin of a Cartes
system fixed at one corner. The thermal conductivity in this
ample is taken to be

k~z!5k0e2bz55e3z. (36)

The cube is insulated on the faces@y50# and @y51#, while
uniform heat fluxes of 5000@POWER/AREA# are added and re
moved, respectively, at the@x51# and@x50# faces. In addition,
the @z50# face is specified to have anx-dependent temperatur
distribution T51000 x deg and at@z51# a normal heat flux of
q515000x is removed. The analytic solution for this problem

T51000xe23z

q525000î115000xk̂ (37)

where î is a unit vector in thex-direction.
The results of the numerical simulations for the temperat

distributions along an edge are shown in Fig. 3. The plot a
includes the results obtained from a finite element method~FEM!
simulation using a commercial package. In the FEM simulati

Fig. 3 Temperature distribution in the functionally graded
material „FGM… unit cube along the edge †xÄ1,yÄ1‡
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40 homogeneous layers were used to approximate the contin
grading; the conductivity of each layer was computed from E
~36! wherez was taken as thez-coordinate of the layer’s centroid
The FEM elements used were 20-node quadratic brick elem
and each of the 40 layers contained 400 brick elements, resu
in a total of 69,720 nodes. In the boundary element meth
~BEM! solution, a uniform grid consisting of isosceles right tr
angles, with each leg having length 0.1, was employed, resul
in a total of 1200 elements and 2646 nodes.

3.2 Functionally Graded Material „FGM … Rotor. The
second numerical example is a rotor with eight mounti
holes. Due to the eightfold symmetry, only one-eighth of t
rotor is modeled, as drawn in Fig. 4. The grading direction for t
rotor is parallel to its line of symmetry, which is taken a
the z-axis, and the thermal conductivity for the rotor varie
according to

k~z!520e330z
W

m K
. (38)

A schematic for the thermal boundary conditions is shown
Fig. 5. The temperature is specified along the inner and outer r
and a uniform heat flux of 53105 W/m2 is added on the bottom
surface wherez50. All other surfaces are insulated as shown.

The BEM solution is compared with an FEM solution obtain
from the same package used in the previous example using

Fig. 4 Geometry of the functionally graded rotor

Fig. 5 Thermal boundary conditions on the rotor
Journal of Applied Mechanics
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node tetrahedral elements to handle the geometric complexit
the rotor. Due to resource limitations, the FEM model was limit
to 12 layers which resulted in the rather crude conductivity pro
shown in Fig. 6. Even so, the FEM mesh required 95,880 nod

Fig. 6 Thermal conductivity profiles for the computational
models of the rotor

Fig. 7 Surface mesh employed on the functionally graded
rotor

Fig. 8 Temperature distribution around the hole on the
zÄ0.01 surface
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whereas the BEM mesh employed 3252. The mesh employed
the boundary integral analysis is shown in Fig. 7.

The temperature distribution around the hole is shown in Fig
The angleu is measured from a line passing through the line
symmetry for the geometry and the center line of the hole. Tho
surface nodal positions in the two models were not coinciden
general, the plot shows a strong agreement in the two soluti
To see the effects of the grading upon the solution, the co
sponding results for theungradedrotor, b50 (k(z)[20), are
also shown.

The radial heat flux along the line shown as the interior cor
in Fig. 5 is plotted in Fig. 9. The negative sign indicates that
flow of heat is toward the interior of the rotor. A limitation on th
use of piecewise constant conductivities in FEM models may
evident in the plot where the FEM nodal value atz50.01 seems
to fall out of line with the other values on the curve. The behav
should be fully expected, however, given the local error associ
with the piecewise constant approximation seen nearz50.01 in
Fig. 6. As should also be expected, the nodal flux values from
BEM solution seem to fall onto a single curve even in the reg
of the steepest conductivity gradient. This isnot to say that BEM
is necessarily better than FEM for graded analysis: The finite
ement method is not restricted to using the discontinuous pi
wise constant approximation presently available in existing pa
ages. It is possible to incorporate continuous grading wit

Fig. 9 Radial heat flux along the inside corner

Fig. 10 Computed interior temperature values in the graded
rotor
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individual elements, as demonstrated recently by Kim and Pau
@29# using a generalized isoparametric formulation.

As a final test, Fig. 10 displays a comparison between the F
interior temperature values, and corresponding values comp
from the BEM solution~in a post-processing calculation!. The
values are shown for a line of points on the mid-z (z50.005)
plane in the radial direction, passing through the middle of
hole. Again, the BEM and FEM results agree quite well.

4 Conclusions
The primary conclusion of this work is that boundary integ

analysis, for the most part limited to applications involving hom
geneous or piecewise homogeneous media, can be succes
applied to exponentially graded materials. Although the simp
case, namely the Laplace equation, has been treated herein
expected that other applications, including transient diffus
~@30#! and elasticity~@20#!, can also be addressed. Note that
specific elastodynamics problem has already been addresse
Vrettos @16#.

The numerical results presented in this paper have shown th
is simple to implement the functionally graded material~FGM!
Green’s function in a standard boundary integral~Galerkin! ap-
proximation, and that accurate results are obtained. For gra
materials, this offers the possibility of efficient and accurate so
tion of those types of problems for which a boundary integ
analysis is particularly advantageous, such as shape optimiza
moving boundaries, and small-scale structures.
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Appendix

Symmetric Kernels. The symmetric-Galerkin method~@25–
28#! is a highly effective numerical technique for boundary int
gral analysis. As the name implies, it utilizes the Galerkin a
proximation to induce a symmetric coefficient matrix. Th
symmetry comes about because of the symmetry properties o
kernel functions in the integral equations for surface tempera
and for surface flux. Note that for the homogeneous Laplace eq
tion, the fundamental solution is symmetric,G(P,Q)5G(Q,P),
but the functionally graded material~FGM! Green’s function, Eq.
~21!, is not. Thus it would appear that a symmetric-Galerkin a
proximation is not possible.

In this section, the FGM boundary integral equations are
formulated to allow a symmetric numerical implementation.
addition, formulas for all of the required FGM kernel function
for k(z) real,

k~z!5k0e2b0z, (39)

are conveniently summarized.
To obtain a symmetric matrix, the equations have to be writ

in terms of the surface flux,

F~Q!52k~zQ!
]

]n
f~Q! (40)

rather than the normal derivative. The equation for surface te
peraturef(P) is therefore
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f~P!1E
S
F~P,Q!f~Q!dQ5E

S
GS~P,Q!F~Q!dQ, (41)

and in three dimensions the kernel functions are

GS~P,Q!52
G~P,Q!

k~zQ!
52

1

4k0p

eb0~r 2zQ2zP!

r

F~P,Q!5
]

]n
G~P,Q!22b0nzG~P,Q!

52
eb0~r 1Rz!

4p S n"R

r 3 2b0

n"R

r 2 1b0

nz

r D . (42)

Most importantly, note thatGS(P,Q), unlike G, is symmetric
with respect toP and Q. This is the first of three conditions
needed for symmetry. The other two conditions involve the fl
equation. Differentiating Eq.~41! with respect toP, dotting with
N5N(P), and multiplying by2k(zP) yields the corresponding
equation for surface flux

F~P!1E
S
W~P,Q!f~Q!dQ5E

S
S~P,Q!F~Q!dQ. (43)

The kernel functions, again for three dimensions, are compu
to be

S~P,Q!52k~zP!
]

]N
GS~P,Q!

52
eb0~r 2Rz!

4p S 2
N"R

r 3 1b0

N"R

r 2 1b0

Nz

r D . (44)

and

W~P,Q!52k~zP!
]

]N
F~P,Q!5

k0

4p
eb0~r 1zQ1zP!

3S 3
~n"R!~N"R!

r 5 23b0

~n"R!~N"R!

r 4

1
b0

2~n"R!~N"R!2b0~Nzn2nzN!•R2n"N

r 3

1b0

b0~Nzn2nzN!"R1n"N

r 2 2b0
2

Nznz

r D . (45)

The additional symmetry requirements are thatW must be sym-
metric, W(P,Q)5W(Q,P), and thatS(P,Q)5F(Q,P). Inter-
changingQ andP implies replacingN(P) with n(Q) and changes
the sign ofR, and thus both conditions are seen to hold.
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Dual-Species Transport Subject to
Sorptive Exchange in Pipe Flow
The transport in pipe flow of a chemical species can be materially affected by the
ence of solid suspension if the species is capable of partitioning into a solute phas
a solid phase sorbed onto the suspended particles. An asymptotic analysis is used
work to deduce the effective transport equations for the two phases, with kinetic so
exchange taken into account. The effects of sorption on the advection and dispersio
sorbing chemical are discussed and illustrated with a numerical example.
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1 Introduction
The concept of dispersion, first introduced by Taylor@1,2#, is

required to account for the longitudinal spreading of substan
such as pollutants in a pipe. The spreading is at a rate much f
than would result from diffusion~molecular or turbulent! alone.
The Taylor dispersion mechanism is one in which the transve
variation of longitudinal velocity and transverse diffusion intera
to result in an overall longitudinal mixing process that appe
Fickian. This enables the effective transport in a pipe to be
scribed by a one-dimensional advection-dispersion equation
which the dispersion coefficient is expressible in terms of the fl
and mixing characteristics.

Taylor @2# pioneered the work on dispersion in turbulent flo
through a pipe. Since then, the problem has been advanced
siderably. Nevertheless, existing analyses are mostly conce
with passive or chemically inert dispersants; a relatively few
investigations have studied the phase change effects on the t
port processes. Some authors~e.g., Smith@3,4# and Purnama@5#!
have demonstrated the boundary absorption/retention effect
dispersion in shear flow. Here we intend to show that the prese
of suspended particles also can have nontrivial effects on the
persion of a sorbing solute in turbulent pipe flow.

Sorption is a chemical process that may be in the form of
sorption, chemisorption, ion exchange, or absorption. It is a re
tion by which a chemical species is partitioned into a solute ph
that is miscible with the fluid and a solid phase that is sorbed o
some solid matter in contact with the fluid. The phase exchang
often reversible; the chemical changes forward and backward
tween the two phases depending on the concentration differe
Since typically the solid phase is immobile or moves more slow
than the fluid, such phase partitioning will lead to a diminish
advection speed, or retardation, of the chemical in the flow. O
processes like biodegradation, radioactive decay, and precipita
will reduce the concentration but may not slow down the mo
ment of the chemical as effectively as sorption. In this connect
sorption is accountable for the separation of the clouds of
miscible chemicals if they have vastly different affinities for
particular type of solid matter, which may exist on the pipe wall
suspended particles. As multispecies transport is very commo
practice, it is of practical value to look into this and other effe
of sorption on the transport; this motivates the present study.

Our specific objective here is to study the effects of sorpt
exchange on the transport of a sorbing solute in a pipe carr

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Sept.
2001; final revision, Oct. 24, 2002. Associate Editor: D. A. Siginer. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departme
Mechanical and Environmental Engineering University of California–Santa Barb
Santa Barbara, CA 93106-5070, and will be accepted until four months after
publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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turbulent flow laden with suspended particles. To this end,
employ an asymptotic method to deduce the effective~i.e.,
section-averaged! transport equations for the solute and the sorb
phases. The starting point is the conventional advection-diffus
equation, in which the diffusive flux is assumed to be linea
proportional to the concentration gradient. The turbulent diffus
coefficient, or eddy diffusivity, is a function of the flow. Despit
being phenomenological, such a classical approach in mode
turbulent mixing is still greatly favored in engineering applic
tions nowadays. More advanced methods, such as the M
Carlo techniques based on the statistical theory, have met s
success in some specific applications. These techniques are
ever typically computationally intensive and unwieldy for prac
cal use. By contrast, the method applied here, as presented b
can yield closed-form analytical expressions for the transport
efficients, thereby facilitating the discussion on the physi
effects.

Two previous works by the authors provide the basis for
present study. In Ng and Yip@6#, the transport in open-channe
flow of a chemical species under the influence of kinetic sorpt
exchange was investigated. It was demonstrated that the sor
kinetics can have nontrivial effects on the advection and disp
sion of a solute cloud, which are found to be functions of spa
and time depending on the local concentration of solid suspens
In Ng @7#, the classical problem of longitudinal dispersion of pa
sive heavy particles in turbulent pipe flow was re-examined.
pointing out that Elder’s,@8#, theory is defective, a formal expres
sion for the dispersion coefficient has been deduced with a
tematic asymptotic analysis. The present work, which is furt
described below, is essentially an extension of these two prev
works.

2 Problem Formulation
Consider radially symmetric steady flow in a horizontal circu

pipe of radiusa. Cylindrical coordinates (x,r ,u) are defined such
that x points downstream along the pipe axis,r is the radial dis-
tance from the axis, andu is the angle measured clockwise
viewed downstream, from the vertical. The flow carries a che
cal species as well as solid particles in suspension. The chem
exists primarily as a solute phase miscible with the fluid, an
solid phase sorbed onto the particles. The particle radius is
noted byaa, wherea,1 is the ratio of the radius of the particle
to that of the pipe. Because of their small yet finite size,
particles can have access only to a cross section of the pip
radius (12a)a. It is assumed that the presence of the partic
and the solute do not materially affect the flow. The solid partic
settle under gravity. The fall velocitywf is assumed to be con
stant. Turbulence in the flow is strong enough to entrain any
posited particles, and the particles stay in suspension mostly
the time. The particles are also assumed to contain high amo

6,
the
nt of
ara,
nal
03 by ASME Transactions of the ASME
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al
of sorbents, which are materials such as organic matter provi
a site onto which the chemical can be sorbed. The fraction
mass of the chemical in the two phases can therefore be com
rable with each other. For analytical simplicity, we further intr
duce the approximation that the eddy diffusivity is constant a
isotropic, and is the same for the particles and the solute.

Conservation of mass gives the following transport equation
the suspended particles:

]z

]t
1u

]z

]x
2

1

r

]

]r
~rw f cosuz!1

1

r

]

]u
~wf sinuz!

5
]

]x S E
]z

]xD1
E

r

]

]r S r
]z

]r D1
E

r 2

]2z

]u2
, (1)

wheret is the time,z(x,r ,u,t) is the particle concentration~mass
of suspended particles per bulk volume!, u(r ) is the time-
smoothed fluid velocity in the axial direction, andE is the eddy
diffusivity. The net flux vanishes on the pipe wall, so the bound
conditions are

wf cosuz1E
]z

]r
50 at r 5~12a!a. (2)

For the chemical that is partitioned between a dissolved ph
and a sorbed phase, the total mass concentrationCtot(x,r,u,t) ~total
mass of chemical per bulk volume! is

Ctot5C1Csz, (3)

whereC(x,r ,u,t) is the solute concentration~mass of dissolved
phase per bulk volume! andCs(x,r ,u,t) is the sorbate concentra
tion ~mass of solid phase sorbed onto unit mass of suspen
particles!. The transport of the chemical is governed by

]Ctot

]t
1u

]Ctot

]x
2

1

r

]

]r
~rw f cosuCsz!1

1

r

]

]u
~wf sinuCsz!

5
]

]x S E
]Ctot

]x D1
E

r

]

]r S r
]Ctot

]r D1
E

r 2

]2Ctot

]u2
, (4)

and the zero-flux boundary conditions

wf cosuCsz1E
]Ctot

]r
50 at r 5~12a!a. (5)

The range 0<u<2p for one period of phase angle is consi
ered. By continuity, all concentrations and their derivatives h
the same values at the two limits ofu; that is,

~z,C, . . . !u505~z,C, . . . !u52p . (6)

Sorption is a reversible reaction between the dissolved
sorbed phases of the chemical. The overall sorption rate ca
described by a linear kinetic sorption model

]Cs

]t
5kfC2kCs , (7)

wherekf andk are, respectively, the forward~sorption! and back-
ward ~desorption! rate constants for the sorption reaction. Wh
the steady state is attained or the reaction is fast compared
other processes, the two phases will be in chemical equilibri
Then the ratio of their concentrations will be given by

~Cs /C!equilib5kf /k[Kd , (8)

whereKd , defined as the sorption partition coefficient, is a ra
of the forward and backward rate constants for the processes
value of this coefficient tends to be large for a chemical which
a strong affinity for the solid matter. On substituting Eq.~8! into
Eq. ~7!, the first-order kinetics can be written as

]Cs

]t
5k~KdC2Cs!, (9)
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or the rate of change of the sorbate concentration is linearly p
portional to the departure from local equilibrium. The backwa
rate constantk will be simply referred to as the sorption rat
constant.

For the perturbation analysis, the order of magnitude of in
vidual terms in the governing equations and boundary conditi
~1!, ~2!, ~4!, ~5!, and~9! need be estimated. A similar exercise h
been carried out previously by Ng and Yip@6# for transport of a
sorbing solute in open-channel flow. Citing their results, we m
express these equations below, with a small ordering param
e!1 inserted to indicate the relative order of the terms. The sm
parametere can be taken as the ratio of the turbulent diffusivi
and longitudinal dispersion coefficient.

Now, the particle transport equation is

e
]z

]t
1eu

]z

]x
2

1

r

]

]r
~rw f cosuz!1

1

r

]

]u
~wf sinuz!

5e2E
]2z

]x2
1

E

r

]

]r S r
]z

]r D1
E

r 2

]2z

]u2
in 0,r ,~12a!a,

0,u,2p, 2`,x,`, t.0, (10)

with the boundary condition

wf cosuz1E
]z

]r
50 at r 5~12a!a. (11)

The chemical transport equation is

e
]Ctot

]t
1eu

]Ctot

]x
2

1

r

]

]r
~rw f cosuCsz!1

1

r

]

]u
~wf sinuCsz!

5e2E
]2Ctot

]x2
1

E

r

]

]r S r
]Ctot

]r D1
E

r 2

]2Ctot

]u2

in 0,r ,~12a!a, 0,u,2p, 2`,x,`, t.0,

(12)

with the boundary condition

wf cosuCsz1E
]Ctot

]r
50 at r 5~12a!a. (13)

The sorption kinetics equation is

e
]Cs

]t
5k~KdC2Cs!. (14)

Two pertinent time scales are to be accounted for in the pre
problem: T15L/ū for advection along the pipe, andT25L2/D
5O(e21T1) for longitudinal dispersion along the pipe, whereū
the discharge velocity,E the eddy diffusivity, andD the dispersion
coefficient. It is noted that the longitudinal dispersion is effecti
only at a time scale one order of magnitude longer than that
the advection.

Perturbation equations are now obtainable when the follow
multiple-scale expansions of the variables are substituted into
~10!–~14!:

~z,C,Cs!→~z0 ,C0 ,Cs0!1e~z1 ,C1 ,Cs1!1e2~z2 ,C2 ,Cs2!

1O~«3!, (15)

]/]t→]/]t11«]/]t2 . (16)

In the following sections, we will denote the cross-section
average by an overbar. For example, for any functiong(r ,u),

ḡ[
1

p~12a!2a2 E
0

2pE
0

~12a!a

grdrdu. (17)
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3 Transport of Suspended Particles
The leading-orderO(1) particle concentrationz0 can be writ-

ten as

z0~x,r ,u,t !5 f ~r ,u!z̄~x,t !, (18)

wherez̄ is the cross-sectional-average particle concentration,
f (r ,u) is the probability density function or particle distributio
function given by

f ~r ,u!5 f 0 expS 2
wf

E
r cosu D , (19)

which results from a balance between turbulent mixing and p
ticle settling. The constantf 0 is determined by the condition tha
the average of the distribution functionf over the effective cross
section of radius (12a)a is equal to unity~i.e., f̄ 51):

f 05
d~12a!

2I 1@d~12a!#
, (20)

where

d5wfa/E, (21)

is a form of the suspension number andI 1 is the modified Besse
function of the first kind of order one. The particles will be fin
enough to stay in suspension largely all the time; this is reali
whend is sufficiently small~Sumer@9#!.

At O(e), the perturbation equation after substituting Eq.~18! is

]z0

]t1
1u

]z0

]x
2

1

r

]

]r
~rw f cosuz1!1

1

r

]

]u
~wf sinuz1!

5
E

r

]

]r S r
]z1

]r D1
E

r 2

]2z1

]u2
, (22)

and the boundary condition is

wf cosuz11E
]z1

]r
50 at r 5~12a!a. (23)

On taking an average over the cross section and using the bo
ary conditions~23! and ~6!, Eq. ~22! yields the leading order
transport equation for the suspended particles

]z̄

]t1
1us

]z̄

]x
50, (24)

where

us5 f u (25)

is the effective advection velocity of the particles, which is
cross-sectional-average velocity weighted by the particle distr
tion factor f. As expected, only advection appears in this leadi
order equation.

One can easily show that

ū2us52~ f 21!~u2ū!. (26)

The difference between the discharge velocity and the effec
advection speed of the particles is related to the cross-sect
covariance between the particle concentration and the fluid ve
ity, which in general is negative. Hence, the particles are adve
at a speed slower than the discharge velocity.

On eliminating the unsteady term from Eqs.~24! and ~22!, we
get

f ~u2us!
]z̄

]x
5

1

r

]

]r F r S wf cosuz11E
]z1

]r D G
1

1

r

]

]u F2wf sinuz11
E

r

]z1

]u G . (27)
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It follows from Eqs.~27! and~23! that the following form for the
first-order particle concentrationz1(x,r ,u,t) can be suggested:

z1~x,r ,u,t !5N
]z0

]x
5N f

]z̄

]x
, (28)

where N5N(r ,u) is a cell function that describes the cros
sectional variation for theO(e) correction to the particle concen
tration and is governed by

f ~u2us!5
1

r

]

]r F r S wf cosu f N1E
] f N

]r D G1
1

r

]

]u F2wf sinu f N

1
E

r

] f N

]u G in 0,r ,~12a!a, 0,u,2p, (29)

with the boundary conditions

wf cosu f N1E
] f N

]r
50 at r 5~12a!a, (30)

N is finite at r 50. (31)

At O(e2), the perturbation equation is

]z0

]t2
1

]z1

]t1
1u

]z1

]x
2

1

r

]

]r
~rw f cosuz1!1

1

r

]

]u
~wf sinuz1!

5E
]2z0

]x2
1

E

r

]

]r S r
]z2

]r D1
E

r 2

]2z2

]u2
, (32)

and the boundary condition is

wf cosuz21E
]z2

]r
50 at r 5~12a!a. (33)

Using the boundary conditions~33! and ~6!, the cross-sectiona
average of Eq.~32! gives

]z̄

]t2
1

]z1

]t1
1u

]z1

]x
5E

]2z̄

]x2
. (34)

Further substituting~28! for z1 and ~24! for ]z̄/]t1 , the O(e2)
effective equation becomes

]z̄

]t2
5Ds

]2z̄

]x2
, (35)

where the diffusion coefficientDs is

Ds5E1DTs , (36)

in which the first component is the longitudinal eddy diffusivityE
and the second component is a Taylor dispersion coefficientDTs
formally given by

DTs52N f~u2us!, (37)

which will be determined in Section 5. TypicallyDTs@E, or the
dispersion dominates over the turbulent mixing in controlling t
spreading of the particles along the pipe.

Finally, we may combine Eqs.~24! and~35! to get the effective
transport equation for the particle concentrationz̄(x,t), which is
correct toO(e):

]z̄

]t
1us

]z̄

]x
5Ds

]2z̄

]x2
. (38)

4 Transport of a Sorbing Chemical Species
The preceding procedures of deduction are now applied to

transport of a sorbing chemical. Without repeating the steps
Transactions of the ASME



n
t
t

s

s
c

-

t

he
f
ion.
cts.

for
detail, only the key results are presented below. From Eq.~14!, the
phase partitioning between the dissolved and sorbed phases
local equilibrium only at the leading order:

Cs05KdC0 , (39)

whereCs0 andC0 are, respectively, the leading-order sorbate a
solute concentrations. Hence theO(1) total solute concentration
can be written as

Ctot 05C0~11Kdz0!5RC0 , (40)

where

R~x,r ,u,t !511Kdz0511Kdz̄~x,t ! f ~r ,u!>1 (41)

is the retardation factor resulting from the phase partitioni
Physically the retardation factor is the ratio of the total concen
tion to the solute concentration, and reflects the extent of sorp

TheO(1) solute transport Eq.~12! and boundary condition~13!
give thatC0 is independent ofr andu, or

C05C0~x,t ! and Cs05Cs0~x,t !5KdC0~x,t !. (42)

At the leading order, the solute and sorbate concentrations
locally uniformly distributed across the section of pipe.

At O(e), Eq. ~14! gives

]Cs0

]t
5k~KdC12Cs1!. (43)

Hence the rate of change of theO(1) sorbate concentration i
driven by the departure from local equilibrium between theO(e)
concentrations. The leading-order transport equation for the so
is obtained after taking the cross-sectional average of theO(e)
terms of Eq.~12!:

]C0

]t1
1uc

]C0

]x
50, (44)

whereC0(x,t) is the leading-order solute concentration, and

uc~x,t !5Ru/R̄ (45)

is the leading-order effective advection velocity for the dissolv
phase. This is essentially an average velocity weighted by
retardation factorR. One may infer from Eqs.~24! and ~44! that
the particles and the solute are in general advected at diffe
speeds because

uc5us1~ ū2us!/R̄5ū2~R̄21!~ ū2us!/R̄. (46)

The above relations give that the solute moves effectively fa
than the particles, but will be slower than the discharge velo
under the influence of sorption. If the chemical is nonsorbing
the particle concentration is zero,R becomes unity anduc5ū.

Similar to z1 in Eq. ~28!, the following form for C1 can be
suggested:

C1~x,r ,u,t !5P
]C0

]x
. (47)

The function P(x,r ,u,t), which is theO(e) correction of the
solute concentration, is given by

E

r

]

]r S rR
]P

]r D1
1

r

]

]u S ER

r

]P

]u D
5R~u2uc! in 0,r ,~12a!a, 0,u,2p,

(48)

with the boundary conditions

R
]P

]r
50, at r 5~12a!a, (49)

P is finite at r 50. (50)
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Now, we may obtain from Eqs.~28!, ~39!, ~43!, ~44!, and~47! the
following expressions for theO(e) correction to the sorbate con
centration and the total chemical concentration:

Cs1~x,r ,u,t !5KdS P1
uc

k D ]C0

]x
, (51)

and

Ctot 15S RP1
Kduc

k
z0D ]C0

]x
1KdN f

]z̄

]x
C0 . (52)

In order to ensure thatCtot 0 andz0 are correct toO(e), or their
first-order corrections are zero:Ctot 15z150, we add the condition
that

Ctot 150, (53)

which can be satisfied if, evident from Eq.~52!,

RP1Kdz0uc /k50 and N f50. (54)

Conditions similar to~54! have been applied by Chatwin@10#,
Mei @11#, and Ng and Yip@6#.

Subsequently, theO(e2) solute transport equation becomes

]C0

]t2
1uc8

]C0

]x
5

]

]x S Dc

]C0

]x D , (55)

where

uc8~x,t !52
Kd

R
~Ds1Dc!

]z̄

]x
(56)

is theO(e) correction to the advection velocity in whichDs is the
dispersion coefficient for the particles as given by Eq.~36!, and

Dc~x,t !5E1DTc1DKc (57)

is the effective dispersion coefficient for the solute. Similar toDs ,
the first component ofDc is the longitudinal eddy diffusivityE,
the second component is the Taylor dispersion coefficient

DTc~x,t !52RP~u2uc!/R̄, (58)

and the third component,DKc , is the sorption-kinetics-induced
dispersion coefficient formally given by

DKc~x,t !52
Kdz̄uc

kR̄2
~ f 21!~u2ū!, (59)

which is first obtained by Ng@12#.
On combining Eqs.~44! and~55!, we get an effective transpor

equation for the chemical with an error ofO(e2):

]C0

]t
1~uc1uc8!

]C0

]x
5

]

]x S Dc

]C0

]x D . (60)

It is remarkable that despite the strictly uniform flow both t
advection velocity and dispersion coefficient are functions ox
and t through dependence on the local particle concentrat
They are also functions of the hydrodynamic and sorption effe

5 Taylor Dispersion Coefficients
The Taylor dispersion coefficientsDTs andDTc , formally given

by Eqs.~37! and ~58!, rely on the functionsN and P, which are
governed by the boundary value problems~29!–~31! and ~48!–
~50!. These two problems can be solved, at least numerically,
any given velocity profileu(r ).

The problem~29!–~31! can be simplified to

¹̂•~ f ¹̂N![
1

r̂

]

] r̂ S r̂ f
]N

] r̂ D1
1

r̂ 2

]

]u S f
]N

]u D
5

f a

Ê
~ û2ûs! in 0, r̂ ,12a, 0,u,2p,

(61)
JULY 2003, Vol. 70 Õ 553



t

o
i

e
i

i

n.
-

i-

h
iri-

e

olu-
re

tion
sed.
en
]N

] r̂
50 at r̂ 512a, (62)

and

N is finite at r̂ 50, (63)

where the following normalized quantities~distinguished by a
caret! have been introduced:

r̂ 5r /a, û5u/u* , Ê5E/u* a, (64)

in which u* is the shear velocity, which equals the square roo
the wall shear stress divided by the fluid density. The functionN
can be called a cell function, since it governs the cross-secti
variations for the first-order correction to the mean concentrat
Using Eqs.~61! and ~62!, one can show that the dispersion coe
ficient DTs is always positive:

D̂Ts[DTs /u* a52N f~ û2ûs!/a5Êf u¹̂Nu2/a2.0. (65)

To seek a solution forN, we first expand the particle distribu
tion function f, defined by Eq.~19!, into the following series
~Abramowitz and Stegun@@13#, p. 376#!:

f 5 f 0 exp~2d r̂ cosu!5 f 0F I 0~2d r̂ !12(
k51

`

I k~2d r̂ !coskuG ,

(66)

wheref 0 andd are, respectively, given by Eqs.~20! and~21!, and
I k (k50,1,2, . . . ) is the modified Bessel function of the first kind
of order k. For simplicity, we shall from here on unless stat
otherwise write the modified Bessel functions without specify
their argument, which is understood to be (2d r̂ ). If the function
N( r̂ ,u), which should also be an even function ofu, is repre-
sented by its Fourier series:

N~ r̂ ,u!5a(
k50

`

Nk~ r̂ !cosku, (67)

the dispersion coefficient can then be found from Eq.~65!:

D̂Ts52
2 f 0

~12a!2 E
0

12aS (
k50

`

I kNkD ~ û2ûs! r̂ d r̂. (68)

A differential equation for the functionNk( r̂ ) can be derived by
plugging Eqs.~66! and~67! into ~61! followed by matching terms
of the k-harmonics. For this work, we shall be content with
solution containing up to the third harmonics. Hence, omitt
terms of higher harmonics, one may get after some algebra

1

r̂

d

dr̂ F r̂ I 0

dN0

dr̂ G5
I 0

Ê
~ û2ûs!

2
1

r̂

d

dr̂ F r̂ S I 1

dN1

dr̂
1I 2

dN2

dr̂
1I 3

dN3

dr̂ D G , (69)

1

r̂

d

dr̂ F r̂ ~ I 01I 2!
dN1

dr̂ G2
~ I 02I 2!N1

r̂ 2

5
2I 1

Ê
~ û2ûs!2

1

r̂

d

dr̂ F r̂ S 2I 1

dN0

dr̂
1~ I 11I 3!

dN2

dr̂

1I 2

dN3

dr̂ D G1
1

r̂ 2
@2~ I 12I 3!N213I 2N3#, (70)
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r̂

d

dr̂ F r̂ I 0

dN2

dr̂ G2
4I 0N2

r̂ 2

5
2I 2

Ê
~ û2ûs!2

1

r̂

d

dr̂ F r̂ S 2I 2

dN0

dr̂
1~ I 11I 3!

dN1

dr̂

1I 1

dN3

dr̂ D G1
1

r̂ 2
@2~ I 12I 3!N116I 1N3#, (71)

and

1

r̂

d

dr̂ F r̂ I 0

dN3

dr̂ G2
9I 0N3

r̂ 2

5
2I 3

Ê
~ û2ûs!2

1

r̂

d

dr̂ F r̂ S 2I 3

dN0

dr̂
1I 2

dN1

dr̂
1I 1

dN2

dr̂ D G
1

1

r̂ 2
@3I 2N116I 1N2#. (72)

The problem~61!–~63! admits an arbitrary constant of integratio
For simplicity, we letN equal zero atr̂ 50. Then the above equa
tions are subject to the boundary conditions

Nk~0!50, Nk8~12a!50 k50,1,2,3. (73)

Equations~69!–~72! are linear but coupled second-order ord
nary differential equations, in whichd, a, and Ê are the param-
eters. As in Elder@8#, the following defect law for the velocity
distribution is adopted:

û~0!2û~r !5F~ r̂ !, (74)

whereF is a universal distribution function for smooth or roug
turbulent flow in a straight pipe of circular cross-section. Emp
cal data for this function have been derived by Taylor@@2#, Table
1#. With Eq. ~74!, the velocity deviation from the mean can b
computed as follows:

û~ r̂ !2ûs~ r̂ !5û~ r̂ !2 f û5 f F2F~ r̂ !. (75)

An iterative numerical scheme has been used to obtain s
tions of ~69!–~72!. In each cycle of iteration, these equations a
solved by finite differences, one after the other, forN0 through
N3 , respectively, where on the right-hand side of each equa
the most recently updated values for the other functions are u
Convergence to the solutions is achieved within typically t
cycles of iteration.

In terms of normalized quantities introduced earlier in Eq.~64!,
the problem~48!–~50! can be written as

¹̂•~R¹̂P![
1

r̂

]

] r̂ S r̂ R
]P

] r̂ D1
1

r̂ 2

]

]u S R
]P

]u D
5

Ra

Ê
~ û2ûc! in 0, r̂ ,12a, 0,u,2p,

(76)

]P

] r̂
50 at r̂ 512a, (77)

and

P is finite at r̂ 50. (78)

As for N, we solve the problem forP( r̂ ,u) by first expanding
this function andR( r̂ ,u) into Fourier series

P~ r̂ ,u!5a(
k50

`

Pk~ r̂ !cosku, (79)
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R~ r̂ ,u!511Kdz̄ f ~r ,u!

5@11bzC f 0I 0#12(
k51

`

@bzC f 0I k#

5M0~2d r̂ !12(
k51

`

@Mk~2d r̂ !cosku#, (80)

where

zC5 z̄/ z̃, b5Kdz̃, (81)

and z̃ is a characteristic scale for the particle concentrati
The parameterb is the bulk solid-fluid distribution ratio of the
chemical.

Clearly, the functionsPk( r̂ ) for k50,1,2,3 can besolved using
the same set of Eqs.~69!–~73! where Nk( r̂ ), I k(2d r̂ ) and (û
2ûs) are replaced byPk( r̂ ), Mk(2d r̂ ) and (û2ûc), respec-
tively. One should note that, whileNk , I k , andûs are pure func-
tions of r̂ , their counterpartsPk , Mk , and ûc are functions ofx
and t as well because they depend onz̄(x,t).

The Taylor dispersion coefficient for the solute can then
evaluated using the following integral:

D̂Tc52
RP~ û2ûc!

R̄a
52

2

R̄~12a2!
E

0

12aS (
k50

`

MkPkD ~ û

2ûc! r̂ d r̂. (82)

Also, using Eqs.~76! and~77!, one may show thatD̂Tc is always
positive:

D̂Tc5ÊRu¹̂Pu2/a2.0. (83)

As noted above, whileD̂Ts is a constant,D̂Tc can vary withx and
t.

Recall that a positived means settling particles while a negativ
one means rising particles. SinceI 0 andI 2 are even functions and
I 1 and I 3 are odd functions and thereforeM0 and M2 are even
functions andM1 and M3 are odd functions correspondingly,
can be deduced that with respect tod, P0 , andP2 are even func-
tions while P1 and P3 are odd functions as well. Consequent
the dispersion coefficientD̂Tc is also an even function ofd, which
confirms that the solute dispersion is symmetrical with respec
the falling and rising of the particles.

As remarked earlier, the retardation factor and hence the ad
tion speed and dispersion coefficient for the solute depend on
local particle concentration, which varies in general with the ax
distance and time. By contrast, the advection speed and dispe
coefficient for the particles are independent of these variables.
solution sequence is to first find the particle distribution as a fu
tion of time, by which the advection speed and dispersion coe
cient for the solute can be evaluated, and then the chemical
centration can be solved also as a function of space and tim
numerical example is presented in the next section.

6 Numerical Example—A Continuous Discharge of a
Sorbing Chemical With a Pulse Input of Particles

To illustrate our theory, we consider an example of transpor
pipe flow of two phases subject to the effects of sorptive
change. This is a case in which a source discharges continuo
and steadily a soluble sorbing chemical well upstream into a
tion of long horizontal pipe carrying fully developed turbule
flow. Before the front of the chemical concentration is about
reach a point down gradient, a finite amount of particles is
leased as a pulse input into the flow at the point. Practically,
continuous source of chemical may correspond to leakage fr
for example, a chemical drum or a buried waste tank. Before
polluted fluid reaches downstream, some particles onto which
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chemical can be sorbed are released ahead of the pollutant f
The particles move slower than the flow and hence will be ov
taken by the chemical front. As the chemical front passes thro
the particle cloud, sorption takes effect and will affect the bre
through characteristics of the chemical.

We definex50 andt50 as the point and the time at which th
particles are released. By virtue of the particle transport Eq.~38!
which has constant coefficients, the particle concentration can
described by a Gaussian distribution in the frame (j5x2ust)
which moves at the speed of the center of mass of the par
cloud:

z̄~j,t !5
m

~4pDst !
1/2

expS 2
j2

4Dst
D for 2`,j,`, t.0,

(84)

wherem is the total mass of particle divided by the cross-sectio
area of the pipe, which by conservation of mass is the area u
the concentration distribution curve at any time:

E
2`

`

z̄dj5m for all t.0. (85)

Transforming from (x,t) to (j,t) and using Eq.~46!, the solute
transport Eq.~60! becomes

]C

]t
1F ū2us

R̄
1uc8G ]C

]j
5

]

]j S Dc

]C

]j D , (86)

where the leading order subscript has been suppressed. This
rate of change of solute concentration as observed from the ce
of the particle cloud. Because of the apparent advection~inside
the square brackets! which is mostly positive, the solute front wil
catch up and eventually pass the particle cloud.

For a continuous discharge from upstream, the boundary c
ditions are

C~j,t !→C2`5constant asj→2`, (87)

C~j,t !→0 as j→` for finite t, (88)

and

C~j,t !→C2` for finite j as t→`. (89)

The chemical concentration is maintained at a constant valueC2`
far upstream. Further suppose that when the particles are rele
or at t50, the chemical source has been operating for a perio
time tc . An initial chemical concentration distribution satisfyin
Eqs.~86!–~89! can then be obtained as follows:

C~j,0!5
C2`

2
erfcS j2j0

~4Dctc!
1/2D , (90)

where erfc is the complementary error function, andj0 is the
initial position of the center of the front att50, which is the point
where the concentration is half the maximum value. The fron
initially far upstream from the particle discharge pointx50, and
thereforej0,0.

Let us recall Eq.~64! and introduce the following additiona
normalized quantities~distinguished by a caret!:

~j,j0!5L~ ĵ,ĵ0!, ~ t,tc!5~L2/u* a!~ t̂, t̂ c!, z̄5~m/L !zC ,

~C,Ctot!5C2`~Ĉ,Ĉtot!, ~Ds ,Dc!5u* a~D̂s ,D̂c!,

~ ū,us ,uc ,uc8!5u* ~uC ,ûs ,ûc ,ûc8!, b5Kdm/L, (91)

whereu* is the shear velocity, andL is a longitudinal length scale
for the transport. In terms of the normalized quantities, the eq
tions can be expressed as follows. The particle concentration
tribution is
JULY 2003, Vol. 70 Õ 555



556 Õ Vol. 7
Fig. 1 Distributions of the particle concentration zR , solute Taylor dispersion coefficient D̂Tc ,
sorption-kinetics-induced dispersion coefficient D̂Kc , and drifting velocity û d for Case 1 „bÄ1…
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zC ~ ĵ, t̂ !5~4pD̂st̂ !
21/2 expS 2

ĵ2

4D̂st̂
D , (92)

while the particle distribution factorf is

f ~ r̂ ,u!5 f 0 exp~2d r̂ cosu!. (93)

The retardation factorR is

R~ ĵ, r̂ ,u, t̂ !511b f zC and R̄~ ĵ, t̂ !511bzC . (94)

Transport of the chemical is governed by

]Ĉ

] t̂
1ûd

]Ĉ

]ĵ
5

]

]ĵ
S D̂c

]Ĉ

]ĵ
D , (95)

whereûd is the drifting velocity given by

ûd~ ĵ, t̂ !52
L

aR̄
~ f 21!~ û2uC !2

b

R̄
~D̂s1D̂c!

]zC

]ĵ
, (96)

which has been normalized with respect toau* /L, and describes
how fast the dissolved phase of the chemical moves relative to
particle cloud. Ignoring the components due to the longitudi
eddy diffusivity, the dispersion coefficients are computed us
the formulas:D̂s5D̂Ts is given by Eq.~68!, and

D̂c~ ĵ, t̂ !5D̂Tc1D̂Kc , (97)

whereD̂Tc( ĵ, t̂) is given by Eq.~82!, and

D̂Kc~ ĵ, t̂ !52bgzC ûc ~ f 21!~ û2uC !/R̄2, (98)

where
0, JULY 2003
the
al

ng

g5u* /ka (99)

is the sorption kinetics parameter, which should be of order un
or greater.

For convenience, we may choose that initially 4D̂ct̂c51, and
therefore the initial condition~90! is simplified to

Ĉ~ ĵ,0!5
1

2
erfc~ ĵ2 ĵ0!. (100)

The integral in Eq.~85! now becomes

E
2`

`

zCdĵ51, for all t̂.0, (101)

which provides a check for computational accuracy.
Equation~95! is solved numerically using a standard secon

order implicit scheme of forward-time and central space diff
ences. Approximation of the differential equation by implicit fini
differences produces a tridiagonal linear system which can
solved with a simple routine. The condition in~101! is checked by
numerical integration at each time step to ensure that mass
servation is observed throughout the computation. Sufficien
small spatial discretizations (Dĵ50.01, D r̂ 50.0005) and time
step (D t̂50.002) have been used so that the maximum erro
kept below 1%. General considerations~e.g., numerical dispersion
and artificial oscillation! in applying a numerical scheme to th
kind of problem can be found in Wood@14# and Zheng and Ben-
nett @@15#, Chap. 6#.
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Fig. 2 As Fig. 1, but for Case 2 „bÄ5…
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7 Discussion
To examine the effects of sorption, we have generated com

tational results for three different values of the bulk solid-flu
distribution ratio, which areb51 ~Case 1!, b55 ~Case 2!, and
b510 ~Case 3!. Cases 1 through 3 correspond to an increasin
large fraction of mass of the chemical in the sorbed form. For
other parameters, the following values are chosen for all the th
cases:d51, g550, L/a5100, ĵ05210, Ê50.1, anda50. The
fairly large g550 means a rather strong sorption kinetics or
small sorption rate constant. The vanishing particle-to-pipe rad
ratio, a50, means that the particle size is negligibly small co
pared with the pipe radius.

Based on some empirical data for the eddy diffusivity as
function of r, Taylor @2# evaluated that the dispersion coefficie
for an inert solute in turbulent flow through a pipe was 10.06u* a.
However, should one use the classical logarithmic velocity de
law, one would obtain a value of 5.11u* a for the dispersion co-
efficient. In this work, it has been assumed for the sake of an
ticity that the eddy diffusivity is constant. A value ofÊ50.1,
which corresponds to the core value in a parabolic-constant
tribution for the eddy diffusivity, is chosen for the present e
ample. This choice of eddy diffusivity yields a dispersion coe
cient of 5.36u* a for an inert solute, which is somewhat differe
from Taylor’s value, but close to the one obtained with the vel
ity defect law. Anyhow, since our interest is in the relative chan
brought about by sorptive exchange to the dispersion and ad
tion processes, the absolute value for a dispersion coefficie
immaterial to the discussions here.

Also, the suspension numberd50.1 yields a dispersion coeffi
cient D̂s55.94u* a for the suspended particles, which is slight
greater than that for a solute~i.e., a neutrally buoyant phase!. The
pplied Mechanics
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effect of the suspension numberd on the dispersion coefficientDs
has been discussed by Ng@7#. By and large, the dispersion coe
ficient will increase withd as long asd,2 ~i.e., relatively fine
particles!, and beyond this limit the dispersion coefficient w
decrease with increasingd. To be consistent with the assumptio
that the particles will remain in suspension mostly all the time
small value ofd50.1 has been used for this numerical examp
The calculated values forū andus are, respectively, 17.74u* and
17.53u* , so the particle advection velocity is only 1% lower tha
the discharge velocity.

Figures 1–3 show the spatial distributions ofzC , D̂Tc , D̂Kc , and
ûd at instantst̂50.1, 1.0, 2.0, and 3.0 for the three values ofb.
One can see from these plots how the dispersion coefficients
the drifting velocity for the chemical, which are functions of th
particle concentration, vary with distance along the pipe and ti
In the absence of particles at largeu ĵu, D̂Tc reduces to the value
for an inert solute, whileD̂Kc drops to zero. In all cases,D̂Tc is
only slightly increased by the presence of particles~,10%!. The
distribution and magnitude ofD̂Kc is much affected by the degre
of sorptive exchange, as is expected. We observe that for a s
ciently large value ofg andb, the sorption-kinetics-induced dis
persion coefficientD̂Kc always dominates over the Taylor dispe
sion coefficientD̂Tc as long as the particle concentration is finit
In these three cases,D̂Kc can be as much as one order of mag
tude larger thanD̂Tc at the center of the particle cloud. It is als
worth noting that in Cases 2 and 3, there exist two local maxi
of D̂Kc at early interaction of the solute and particles. The parti
concentration gradient leads to a distinct distribution of the dr
ing velocity ûd , which exhibits a maximum downstream and
minimum upstream of the center of the particle cloud. The mi
JULY 2003, Vol. 70 Õ 557



558 Õ Vol. 70
Fig. 3 As Fig. 1, but for Case 3 „bÄ10…
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mum ûd can even be negative at early stages in Cases 2 an
Physically it means that the chemical is being advected at a fa
rate if downstream from the particle cloud center, but a slower
~even in the opposite direction! if upstream. This will effectively
cause additional dispersion on the spreading of the chemical f
as it passes through the particle cloud.

Snapshots of the concentration distributions forĈ ~solid
curves! and zC ~dashed curves! are plotted in Fig. 4 for the three
cases. This figure shows the changes in the profile of the chem
concentration front in the course of the chemical overtaking
particle cloud. It is obvious that in Cases 2 and 3 the chem
front changes its shape from concave down initially to concave
as it passes through the particle cloud. In such cases, the sor
kinetics is strong while the sorption partition is high: The spre
ing of the chemical front is greatly influenced by the presence
the distribution of the particles. Of course, when the front h
largely passed through the particle cloud, its profile recovers
S-shape.

The following statistical parameters~i! the location of the cen-
ter of the frontĵc , ~ii ! the variances2, and~iii ! the skew coeffi-
cientx can be used to characterize the distribution of the chem
concentration front. Their definitions are as follows:

ĵc5
m1

m0
, (102)

s25
1

m0
E

2`

`

~ ĵ2 ĵc!
2S 2

dĈ

dĵ
D dĵ5

m2

m0
2

m1
2

m0
2

, (103)
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x5
1

~s2!3/2m0
E

2`

`

~ ĵ2 ĵc!
3S 2

dĈ

dĵ
D dĵ

5
1

~s2!3/2Fm3

m0
23

m1

m0

m2

m0
12

m1
3

m0
3G , (104)

wheremn is thenth integral moment of2dĈ/dĵ:

mn5E
2`

`

ĵnS 2
dĈ

dĵ
D dĵ. (105)

We remark that the rate of increase of the variances2 gives the
rate of broadening of the front. In particular, for an S-curve giv
by the complementary error function~90!, ĵc is the location of the
center where the function value is half the maximum value a
the slope is the steepest. Also, the skew coefficientx of this func-
tion is zero because of its symmetry in slope about the cente

The three parameters are plotted as functions of time for
three cases in Fig. 5. For comparison, the corresponding va
for a nonsorbing chemical is also plotted. On comparing with t
limiting case, one can readily observe that the sorptive excha
can cause the following effects as soon as the chemical f
interacts with the suspension cloud. First, the rate of movemen
the front is reduced. This would delay the arrival of the maximu
impact of the chemical at a certain point in the pipe downstrea
Second, the rate of broadening of the front is increased. Third,
S-symmetry of the front is destroyed. The skew coefficient
creases from zero initially to a positive value as the leading par
the front~i.e., the part ahead of the inflexion point! disperses more
extensively than the trailing part~i.e., the part behind the inflexion
Transactions of the ASME
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Fig. 4 Snapshots of the distributions of the solute concentration Ĉ„ ĵ, t̂ … „solid lines …

and the particle concentration zR „ ĵ, t̂ … „dashed lines … for Cases 1, 2, and 3. The dotted
lines represent the limiting case when the chemical is non-sorbing or the sorptive
exchange is nil.

Fig. 5 The location of the center ĵc , the variance s2, and the skew coefficient x for
the chemical front as a function of time t̂ for Cases 1, 2, and 3. The dotted lines
represent the limiting case when the chemical is nonsorbing or the sorptive exchange
is nil.
echanics JULY 2003, Vol. 70 Õ 559
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point!. The skew coefficient soon turns to negative as the inflex
point of the front overtakes the suspension cloud center.
skewness then stays negative for some time before gradually
ting back to zero, implying a long tail of concentration defect
the trailing part of the front. The concentration does not reach
maximum level until the center of the front has long passed
particle cloud. All these above-mentioned effects are the m
extensive for Case 3, in which the sorption kinetics is the str
gest and the mass fraction of chemical sorbed on the particle
the largest.

8 Summary and Concluding Remarks
In this paper we have used an asymptotic method to ob

effective transport Eqs.~38! and ~60! for suspended particles an
a sorbing solute in a steady fully developed turbulent pipe fl
The key assumptions for the analysis include~i! the pipe radius is
much smaller than the longitudinal length-scale of transport;~ii !
the time-scale for transverse turbulent diffusion is much sho
than that for longitudinal advection;~iii ! the height of distribution
of suspended particles is comparable to the pipe diameter;~iv! the
time-scales for sorption kinetics and transverse turbulent diffus
are comparable to each other;~v! there is a finite fraction of mas
of the chemical in sorbed form; and~vi! the sorptive exchange i
described by a first-order kinetics relation. Because of phase
titioning and sorption kinetics, the advection velocity and disp
sion coefficient for the chemical transport are shown to be fu
tions of longitudinal distance and time via dependence on
local particle concentration. The settling of particles renders
advection speed of suspended cloud slower than that of the ch
cal, which in turn is smaller than the discharge velocity. The d
persion coefficient has two components:~i! DTc , a Taylor disper-
sion coefficient, which because of phase partitioning is gre
than the clear water value; and~ii ! DKc , a sorption-kinetics-
induced dispersion coefficient, which is proportional to the cro
sectional covariance between the fluid velocity and particle c
centration profiles, and inversely proportional to the sorption r
constant. These coefficients are essentially controlled by three
rameters: suspension number~d!, bulk solid-fluid distribution ratio
~b! and the sorption kinetics parameter~g!.

With a numerical example, we have examined the effects
kinetic sorptive exchange on the concentration front distribut
of a sorbing chemical discharged continuously into a pipe, as
front interacts with a finite cloud of suspension. When sorpt
effects are strong, the sorption-kinetics-induced dispersion co
cientDKc dominates and the longitudinal variations of the adv
tion velocity can add to broaden the distribution. As a result,
concentration front deviates from an error function type of pro
560 Õ Vol. 70, JULY 2003
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soon after interacting with the solid suspension cloud. In su
mary, the sorptive exchange can be very influential in govern
the advection speed, the rate of broadening and the extent o
parture from symmetry of the distribution of a sorbing solute,
the suspended particles are rich in sorbents or sites for sorpt

The use of the above-mentioned effects in controlling pollut
transport in pipe flow is of great potential value and deser
more in-depth future investigations including experiments. It
also worth extending the present analysis to the case when
particles are so heavy that they fall out of suspension soon a
release into the flow, and thereafter form a layer of immob
reactive sediment on the pipe wall.

Acknowledgments
The research was sponsored by the Hong Kong Rese

Grants Council under Grants HKU 7117/99E and HKU 7081/02
The first author was supported financially by a Post-Doctoral F
lowship for the Area of Excellence in Harbor and Coastal En
ronment Studies.

References
@1# Taylor, G. I., 1953, ‘‘Dispersion of Soluble Matter in Solvent Flowing Slow

Through a Tube,’’ Proc. R. Soc. London, Ser. A,219, pp. 186–203.
@2# Taylor, G. I., 1954, ‘‘The Dispersion of Matter in Turbulent Flow Through

Pipe,’’ Proc. R. Soc. London, Ser. A,223, pp. 446–468.
@3# Smith, R., 1983, ‘‘Effect of Boundary Absorption Upon Longitudinal Dispe

sion in Shear Flow,’’ J. Fluid Mech.,134, pp. 161–177.
@4# Smith, R., 1995, ‘‘How Far Can a Boundary Coating Material be Carr

Downstream in Turbulent Pipe Flow?’’ J. Eng. Math.,29, pp. 51–62.
@5# Purnama, A., 1988, ‘‘Boundary Retention Effects Upon Contaminant Disp

sion in Parallel Flows,’’ J. Fluid Mech.,195, pp. 393–412.
@6# Ng, C. O., and Yip, T. L., 2001, ‘‘Effects of Kinetic Sorptive Exchange o

Solute Transport in Open-Channel Flow,’’ J. Fluid Mech.,446, pp. 321–345.
@7# Ng, C. O., 2002, ‘‘On the Longitudinal Dispersion of Heavy Particles in

Horizontal Circular Pipe,’’ Int. J. Eng. Sci.,40, pp. 239–250.
@8# Elder, J. W., 1959, ‘‘The Dispersion of Marked Fluid in Turbulent She

Flow,’’ J. Fluid Mech.,5, pp. 544–560.
@9# Sumer, B. M., 1974, ‘‘Mean Velocity and Longitudinal Dispersion of Heav

Particles in Turbulent Open-Channel Flow,’’ J. Fluid Mech.,65, pp. 11–28.
@10# Chatwin, P. C., 1970, ‘‘The Approach to Normality of the Concentration D

tribution of a Solute in a Solvent Flowing Through a Straight Pipe,’’ J. Flu
Mech.,43, pp. 321–352.

@11# Mei, C. C., 1992, ‘‘Method of Homogenization Applied to Dispersion in P
rous Media,’’ Transp. Porous Media,9, pp. 261–274.

@12# Ng, C. O., 2000, ‘‘Dispersion in Particle-Laden Stream Flow,’’ J. Eng. Mec
126~8!, pp. 779–786.

@13# Abramowitz, M., and Stegun, I. A., 1972,Handbook of Mathematical Func-
tions, Dover, New York.

@14# Wood, W. L., 1993,Introduction to Numerical Methods for Water Resource,
Oxford University Press, New York.

@15# Zheng, C., and Bennett, G. D., 1995,Applied Contaminant Transport Model
ing, Van Nostrand Reinhold, New York.
Transactions of the ASME



. The
opic
of the
all
G. M. L. Gladwell
Department of Civil Engineering,

University of Waterloo,
Waterloo, Ontario N2L 3G1, Canada

M. M. Khonsari
Fellow ASME

Y. M. Ram
Mem. ASME

Department of Mechanical Engineering,
Louisiana State University,

Baton Rouge, LA 70806

Stability Boundaries
of a Conservative Gyroscopic
System
Depending on the speed of rotation, a gyroscopic system may lose or gain stability
paper characterizes the critical angular velocities at which a conservative gyrosc
system may change from a stable to an unstable state, and vice versa, in terms
eigenvalues of a high-order matrix pencil. A numerical method for evaluation of
possible candidates for such critical velocities is developed.@DOI: 10.1115/1.1574062#
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1 Introduction
Problems involving infinitesimal oscillations of particles an

bodies attached to rotating frames lead to the quadratic eigenv
problem

~l2M1vlG1K2v2R!v5o, M ,G,K ,RPRn3n, vÞoPCn

(1)

whereM , K , andR are symmetric positive definite matrices,G
52GT is a skew-symmetric matrix,v is the angular velocity of
the rotating frame, andn denotes the number of degrees-o
freedom in the system.

The system is said to be~weakly! stableif there exist no initial
conditions causing the response of the system to increase
time without bound. Denote the two-variable matrix pencil

P~l,v!5l2M1vlG1K2v2R, (2)

and letl i , i 51,2, . . . ,2n, be the eigenvalues of~1!, satisfying

P~l i ,v!=det~P~l i ,v!!50. (3)

Then the system~1! is stable if all of its eigenvalues are pure
imaginary and distinct, i.e.,

Re~lk!50, k51,2, . . . ,2n; l iÞl j for iÞ j . (4)

If at least one of the eigenvalues of~1! has a nonvanishing rea
part, or if lk is a purely imaginary eigenvalue of multiplicityp
.1, and there are notp linearly independent eigenvectors asso
ated with it, then the system is unstable.

Note that this criterion gives no indication regarding the ran
of v for which the system is stable or not. The essential prob
treated in this paper is the determination of the critical values
v, for which the system~1! may change from a stable state
unstable state and vice versa. These critical values are pos
stability boundaries, @1#.

There exists a wealth of literature associated with proper
and stability of gyroscopic systems containing various results
volving necessary or sufficient conditions for stability, which a
based on matrix properties and inequalities, see, e.g.,@2–8#. Ve-
selić @9# and Hryniv and Lancaster@10# have investigated the
stability of gyroscopic system in the context of the two-parame
matrix pencil~2!. They have determined conditions ensuring th
gyroscopic systems are stable for all sufficiently large values ov.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
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The behavior of the eigenvalues of gyroscopic systems has b
also studied by Seyranian and Kliem in@11# and Seyranian et al
in @12#. In an important work, Afolabi@13# has characterized the
stability boundaries via explicit expansion of the characteris
polynomial. Afolabi found that the stability boundaries are det
mined by the roots of the discriminant of the characteristic E
~3!, and by other values ofv which cause the absolute term of th
characteristic equation~i.e., the term which is independent ofl! to
vanish. However, explicit expansion of the characteristic poly
mial ~3! involves symbolic manipulations of the order ofn! op-
erations. The results presented here may be regarded as the m
analogues of Afolabi’s criteria. We characterize the possible
bility boundary in terms of the eigenvalues of a certain mat
eigenvalue problem, without requiring the expansion of the ch
acteristic polynomial. It is shown that evaluation of all possib
stability boundaries can be achieved by using numerical pro
dures including polynomial fitting, interpolation, and eigenval
extraction. We note that the reduction of the stability character
tion problem into such paradigms is intended for the sake of c
ity rather than computational efficiency.

We remark that in this work we are interested only in the d
termination of possible stability boundaries. The other import
problem of determining whether, while crossing the critical valu
of v, the system actually changes its nature from stable to
stable and vice versa, is not studied here. Once the stab
boundaries are found, determination of the system stability wit
a particular stability interval is obtained using criterion~4!, ap-
plied to a typical system within the stability interval.

The motivation for the study is presented in Section 2. It
shown that, with certain simplifying assumptions, the motion
particles and elastic bodies in rotating frames is characterized
the quadratic eigenvalue problem~1!. Although the literature con-
tains many papers and books on gyroscopic system modeling
stability analysis in some studies has been devoted to probl
involving generalization of the eigenvalue problem~1!. Such a
generalization may include for example an additional ske
symmetric stiffness matrix in~1!. The materials presented in nex
section demonstrate that the fundamental physical problem
volving rotation of rigid bodies with constant angular speed
formulated by the eigenvalue problem~1!. It is also apparent from
the formulation that if the system rotates with variable angu
speed, then an additional skew-symmetric stiffness matrix
added to the formulation~1!, but in this casev is time-dependent
and the problem cannot be reduced to the form~1!. In Section 3
we show that the stability boundaries are distinguished by
existence of repeated eigenvalues. We then use this criterio
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003 by ASME JULY 2003, Vol. 70 Õ 561
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Section 4 to obtain a numerical method, allowing numeri
evaluation of all possible stability boundaries. Examples dem
strating the results are presented in Section 5.

2 Modeling of Gyroscopic Systems
Consider an inertial Cartesian coordinate systemO(XYZ). Let

O(xyz) be a rotating coordinate system with the same origin, a
let P be a moving particle of massm. Denote the position ofP in
the inertial and rotating coordinate systems by the vectorsr andu,
respectively, as shown in Fig. 1. Then

r5u. (5)

Upon differentiating~5! with respect tot twice, we obtain

d2r

dt2
5ü12v3u̇1v3~v3u!1v̇3u, (6)

wherev is the angular velocity vector ofO(xyz), time differen-
tiation in the inertial coordinate systemO(XYZ) is denoted by
d/dt, and dots represent time differentiation with respect to
observer in the rotating system. By virtue of~6!, Newton’s second
law takes the form

f5m~ ü12v3u̇1v3~v3u!1v̇3u! (7)

wheref is the resultant of forces applied toP, andu̇ andü are the
relative velocity and acceleration ofP with respectO(xyz). Let
g1 , g2 , andg3 be the direction cosines ofv in O(XYZ). Then

v5v~g1 g2 g3!T, (8)

wherev is the magnitude ofv. Hence,

2mv3u̇5vF 0 22mg3 2mg2

2mg3 0 22mg1

22mg2 2mg1 0
G S u̇1

u̇2

u̇3

D =vGu̇,

(9)

mv3~v3u!5mv2F 2g2
22g3

2 g1g2 g1g3

g1g2 2g1
22g3

2 g2g3

g1g3 g2g3 2g1
22g2

2
G S u1

u2

u3

D
=2v2Ru, (10)

with the obvious definition ofG andR.
If the forces applied toP are proportional to the displaceme

of the particle relative to the moving frame, as shown in Fig.
where the particle is supported by springs attached to the rota
frame, then

f52Ku (11)

where K is a positive semi-definite symmetric stiffness matr
Hence provided that the angular velocity ofO(xyz) is constant,
the eigenvalue problem~1! is obtained from~7! by virtue of ~9!,
~10!, ~11! andM5mI , whereI is the identity matrix.

Fig. 1 The position of P
562 Õ Vol. 70, JULY 2003
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The eigenvalue problem~1! is also associated with motion of
multidegree-of-freedom vibrating system attached to a fram
which rotates with constant angular velocity. It generalizes na
rally to a distributed parameter rotating system whose motion
governed by partial differential equations. Consider, for examp
a rotating shaft with constant angular velocityv, such as that
shown in Fig. 3~a!. Using a rotating coordinate systemO(xyz) we
obtain from Newton’s second law~7! applied to an infinitesimal
elementP of lengthdz

f5~ ü12v3u̇1v3~v3u!!mdz (12)

where m is the mass per unit length of the shaft, andu(t)
5(u1 u2)T denotes the displacement of the element in thex and
y-direction. The free-body diagram shown in Fig. 3~b! gives

f5s8dz, (13)

wheres is the shear force vector,

s52~EIu9!8, (14)

Fig. 2 A particle in a rotating frame

Fig. 3 A continuous gyroscopic system: „a… a rotating shaft,
and „b… a free-body diagram for a typical element
Transactions of the ASME
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E is the modulus of elasticity,I is the moment of inertia of the
shaft, and prime denotes differentiation with respect toz. Com-
bining ~12!–~14!, wherev5(0 0v)T, gives the equations of mo
tion for small oscillations of the rotating shaft

S EIu19

Elu29
D 9

1mS ü1

ü2
D12mvF0 21

1 0 G S u̇1

u̇2
D1mF2v2 0

0 2v2G S u1

u2
D

5S 0
0D . (15)

Finite difference approximation of this equation leads to the
genvalue problem~1!. It is important in practical applications to
be able to determine the range ofv for which the system~15! is
stable. This essential problem is studied here.

3 Characterization of the Stability Boundaries
Due to Duffin @5#, Barkwell and Lancaster@4#, Lancaster and

Zizler @6#, and many others, the properties of gyroscopic syste
are well understood. For the sake of completion and s
sufficiency, we redevelop, state, and highlight in this section so
of the properties applicable to the quadratic eigenvalue prob
~1!.
Proposition 1. If l is a root ofP(l,v) of multiplicity p>1 then
2l, l̄ and 2l̄ are roots ofP(l,v) of the same multiplicity,
where bar demotes complex conjugation.
Indeed,

P~2l,v!5det~l2M2lvG1K2v2R!

5det~l2M2lvG1K2v2R!T5P~l,v!, (16)

sinceM , K , andR are symmetric andG52GT. Moreover, given
that v is real, the rootsl i of P(l,v) must form a self-conjugate
set, which completes the proof of the proposition.

The stability criterion~4! follows from Proposition 1. More-
over, since the eigenvalues are continuous functions ofv, it fol-
lows from the double symmetry property expressed by Prop
tion 1 that
Proposition 2. The system~3! may lose or gain stability only
whenl is a root ofP(l,v) of multiplicity p.1.

Note that the condition in Proposition 2 is necessary but
sufficient. The system will not necessarily lose or gain stability
a value ofv for which P(l,v) has a multiple root. Figure 4~a!
shows schematically how the system may lose stability when,
to a small perturbation inv, two pairs of repeated eigenvalue
separate and leave the imaginary axis. Figure 4~b! shows how the
system may gain stability when two pairs of eigenvalues conve
to the imaginary axis. Near these values ofv the equation
P(l,v)50 has eigenvalues that are near each other.

In light of Proposition 1 we may arrange the roots ofP(l,v),
for a fixed value ofv, such thatl i52ln1 i for i 51,2, . . . ,n, and
obtain

P5a)
i 51

n

~l2l i !~l1l i !5a)
i 51

n

~l22l i
2!, (17)

wherea is a constant. Moreover, sinceP(l,v)5P(l,2v), we
have the following:
Proposition 3. The polynomialP(l,v) contains only even pow-
ers ofv andl.
and
Proposition 4. If l50 is a root ofP(l,v) then it is of even
multiplicity.

4 Evaluation of the Stability Boundaries
We will now show how the values ofv, for which the polyno-

mial P(l,v) has a rootl5l i of multiplicity p.1, can be found.
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These multiple roots determine the stability boundaries via Pro
sition 2.

By Proposition 3

P~l,v!5(
k50

n

Qn2k~v!l2k (18)

whereQm(v) is a polynomial inv of maximal degree 2m. We
differentiate~18! with respect tol and obtain

]P

]l
52l(

k50

n21

~k11!Qn2k21~v!l2k=2lS~l,v!, (19)

with the obvious definition ofS(l,v). A necessary and sufficien
condition forl i to be a nonsimple root ofP for a fixed value ofv,
is thatl i is a root of bothP and]P/]l. Since, independent ofv,
l50 is a root of]P/]l, we conclude that eachv that satisfies
P(0,v)50 is a possible stability boundary. It thus follows from
~2! and ~3! that

Proposition 5. The positive eigenvaluesl i of K2l2R determine
possible stability boundaries of~1!.

Note that sinceK and R are symmetric and positive definit
matrices, the rootsl2 of det(K2l2R) are all positive. This crite-
rion is in principle equivalent to that of Afolabi@13#, requiring the
absolute term of the characteristic polynomial to vanish.

We now show how the other stability boundaries associa
with the multiple rootsl iÞ0 of P(l,v) can be found. The prob-
lem under consideration is essentially one of solving simu
neously the two-variable polynomialsP(l,v)50 and S(l,v)
50 for their common rootsl i andv i .

We denote the following bigradient matrix:

Fig. 4 Eigenvalue change due to a small perturbation in v
near the stability boundaries: „a… losing stability, and „b… gain-
ing stability
JULY 2003, Vol. 70 Õ 563



(20)
Then, by elimination~see, e.g.,@14#!, l is a common root of
P(l,v) andS(l,v) if and only if det(B)50. This condition al-
lows evaluation of all values ofv that determine the other pos
sible stability boundaries associated with the repeated eigenva
l iÞ0.

There are two remaining issues. One involves a method of
termining Qi(v) for i 51,2, . . . ,n. The other issue involves de
termining the values forv which render det(B)50. We first ad-
dress the second issue, assuming thatQi(v) are known.

We define the coefficients ofQk(v) as follows:
564 Õ Vol. 70, JULY 2003
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Qk~v!5(
j 50

k

qj
~k!v2 j , (21)

and denoteqm
(k)50 whenm.k. ThenB can be written as

B5(
j 50

n

v2 jBj , (22)

whereBj are constant matrices
Bj53
qj

~0! qj
~1!

¯ qj
~n!

qj
~0! qj

~1!
¯ qj

~n!

� � � �

qj
~0! qj

~1! qj
~2!

¯ qj
~n!

nqj
~0! ~n21!qj

~1!
¯ qj

~n21!

nqj
~0! ~n21!qj

~1!
¯ qj

~n21!

� � � �

nqj
~0! ~n21!qj

~1!
¯ qj

~n21!

4 . (23)
ei-

.

Note that the leading matrix in~22!,

Bn5FO qn
~n!In21

O O
G , (24)

is singular. The values ofv which lead to repeated eigenvalue
l iÞ0 of P are the finite eigenvalues of

~B01v2B11 . . . 1v2nBn!v5o, (25)

and we have the following.
Proposition 6.The positive eigenvaluesl i be of the matrix pencil
~25! determine possible stability boundaries of~1!.

A first-order realization of~25! is given by
s

F I

I

�

B0

G S v2n22v
v2n24v

]

v
D

2v2F O I

O �

� I

2Bn 2Bn21 ¯ 2B1

G S v2n22v
v2n24v

]

v
D 5S o

o
]

o
D .

(26)

Hence, the stability boundaries are determined by finding the
genvalues of~26!. SinceBn is singular the system~25! has some
unbounded eigenvalues which can be eliminated by deflation

The problem of evaluating the polynomialsQk will now be
addressed. We may choose an arbitrary valuev i , for v and solve
Transactions of the ASME
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~1! for its eigenvaluesl1
( i ) , l2

( i ) , . . . , l2n
( i ) . These values deter

mine Qk(l i), k50,1, . . . ,n, via the system of linear equations

F ~l1
~ i !!2n22 ~l1

~ i !!2n24
¯ 1

~l2
~ i !!2n22 ~l2

~ i !!2n24
¯ 1

] ] ] ]

~ln
~ i !!2n2n ~ln

~ i !!2n24
¯ 1

G S Q1~v i !

Q2~v i !

]

Qn~v i !

D
5S 2~l1

~ i !!2nq0
~0!

2~l2
~ i !!2nq0

~0!

]

2~ln
~ i !!2nq0

~0!

D . (27)

whereq0
(0)5det(M ). Repeating this processn11 times for dif-

ferent values of v i allows determination ofQk(v i) for i
51,2, . . . ,n11. The polynomialsQk(v), k51,2, . . . ,n can be
determined from these data by interpolation.

Note that the above method for determiningQk(v) is intended
for the sake of clarity rather than computational accuracy. T
fairly direct problem of reconstructing the coefficients of the po
nomial ~18! from its roots, which is expressed in terms of th
Vandermonde system~27!, can be determined alternatively by sa
the explicit Newton’s formulas

Qk~v i !

q0
~0! 5~21!kNk

~ i ! , k51,2, . . . ,n, (28)

whereNk
( i ) is the sum of alln!/(n2k)!k! products combiningk

factorsl j
( i ) without repetition of subscripts. For largen, several

extreme coefficientsQj (v i) can be determined from~28! and then
be used in~27! to reduce the dimension of the Vandermonde s
tem.

5 Examples
Example 5.1. Consider a two-degree-of-freedom gyroscop

system with

M5F1 0

0 1G , G5F0 25

5 0 G , K5F 4 22

22 4 G
and R5F 5 22

22 10G . (29)

The problem of evaluating the stability boundaries of this tw
degree-of-freedom system is elementary, and can be solved
lytically. We first solve the problem using basic principles, a
then apply the method described in Section 4.

It follows from Eqs.~2! and ~3! that

P~l,v!5detS F l225v214 25lv12v222

5lv12v222 l2210v214 G D
5l41~10v218!l2146v4252v2112, (30)

and hence by Eq.~19!

]P

]l
52l~2l2110v218!. (31)

It thus follows that]P/]l50 if either l50, or l2525v224.
Supposel50. Then P(l,v)50 implies 46v4252v2112

50, with the roots60.5685, and60.8985.
Suppose now thatl2525v224. Substituting this relation in

~30! gives

P~l,v!521v4292v224 (32)

which has the roots62.1033 and60.2075i .
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It thus follows from the analysis so far that the system of eq
tions P(l,v)50 and Q(l,v)50 has three common positiv
roots forv, namely,

0.5685, 0.8985, and 2.1033. (33

These are the stability boundaries of the system. Perhaps
most important implication of this result is that for no other val
of v the system may lose or gain stability.

Root loci for two nonconjugate eigenvalues associated with
system are shown in Fig. 5. Inspection of this figure confirms t
the system loses stability atv50.5685, gains stability atv
50.8985, and again loses stability atv52.1033.

We now solve the problem again using the method propose
Section 4. By Proposition 5 the stability boundaries associa
with the multiple eigenvaluel50 are determined by the eigen
values of the pencilK2lR. In our case the eigenvalues of

F 4 22

22 4 G2lF 5 22

22 10G (34)

are 0.3231 and 0.8073. Hence, two stability boundaries
A0.323150.5685 andA0.807350.8985. These are the same
the first two boundaries in~33!.

Next we illustrate how to determine the other stability bounda
associated with a multiple eigenvaluelÞ0. The first stage in the
process requires evaluation of the polynomialsQi(v) for i
50,1,2. Note that by comparing~18! and ~30! it becomes clear
that these polynomials are

Q0~v!51, Q1~v!510v218,

and Q2~v!546v4252v2112. (35)

However, this solution is arrived at using analytical expansion
the determinant ofP~l,v!. It should be noted that analytical ex
pansion of the determinant of ann3n matrix involves an order of
n! basic numerical operations~i.e., multiplications and summa
tions!. Moreover, symbolic manipulation is required in our pro
lem since the matrix pencil depends on two variablesl and v.
Consequently, such an approach cannot be applied for a prac
system possessing modest dimension of say,n520, for example.
In what follows we illustrate howQi(v) can be found numeri-
cally using the approach presented in Section 4, where no s
bolic determinant expansion is required.

The zero-order polynomial is

Q05q05det~M !51. (36)

For v150 the eigenvalue problem~1! reduces to

~l2M1K !v5o, (37)

Fig. 5 Root loci for two nonconjugate eigenvalues
JULY 2003, Vol. 70 Õ 565
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with eigenvalues6& i and 6A6i . It follows that v1
250,

(l1
(1))2522 and (l2

(1))2526. Equation~27! for i 51 is, there-
fore,

F ~l1
~1!!2 1

~l2
~1!!2 1

G S Q1~0!

Q2~0! D5S 2~a1
~1!!2

2~a2
~1!!2D (38)

or using numerical values

F22 1

26 1G S Q1~0!

Q2~0! D5S 24
236D , (39)

which yields

Q1~0!58 and Q2~0!512. (40)

For v251 the eigenvalue problem~1! is

~l2M1lG1K2R!v5o, (41)

which has eigenvalues60.5829i and 64.2024i . It follows that
v251, (l1

(2))2520.3397 and (l2
(2))25217.6603, and from~27!

we obtain

F 20.3397 1

217.6603 1G S Q1~1!

Q2~1! D5S 20.1154
2311.8846D , (42)

which has the solution

Q1~1!518 and Q2~1!56. (43)

For v352 the eigenvalue problem~1! is

~l2M12lG1K24R!v5o (44)

with eigenvalues6A18i and 6A30i . Hence v352, (l1
(3))25

218 and (l2
(3))25230, and Eq.~27! gives

F218 1

230 1G S Q1~2!

Q2~2! D5S 2324
2900D , (45)

which gives

Q1~2!548 and Q2~2!5540. (46)

It is found by interpolation that the polynomialQ1(v) which
satisfies Q1(0)58, Q1(1)518, ~and Q1(2)548), is Q1(v)
510v218. The polynomialQ2(v) which satisfiesQ2(0)512,
Q2(1)56, andQ2(2)5540, isQ2(v)546v4252v2112. These
are the same results as obtained in~35!.

OnceQi(v), i 50,1,2, is found we may evaluate the bigradie
matrix B in ~20!. For our caseB is reduced to

B5F Q0 Q1 Q2

0 2Q0 Q1

2Q0 Q1 0
G , (47)

or using~35!

B5F 1 10v218 46v4252v2112

0 2 10v218

2 10v218 0
G . (48)

The third stability boundary is determined by the positivev which
makesB in ~48! singular. We note in passing that analytical e
pansion of the determinant ofB gives

det~B!524~21v4292v224!, (49)

a constant factor of the polynomial in~32!, which confirms the
result.

In order to determine numerically the values ofv which make
~48! singular we writeB, as in~22! and ~23!,
566 Õ Vol. 70, JULY 2003
nt

x-

B5(
k50

2

v2kBk5v4F 0 0 46

0 0 0

0 0 0
G

1v2F 0 10 252

0 0 10

0 10 0
G1F 1 8 12

0 2 8

2 8 0
G ,

(50)

with the obvious definition ofB0 , B1 , and B2 . It thus follows
from ~26! that the third stability boundary is determine by th
finite positive eigenvalue of

F I3 0

0 B0
G2v2F 0 I

2B2 2B1
G , (51)

or explicitly

3
1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 8 12

0 0 0 0 2 8

0 0 0 2 8 0

4
2v23

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 246 0 210 52

0 0 0 0 0 210

0 0 0 0 210 0

4 . (52)

The matrix pencil ~52! has four finite eigenvaluesv1,2
2

54.4240 andv3,4
2 520.0431. Hence, as in~33!, the third stability

boundary isA4.424052.1033.
Example 5.2.Consider the 636 system with

M5I6 ,

G5@gi j #5H 25, i 51,j 56

5, i 56,j 51

0, otherwise,

Table 1 Stability boundaries

Critical v

Number of Poles

Imaginary Real Complex

0
0.4592 12 0 0

0.6480 10 2 0
0.6627 8 4 0
0.7849 8 0 4
0.8234 8 4 0
0.8240 10 2 0
0.8911 6 2 4
0.8958 6 6 0
0.8986 8 4 0
0.9260 4 4 4
0.9261 4 8 0
0.9283 6 6 0
0.9384 2 6 4
0.9391 6 6 0
1.0000 4 8 0
2.3449 4 8 0

` 0 8 4
Transactions of the ASME



l

l

le to
ter-
pic
r a

of
iple
ed

ul-

ults.

al
M.
nts

y-

ral

bi-
pec-

ting

ic

s,’’

qui-

s,’’

.

’ Z.

o-
pl.

za-

ic
K5@ki j #55
4, i 5 j ,

22, i 5 j 21,j 52,3, . . . ,6

22, i 5 j 11,j 51,2, . . . ,5

0, otherwise,

and

R5@r i j #55
5, i 5 j , j 51,2, . . . ,5

22, i 5 j 21,j 52,3, . . . ,6

22, i 5 j 11,j 51,2, . . . ,6

10, i 5 j 56

0 otherwise.

For this case we have

Q0~v!51

Q1~v!5210v2124

Q2~v!5220v42260v21220

Q3~v!5180v611320v422380v21960

Q4~v!52021v829624v6114736v429184v212016

Q5~v!5211050v10140368v8257932v6240608v4

213792v211792

Q6~v!512286v12247316v10173676v8258944v6

125296v425440v21448.

The critical values forv obtained from~26! are

0.662724, 0.784963, 0.824002, 0.891162, 0.898645, 0.9260

0.928360, 0.938422, 1.000000, 2.344929

and from Proposition 5

0.459267, 0.648012, 0.823424, 0.895866, 0.926168, 0.9391

These values determine 17 intervals for 0,v,`. Each inter-
val contains a fixed number of purely imaginary poles, real po
and complex poles. These values, shown in Table 1, indicate
the system is stable for 0,v,0.4592 and unstable for other va
ues ofv.

6 Conclusions
We have presented in this paper a numerical method for ev

ating the critical values of the speed of rotation for which a co
Journal of Applied Mechanics
33,

33.

es,
that
-

alu-
n-

servative gyroscopic system may change its nature from stab
unstable and vice versa. Using this method one is able to de
mine all ranges of the angular speeds for which a gyrosco
system is stable by considering the stability of the system fo
finite number of frequencies.

For ann degree-of-freedom gyroscopic system the process
evaluating the stability boundaries associated with the mult
eigenvaluel50 requires via Proposition 5 solving a generaliz
eigenvalue problem of dimensionn for its eigenvalues. Evaluation
of the other possible stability boundaries associated with a m
tiple eigenvaluelÞ0 requires via Proposition 6 solving annth
order matrix pencil of dimension 2n21 for its finite positive ei-
genvalues. Numerical examples have demonstrated these res
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Constraint Forces and the Method
of Auxiliary Generalized Speeds
This paper deals with noncontributing forces, usually called constraint forces or reac
forces, arising in simple, nonholonomic multibody systems. These forces are related
kinds of constraints, namely, kinematical constraints—derived from kinematical req
ments, and auxiliary constraints, introduced for the purpose of constraint forces dete
nation. Here, the method of ‘‘auxiliary generalized speeds’’ is used to bring into evide
constraint forces related to the two kinds of constraints. It is shown that auxiliary ge
alized speeds can always be chosen in a way that gives rise to additional equations
having one measure number of a constraint force as an unknown. Motion equation
thus be generated and solved without regard to constraint forces determination;
constraint forces can be determined with no matrix inversion, at a minimal computati
cost. @DOI: 10.1115/1.1572902#
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Introduction
Let Sbe a system possessingn independent generalized spee

u1 , . . . ,un , whose motion is defined as unconstrained, and lem
simple, nonholonomic constraints be imposed on the motion oS.
Also, letR1 , . . . ,Rm be measure numbers of the related constra
forces. Thenn1m differential-algebraic equations~DAE! govern
the motion of S, the unknowns being u̇1 , . . . ,u̇n and
R1 , . . . ,Rm . Furthermore, ifun2m11 , . . . ,un comprise a choice
of m generalized speeds regarded as dependent onu1 , . . . ,un2m ,
then u̇n2m11 , . . . ,u̇n and R1 , . . . ,Rm can be eliminated, giving
rise to a minimal set ofn2m ordinary differential equations
~ODE! in u̇1 , . . . ,u̇n2m ~see e.g., Shabana@1#, Secs. 5.8–5.10!.
Generally speaking, DAE/ODE solutions become more~computa-
tionally! expensive asn and m become larger. This is also tru
when such techniques as LU decomposition~Wehage and Haug
@2# and Nikravesh and Haug@3#!, QR decomposition~Kim and
Vanderploeg@4#!, zero-eigenvalue theorem~Kamman and Hous-
ton @5# and Loduha and Ravani@6#!, singular value decomposition
~Singh and Likins@7#!, Householder transformation~Amirouche
et al. @8#!, or Graham-Schmidt orthogonalization process~Liang
and Lance@9#! are used, in connection with DAE formulations,
deal with singular configurations through the introduction of t
orthogonal complement matrix idea~first suggested by Hemam
and Weimer@10#!. Moreover, in accordance with the indicate
state-of-the-art techniques of analytical mechanics,n and m are
frequently increased for the sole purpose of constraint forces
termination, an observation raising the following question. C
the determination of these forces be done without affecting
computational cost of generation and solution of dynamical eq
tions?

This question can be addressed effectively after two kinds
constraints are identified. One concernsm kinematical constraints
such as constraints associated with the closure of kinema
loops, constraints associated with specified motions and c
straints associated with the motion of rolling elements. The ot
kind concernsM auxiliary constraintscoming into play if the
associated constraint forces have to be determined. Example
constraints associated with joints and constraints eliminating r
tive motions of particles of a rigid body. It may be concluded th

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Mar.
2001; final revision, Oct. 10, 2002. Associate Editor: A. A. Ferri. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departme
Mechanical and Environmental Engineering University of California–Santa Barb
Santa Barbara, CA 93106-5070, and will be accepted until four months after
publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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sincem5m1M , the computational cost associated with the~un-
avoidable! introduction of constraints of the first kind increases
the introduction of constraints of the second kind. Many auth
accept the additional cost, recognizing the importance of the
termination of constraint forces—they are closely related to str
tural loads, and form a basis for the analytical treatment of frict
forces. Moreover, a number of authors~Wehage and Haug@2#,
Nikravesh@11#, and Amirouche et al.@8#!, recommend that sys
tems of n̄ rigid bodies are temporarily regarded as ‘‘totally’’ un
constrained, so thatM56n̄2n. One can then determine, in con
junction with DAE/ODE-related methods,m1M measure
numbers of constraint forces,m associated with kinematical con
straints andM associated with the joints connecting the rigid bo
ies to one another, making no distinction between the two kind
constraints. This approach underlies the majority of the multibo
programs presented, e.g., by Schiehlen@12#. A number of authors
deal with constraint forces with less conventional methods.
pastavridis, using Appell’s equations,@13#, and Maggi’s equations
@14#, and Udvadia@15#, using Gause’s principle, generate co
straint forces; however, from a computational point of view th
approaches do not foretell a breakthrough.

The purpose of this work is to address the above quest
showing that it is suffices to generate and solven dynamical equa-
tions in conjunction withm constraint equations of the first kin
without regard to constraint forces determination, and use, for
purpose, any technique helpful in avoiding singularities; and t
m measure numbers of constraint forces of the first kind andM of
the second kind can be exposed at a computational cost pro
tional tonm2 andnM, respectively. This is done in the second a
fourth sections for constraint forces of the first kind, and in t
third section for constraint forces of the second kind. Two e
amples are used to illustrate the determination of a variety
measure numbers of constraint forces.

Constraint Forces of the First Kind—Preliminaries
Consider a simple, nonholonomic systemS of n particlesPi

( i 51, . . . ,n) of massmi possessingn̄ generalized coordinate
q1 , . . . ,qn̄ andn ~wheren,n̄) generalized speedsu1 , . . . ,un in
N, a Newtonian reference frame. (u1 , . . . ,un comprise linear
combination ofq̇1 , . . . ,q̇n̄ , the coefficients being functions o
q1 , . . . ,qn̄ and timet.! Suppose that the motion ofS is definedas
unconstrained, and that the velocityvPi of Pi ( i 51, . . . ,n) in N is
written ~Kane and Levinson@16#, Sec. 2.14!

vPi5(
r 51

n

vr
Piur1vt

Pi ~ i 51, . . . ,n! (1)

7,
the
nt of
ara,
nal
03 by ASME Transactions of the ASME
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where vr
Pi and vt

Pi ( i 51, . . . ,n,r 51, . . . ,n) are function of
q1 , . . . ,qn̄ and time t. Then its governing dynamical equation
are ~Kane and Levinson@16#, Sec 6.1!

S (
i 51

n

FPi
•vr

Pi1(
i 51

n

F* Pi
•vr

Pi5 D Fr1Fr* 50 ~r 51, . . . ,n!

(2)

where FPi and F* Pi are, respectively, the resultant of all activ
forces and the inertia force acting onPi , andFr andFr* are the
r th generalized active force and ther th generalized inertia force
for S.

Let Pk be a particle ofS, and letP̄k be either a particle ofS or
a particle ofRB , a set of particles with a prescribed motion inN.

Let vPk andvP̄k be the velocities ofPk and P̄k in N, respectively,
and supposePk and P̄k are momentarily or continuously in con
tact with each other. If the motion ofm pairs of particles can be
described similarly, thenS is subject tom constraints of the first
kind, indicating that

~vPk2vP̄k!•âk5 f k~q1 , . . . ,qn̄ ,t ! ~k5p11, . . . ,n! (3)

where âk (k5p11, . . . ,n) are unit vectors,f k (q1 , . . . ,qn̄ ,t)
(k5p11, . . . ,n) are known functions ofq1 , . . . ,qn̄ and t, and

p=n2m. (4)

Similarly to vPi in Eqs.~1!, vPk andvP̄k are given by

vPk5(
r 51

n

vr
Pkur1vt

Pk, vP̄k5(
r 51

n

vr
P̄kur1vt

P̄k

~note that ifP̄k belongs toRB thenvr
P̄k50 (r 51, . . . ,n)). Hence,

Eqs.~3! become

(
r 51

n

Akrur1Bk50 ~k5p11, . . . ,n! (5)

if Akr andBk are defined

Akr=~vr
Pk2vr

P̄k!•âk , Bk=~vt
Pk2vt

P̄k!•âk2 f k

~k5p11, . . . ,n, r 51, . . . ,n!. (6)

Equations~5! comprisem independent linear relations betwee
u1 , . . . ,un called simple nonholonomic constraint equatio
~Kane and Levinson@16#, Sec. 2.13!. These equations govern th
majority of cases in dynamics of constrained systems~problems
discussed, e.g., by Shan@17# and Kitzka@18# represent exception
governed by nonlinear relations betweenu1 , . . . ,un).

Supposeu1 , . . . ,up andup11 , . . . ,un are regarded as indepen
dent variables and as dependent variables, respectively. Then
~5! can be solved forup11 , . . . ,un , yielding

uk5(
r 51

p

Ckrur1Dk50 ~k5p11, . . . ,n!. (7)

It can be shown that, under these circumstances, the follow
equations govern the motion of the constrained system~Kane and
Levinson@16#, Secs. 4.4, 4.11, and 6.1!:

Fr1Fr* 1 (
k5p11

n

Ckr~Fk1Fk* !50 ~r 51, . . . ,p!. (8)

These equations can be solved foru̇1 , . . . ,u̇n in conjunction with

(
r 51

n

Akru̇r1(
r 51

n

Ȧkrur1Ḃk50 ~k5p11, . . . ,n!, (9)
Journal of Applied Mechanics
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derived from Eqs.~5!. Alternatively, Eqs.~9! can be used to elimi-
nate u̇p11 , . . . ,u̇n from Eqs.~8!, leading to a minimal set ofp
dynamical equations inu̇1 , . . . ,u̇p ~ODE formulations!.

Constraint forces do not appear in Eqs.~8!. However, they can
be determined at will. To this end, reconsider Eqs.~2! and suppose
that m pairs of contact forcesRk and R̄k (k5p11, . . . ,n) are
exerted byP̄k on Pk and by Pk on P̄k , respectively, in theâk
direction, and that the action of these forces validates Eqs.~5!.
ThenRk can be defined asRk=Rk•âk , so that, in accordance with
the law of action and reaction

Rk5Rkâk , R̄k52Rkâk ~k5p11, . . . ,n!. (10)

These forces contribute to Eqs.~2!, which become

Fr1Fr* 1 (
k5p11

n

@~Rkâk!•vr
Pk1~2Rkâk!•vr

P̄k#50

~r 51, . . . ,n!

~Kane and Levinson@16#, Sec. 4.4! or, in view of Eqs.~6!

Fr1Fr* 1 (
k5p11

n

AkrRk50 ~r 51, . . . ,n!. (11)

Substitutions ofu̇1 , . . . ,u̇n obtained from Eqs.~8! and~9! in the
m last Eqs.~11! enable the determination ofRp11 , . . . ,Rn . This
involves the inversion of anm3m matrix havingAkr (k,r 5p
11, . . . ,n) as its entries~see Eq.~e! in the Appendix!. However,
this inversion is required for the generation ofCkr (k5p
11, . . . ,n,r 51, . . . ,p) in Eqs. ~7! and ~8!. It may thus be con-
cluded that the determination ofRp11 , . . . ,Rn can be performed
without matrix inversion. Alternatively, Eqs.~11! and ~9! can be
solved simultaneously foru̇1 , . . . ,u̇n and Rp11 , . . . ,Rn ~DAE
formulation!.

Constraints of the first kind can be holonomic and/or simp
nonholonomic. Simple, nonholonomic constraint equations
obtained by substitutions in Eqs.~3!. If constraint forces arecho-
sento be expressed as in Eqs.~10!, then bothf k in Eqs.~3! andRk
in Eqs. ~10! comprise measure numbers of vectors aligned w
âk . This choice, called by Blajer@19# ‘‘ideal,’’ underlies the use of
Eqs. ~11! for the determination ofRp11 , . . . ,Rn . Under these
circumstances, the latter are identical tolp11 , . . . ,ln , m
Lagrange’s multipliers~Whittaker, @20# and Pars@21#! that are
introduced when the associated mathematical method~Gelfand
and Fomin@22# and Lanczos@23#! is applied to constrained sys
tems. By way of contrast, equations describing holonomic c
straints are usually writtengk(q1 , . . . ,qn̄ ,t)50; and, although
the equationsdgk /dt50 are subsequently generated, no equ
tions similar to Eqs.~3! are written, and the indicated relatio
betweenf k andRk (k5p11, . . . ,n) is lost. Thus, ifRk and R̄k

are chosen to be parallel toâk8 (âk8Þâk), then Akr in Eqs. ~11!

must be replaced withAkr8 , definedAkr8 =(vr
Pk2vr

P̄k)•âk8 (k5p

11, . . . ,n,r 51, . . . ,n). Hence Fr85(k5p11
n Akr8 Rk

5(k5p11
n Akrlk (r 51, . . . ,n) and, with lp11 , . . . ,ln having

been evaluated, the exposition ofRk (k5p11, . . . ,n) would re-
quire the inversion of an additionalm3m matrix ~havingAkr8 as
its entry in rowk, columnr!. This inversion can be avoided if Eqs
~3! and ~10! are also applied to holonomic constraints, a ta
involving no additional effort~the effort required to form veloci-
ties appearing in Eqs.~3! is comparable to that required to form
the equationsdgk /dt50). One can thus benefit from Eqs.~11! in
connection with both holonomic and simple, nonholonomic co
straints alike.

Constraint Forces of the Second Kind

Suppose that constraint forcesRk and R̄k exerted byP̄k on Pk

and byPk on P̄k , respectively, have to be determined fork5n
11, . . . ,n1M . Then, in accordance with the state-of-the-a
JULY 2003, Vol. 70 Õ 569
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technique of analytical dynamics, one has to reformulate the p
lem, introducing M additional motion variables—andM
constraints—that bring into evidence the additional constra
forces. One then obtains equations structured as Eqs.~8! and ~9!
with n1M replacingn.

The central claim of this work is closely related to Kane
method of auxiliary generalized speed~Kane and Levinson@16#
Sec. 4.9! used to determine constraint forces. The claim for co
straints of the second kind can be stated as follows. If constra
of the first kind have been imposed, and if, in accordance with
law of action and reaction,Rk andR̄k are expressed as

Rk5Rkâk R̄k52Rkâk ~k5n11, . . . ,n1M !, (12)

then it is always possible to chooseM auxiliary generalized
speedsūn11 , . . . ,ūn1M that give rise toM additional dynamical
equations, each having one ofRk (k5n11, . . . ,n1M ) as ~the
only! unknown. With this choice, the additional constraint equ
tions are

ūk50 ~k5n11, . . . ,n1M ! (13)

and the associated dynamical equations are

Fr1Rr1Fr* 50 ~r 5n11, . . . ,n1M !. (14)

To show this, considerPk and P̄k , and note that the relation

betweenvPk andvP̄k, the velocities ofPk and P̄k , can always be
written

~vPk2vP̄k!•âk5 f k~q1 , . . . ,qn̄ ,t ! (15)

where, as in Eqs.~3!, f k(q1 , . . . ,qn̄ ,t) is a known function of
q1 , . . . ,qn̄ andt. The determination ofRk requires the removal o
the constraint implied by Eq.~15!. One way to accomplish the
removal of this constraint is to add the componentūkâk to the
velocity of Pk , which, denoted now with an overbar, becomes

v̄Pk5vPk1ūkâk ~ v̄k
Pk5âk!. (16)

vP̄k is left intact, that is

v̄P̄k5vP̄k ~ v̄k
P̄k50!, (17)

so that Eq.~15! becomes (v̄Pk2 v̄P̄k)•âk5 f k(q1 , . . . ,qn̄ ,t) or

~vPk1ūkâk2vP̄k!•âk5 f k~q1 , . . . ,qn̄ ,t !, (18)

in agreement with Eqs.~16! and ~17!. Thus, the velocity ofPk

relative toP̄k in the âk direction~which is zero iff k50) increases
by ūkâk . Expressions for the velocities ofPi ( i 51, . . . ,n) must
be updated accordingly, i.e.,

v̄Pi5vPi1ūkvk
Pi ~ i 51, . . . ,n! (19)

wherevk
Pi is a vector function ofq1 , . . . ,qn̄ andt. Equations~15!,

~18!, and ~19! indicate that the motion ofS is restored if the
constraint equation

ūk50 (20)

is imposed onS, a step performedafter an additional equation o
motion is formulated~Kane and Levinson@16# Sec. 4.9 and Djer-
assi@24#!, namely

Fk1Rk1Fk* 50. (21)

Fk and Fk* include contributions from all the active forces an
inertia forces associated withS, whereasRk is the contribution of
Rk and R̄k ; for, by virtue of Eqs.~16! and ~17! this contribution
can be evaluated as follows:

~Rkâk!• v̄k
Pk1~2Rkâk!• v̄k

P̄k5~Rkâk!•âk205Rk . (22)
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Also, Rp11 , . . . ,Rn contribute nothing to Eq.~21!, since, by hy-
pothesis, constraints of the first kind have been imposed; hencRk
is the only unknown in Eq.~21!.

Equation~21! is valid for k5n11, . . . ,n1M ; for, the proce-
dure leading to Eq.~21! can be used to determine each
Rn11 , . . . ,Rn1M , one at a time. What remains to be shown, ho
ever, is thatRk andR̄k contribute only to Eq.~21!, thekth equa-
tion. This can be done formally if the indicated procedure is a
plied to particlesPj andP̄j ( j Þk). Then equations correspondin
to Eqs.~15!–~22! can be written withj replacingk. Specifically,
equations corresponding to Eqs.~20! and ~21! read

ū j50 (23)

F j1Rj1F j* 50. (24)

Now, Pj and P̄j are in contact with one another momentarily (f j

Þ0) or continually (f j50), therefore either bothvPj andvP̄j , or
none, are augmented byūkgk , wheregk is a vector function of
q1, . . . ,qn̄ andt. In both eventsRkâk and2Rkâk contribute noth-
ing to Eq.~24!. By similarity, Rj âj and2Rj âj contribute nothing
to Eq.~21!. This conclusion, extended to any two pairs of partic
Pj2 P̄j andPk2 P̄k ( j ,k5n11, . . . ,n1M , j Þk), validates Eqs.
~13!–~14!.

Note that āPi, defined asāPi5Nd/dt( v̄Pi), reads āPi5aPi

1uG kvk
Pi1ūkv̇k

Pi ~where aPi5Nd/dt(vPi)); hence the use of Eqs
~20! leads toāPi5aPi and v̄Pi5vPi. As a result,FPi andF* Pi, in
general functions ofvPi andaPi, need not be reformulated follow
ing the introduction ofūk due to the subsequent use of Eqs.~20!.
It may thus be concluded thatūk in Eqs.~19! is introduced for the
sole purpose of identifyingvk

Pi ( i 51, . . . ,n,k5n11, . . . ,n
1M ). These are used to generate Eqs.~21! by substitution in
equations similar to Eqs.~2!, with vk

Pi replacingvr
Pi, thus leaving

intact Eqs.~2! ~and, specifically,FPi andF* Pi ( i 51, . . . ,n)) and
hence Eqs.~8!.

Also note that theM pairs of particles can include duplicates
the same physical particles~e.g., Pk and P̄k , k5n11, n12, n
13), in which event the indicated conclusion holds if the asso
ated unit vectors, i.e.,âk (k5n11,n12,n13), are mutually per-
pendicular. Finally note that Eqs.~13! and~14! apply if subsets of
particles comprise rigid bodies. Thenūk may be a measure num
ber of the angular velocity of a rigid body, andRk would be the
associated measure number of a constraint torque of a co
~Djerassi@24#, Sec. 3!.

Next it is shown that auxiliary generalized speeds can be
fined in connection with constraints of the first kind, which giv
rise to expressions each of which contain one ofRp11 , . . . ,Rn as
an unknown.

Constraint Forces of the First Kind Revisited
Suppose thatm auxiliary variablesūk (k5p11, . . . ,n) are de-

fined as

ūk=2~vPk2vP̄k!•âk1 f k~q1 , . . . ,qn̄ ,t ! ~k5p11, . . . ,n!
(25)

so that

~vPk1ūkâk2vP̄k!•âk5 f k~q1 , . . . ,qn̄ ,t ! ~k5p11, . . . ,n!,
(26)

an expression resembling Eqs.~18!. It follows, in view of Eqs.~6!,
that

ūk1(
r 51

n

Akrur1Bk50 ~k5p11, . . . ,n!, (27)

equations that can be solved foruk (k5p11, . . . ,n), yielding
Transactions of the ASME
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Ckrur1Dk1 (
r 5p11

n

Ekrūr ~k5p11, . . . ,n!.

(28)

The manner in whichCkr andEkr are related toAkr can best be
described by a matrix representation, as in Eqs.~b! of the Appen-
dix. Djerassi and Kane @25# show that, if
u1 , . . . ,up ,ūp11 , . . . ,ūn replace u1 , . . . ,up ,up11 , . . . ,un as
independent variables, then the associated equations of motio

Fr1Fr* 1 (
k5p11

n

Ckr~Fk1Fk* !50 ~r 51, . . . ,p! (29)

(
k5p11

n

Ekr~Fk1Fk* !50 ~r 5p11, . . . ,n!. (30)

Equations~30! are identical to equations obtained if the lastm of
Eqs.~11! are solved forRp11 , . . . ,Rn . Moreover, Eqs.~27! and
~5! lead to the equations

ūk50 ~k5p11, . . . ,n! (31)

which play the role of constraint equations resembling Eqs.~13!.
When these constraints are imposed on Eqs.~29! and ~30!, then
the following results are obtained. Equations~29! become a mini-
mal set of dynamical equations inn unknownsu̇1 , . . . ,u̇n ~as are
Eqs.~8!!, and Eqs.~30! are replaced with

(
k5p11

n

Ekr~Fk1Fk* !1Rr50 ~r 5p11, . . . ,n!. (32)

These equations are identical to those obtained if them last of
Eqs.~11! are solved forRp11 , . . . ,Rn . Rr , the only unknown in
the r th of Eqs.~32! ~an equation associated withūr), is the con-
tribution of Rr and R̄r (r 5p11, . . . ,n) defined in Eqs.~10!,
since, in connection with ther th of Eqs.~26!,

~Rr âr !• v̄r
Pk1~2Rr âr !• v̄r

P̄k5~Rr âr !•âr205Rr , (33)

where v̄r
Pk and v̄r

P̄i are given by expressions similar to those
Eqs.~16! and~17! with r replacingk ~an alternative proof of Eqs
~32! is given in the Appendix!. Equations~32! can be obtained
straightforwardly if the velocities ofPi ( i 51, . . . ,n) are ex-
pressed in terms ofu1 , . . . ,up ,ūp11 , . . . ,ūn with the aid of Eqs.
~28!, namely

v̄Pi5(
r 51

p

vr
Piur1 (

r 5p11

n

v̄r
Piūr1 v̄t

Pi ~ i 51, . . . ,n!. (34)

Then substitutions in the lastm of Kane’s equations~Kane and
Levinson@16#! which, in the present context, read

(
i 51

n

~FPi1F* Pi !• v̄r
Pi1 (

k5p11

n

Rk•~ v̄r
Pk2 v̄r

P̄k!50

~r 5p11, . . . ,n!

lead to equations identical with Eqs.~32!.
Each of Eqs.~32! and ~14! has one measure number of a co

straint force as the only unknown. Having obtained these eq
tions, one is free to solve Eqs.~8! ~or ~29!! and ~9! for
u̇1 , . . . ,u̇n , disregarding constraint forces, and invoking, in t
case of singular configurations~see, e.g., Kamman and Housto
@5#, Blajer et al.@26#, and Singh and Likins@7#! the orthogonal
complement matrix technique.~The latter is related to Eqs.~29!
and~32! in a manner presented in the Appendix.! With u̇1 , . . . ,u̇n
in hand, one can evaluateRp11 , . . . ,Rn in Eqs. ~32! and
Rn11 , . . . ,Rn1M in Eqs. ~14! at a cost proportional tonM and
nm2, respectively. For, each ofFr1Fr* (p11, . . . ,n) in Eqs.
~32! and ofFr1Fr* (r 5n11, . . . ,n1M ) in Eqs.~14! comprises
Journal of Applied Mechanics
are

in

n-
ua-

e
n

a linear combination ofu̇1 , . . . ,u̇n , and can be evaluated at a co
proportional ton. One can thus generate and solve dynami
equations irrespective of reaction forces evaluation, and eval
reaction forces at the minimum possible cost.

The steps required to form Eqs.~32! and ~14! can be summa-
rized as follows:

1. Fork5p11, . . . ,p1m(5n) ~constraints of the first kind!

1.1 Consider 2m particlesPk and P̄k with reference to Eqs.~3!
and define 2m constraint forces in accordance with Eqs.~10!;
1.2 Introduceūk as in Eqs.~27! and solve Eqs.~27! for uk as in
Eqs.~28!;

1.3 Use Eqs.~28! to replaceuk with ūk in expressions forvPi

( i 51, . . . ,n), and obtainv̄Pi ( i 51, . . . ,n) as in Eqs.~34!;

1.4 Generate Eqs.~32! using v̄Pi ( i 51, . . . ,n), v̄Pk and v̄P̄k;
1.5 Use Eqs.~31! to eliminate ūk and uG k from Eqs. ~32! and
solve the latter forRk .

2 For k5n11, . . . ,n1M ~constraints of the second kind!

2.1 Consider 2M particlesPk andP̄k with reference to Eqs.~15!
and define 2M constraint forces in accordance with Eqs.~12!;

2.2 Add ūkak to vPk, obtainingv̄Pk and v̄P̄k, as in Eqs.~16! and
~17!;
2.3 Use Eqs.~16! and ~17! to obtain corresponding expression
for v̄Pi ( i 51, . . . ,n), as in Eqs.~19!;

2.4 Generate Eqs.~14! using v̄Pi ( i 51, . . . ,n), v̄Pi and v̄P̄k;
2.5 Use Eqs.~13! to eliminate ūk and uG k from Eqs. ~14! and
solve the latter forRk .

The idea of auxiliary variables is not new~Hamel @27# and
Shan@28#!. However, the procedure just discussed becomes p
sible due to Kane’s unique method of auxiliary generalized spe
It can be applied manually to simple problems; however its ap
cation to larger systems requires multibody packages that pe
the introduction of auxiliary generalized speeds. One such pa
age is Autolev~Kane and Levinson@29#! used to generate the
following examples.

Examples

A Tricycle Moving on a Horizontal Plane. Figure 1 shows a
tricycle comprising a central bodyA, two supporting wheelsE and
F, and a steering wheelG attached toA via fork B. The wheels
rotate freely about their respective axes.Pi ( i 54,5,6) are points
of E, F, and G, respectively, momentarily in contact withP̄i ( i
54,5,6), points of a horizontal planeP. Ā is the midpoint of the
centersE* andF* of E andF, Â is the center ofG andA* is the
mass center ofA. ai , bi and ni ( i 51,2,3) are triads of dextral
mutually perpendicular unit vectors fixed inA, B, andN, respec-
tively, such thata3 , b3 , andn3 are all perpendicular toP. a2 is
aligned with the axes ofE andF andb2 is aligned with the axis of
G. l andw are lengths of segments shown in Fig. 1, andh is the
height ofA* aboveP. Finally, MA andI A3 are the mass ofA and
its central moment of inertia fora3 ; and Da1 is a driving force
exerted onA* .

Fig. 1 Tricycle
JULY 2003, Vol. 70 Õ 571
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Defineur (r 51,2,3) as

uk=vA*
•ar ~r 51,2!, u3=vA

•n3 (35)

where vA and vA* are the angular velocity ofA in N, and the

velocity of A* in N. Then vA and vA* related to motions ofA
defined as unconstrained are given by

vA=u3n3 vA* 5u1a11u2a2 . (36)

Assuming that the fork and the wheels are massless, one
show, by substitutions in Eqs.~1! ~with n53), that the following
equations govern unconstrained motions ofA:

D2MA~ u̇12u2u3!50, 2MA~ u̇21u1u3!50, 2I A3u̇350.
(37)

If E, F, and G roll without slip on P, then the motion ofS

proceeds such thatvĀ
•a250 andvÂ

•b250, wherevĀ andvÂ are
the velocities ofĀ and Â, respectively. Substitutions give rise t
the following two constraint equations, structured as Eqs.~5!
~with m52), namely

u22 lu350, 2u1sb1~u21 lu3!cb50 (38)

wheresb=Sin(b) andcb=Cos(b), andb is the steering angle.
Next, letR2 andR3 be constraint forces exerted onÂ andĀ in

theb2 anda2 directions, so thatÂ andĀ play the roles ofP2 and
P3 , respectively, andR25R2b2 and R35R3a2 ~Step 1.1!. Also,
let the vertical components of forces exerted byP̄i on Pi ( i
54,5,6) beRi5Rin3 ( i 54,5,6); henceR̄i52Rin3 ( i 54,5,6)
andM53 ~Step 2.1!. It is required to determineR2 , R3 , R4 , R5 ,
andR6 .

Equations~38! are satisfied ifR2 andR3 are exerted onÂ and
Ā, respectively, in which event Eqs.~37! give way to the follow-
ing equations:

D2R2sb2MA~ u̇12u2u3!50

R31R2cb2MA~ u̇21u1u3!50 (39)

2R3l 1R2lcb2I A3u̇350,

in accordance with Eqs.~11!. To avoid inversion associated wit
the solutions of Eqs.~39! for R2 andR3 , defineū2 and ū3 as ū2
52(u22 lu3) and ū352@2u1sb1(u21 lu3)cb# ~Step 1.2!;
then Steps 1.3–1.5 lead to

R22@~mpu̇11mAu1
2/ l !tb1mpḃu1 /cb

2 #/~4cb!50
(40)

R3@~mmu̇11mAu1
2/ l !tgb1mmḃu1 /cb

2 #/450

wheremm5MA2I A3 / l 2 and mp5MA1I A3 / l 2. Now, the identi-
fication of R4 , R5 , and R6 require a choice ofū4 , ū5 , and ū6
leading, in accordance with Step 2.2, to

v̄Pr5vPr1ūrn3 ~r 54,5,6!. (41)

This is the case ifv̄A and v̄A* are expressed as

v̄A5u3a31ū4@1/~2w!a111/~4l !a2#1ū5@21/~2w!a1

11/~4l !a2#1ū6@21/~2l !a2#

v̄A* 5u1a11u2a21ū4@h/~4l !a12h/~2w!a211/4a3#

1ū5@h/~4l !a11h/~2w!a211/4a3#1ū6@2h/~2l !a1

11/2a3# (42)

in accordance with Step 2.3. Then Steps 2.4–2.5 lead to

R41R/21mAh/w@2u1~ ḃ/cb
21s!12tbu̇1!]/850

R51R/22mAh/w@2u1~ ḃ/cb
21s!12tbu̇1!]/850 (43)

R62mAg2R50
572 Õ Vol. 70, JULY 2003
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where tb5tan(b), s5tbu1 / l and R5hF/2l 2mAg/21mAh(s2

24u̇1 / l )/8.
The following comment concerning the generation of Eqs.~42!

is in order. First, it can be verified that Eqs.~42! give rise to Eqs.
~41! if they are used in the following expressions:

v̄Pr5 v̄A* 1v̄A3pA* /Pr ~r 54,5,6!, (44)

where pA* /Pr is the position vector fromA* to Pr . Second, it

follows from Eqs.~44! that v̄r
A and v̄r

A* , the coefficients ofūr
(r 54,5,6) in Eqs.~42!, are related to each other as

v̄r
Pr5 v̄r

A* 1v̄r
A3pA* /Pr ~r 54,5,6! (45)

wherepA* /Pr (r 54,5,6) ~Fig. 1! andv̄r
Pr ~Eq. ~41!! are known, as

are thedirections of v̄r
A* and v̄r

A (r 54,5,6) ~for r 56 pA* /P6

5 la12ha3 , v̄6
P65a3 , v̄6

Aia2 and v̄6
A* iha12 la3 , etc.!. Moreover,

the vectorsv̄r
Pr, v̄r

A* andv̄r
A3pA* /Pr appearing in Eqs.~45! are all

perpendicular tov̄r
A . Hence, each of Eqs.~45! gives rise to two

scalar equations in two unknowns, namely, the magnitudes ofv̄r
A*

andv̄r
A . The latter can thus be determined and used to form E

~42!.
This example is relatively complex. Usually, things are simpl

as in the next example.

Crank and Slider Mechanism. Figure 2 shows barsA andB
of lengths a and b, comprising a crank-and-slider mechanism
Ā and Â, B̄ and B̂, and P̄ and P̂, are the endpoints ofA and B
and points fixed inN, respectively.ai , bi and ni ( i 51,2,3) are
triads of dextral, mutually perpendicular unit vectors fixed inA, B,
andN, respectively, such thata3 , b3 , andn3 are all perpendicular
to P, the plane of motion.a1 and b1 are aligned withA and B,
and n1 is aligned with L, the line passing throughP̄ and P̂.
Finally, let self-explanatory notation stand for the inertial prop
ties of A andB.

Defineqr andur (r 51,2) as

q1=Cos21~a1•n1!, q2=Cos21~b1•n1!, ur=q̇r~r 51,2!.
(46)

Then vA and vB, the angular velocities ofA and B, can be ex-
pressed

vA5u1n3 , vB5u2n3 . (47)

Suppose thatĀ coincides withP̄ at all times and that, in this
configuration, the motion of the mechanism is defined as unc
strained. Then the following equations

2@ I A1~MA/41MB!a2#u̇12abMBc12u̇2/22abMBs12u2
2/250

20.5abMBc12u̇12@ I B1MBb2/4#u̇21abMBs12u1
2/250,

(48)

wheres12=Sin(q12q2) etc., govern unconstrained motions of th
mechanism.

Fig. 2 Crank and slider mechanism
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Constrained motions require thatB̂ slides alongL, i.e., thatvB̂

•n250, or

ac1u11bc2u250 (49)

wherec1=Cos(q1), etc.
Next, let R2 , given by R25R2n2 , be a force exerted onB̂,

which plays the role ofP2 ~Step 1.1!. Let R3 and R4 , given by
R35R3n1 and R45R4n2 , be forces exerted onĀ, which plays
the roles ofP3 andP4 , by P̄, playing the roles ofP̄3 andP̄4 ; and
let R5 and R6 , given by R55R5n1 and R65R6n2 , be forces
exerted byÂ—which plays the roles ofP̄5 andP̄6 , on B̄, playing
the roles ofP5 andP6 ~Step 2.1!. It is required to determineR2 ,
R3 , R4 , R5 , andR6 .

Defining ū252(ac1u11bc2u2) ~Step 1.2! and carrying out
Steps 1.3–1.5, one has

R22ma~2c1u̇11as1u1
21t2u2

2!1MBa~c12u̇11s12u1
2!/~2c2!50,

(50)

wherem5(I B /b21MB/4)/c2
2. Moreover, choosingū3 , ū4 , ū5 ,

and ū6 such that, in accordance with Step 2.2

v̄A5vA, v̄Ā5ū3n11ū4n2 ,

v̄B̄5vB̄1ū3n11ū4n21ū5n11ū6n2

one has, following Step 2.3,v̄A* 5 v̄Ā1vA3a/2a1 , etc. Finally
one obtains, taking Steps 2.4–2.5, four additional equations
R3 , R4 , R5 , andR6 as unknowns. The sixth of these reads

R62a~c1m2s1t2MB/2!u̇11pm1ac1t2MBu1
2/250 (51)

wherep5as1u1
21bs2u2

2. Note that

v̄P̄5vP̄~50!, v̄Â5vÂ1ū3n11ū4n2 (52)

hencev̄Ā and v̄P̄ do not includeū5 and ū6 , whereasv̄Â and v̄B̄

both includeū3 and ū4 , in agreement with the statement follow
ing Eq. ~24!.

Conclusions
A new methodology for the determination of noncontributin

constraint forces, based upon the idea of auxiliary general
speeds, was presented. The methodology imposes uniformi
the formulation of constraint equations for both kinds of co
straints ~Eqs. ~3! and ~15!!, and in the definition of constrain
forces~Eqs.~10! and~12!! and auxiliary generalized speeds~Eqs.
~26! and~18!, and Eqs.~31! and~13!!. It specifically requires that
constraints be defined as relationships between velocities of
ticles, and that constraints and constraint forces be colinear
tors. Finally, the methodology de-couples the generation of
dynamical equations from that of reaction forces, enabling so
tions of minimal-dimension sets of dynamical equations~in DAE/
ODE formulations!; and, avoiding matrix inversions, minimize
the computational effort required to identify reaction forces.

Appendix

On the Relationships of Eqs.„28… and „31… With Other For-
mulations. Let the following matrices be defined with the aid
quantities used earlier:

p31u5
~7!

uu1 . . . upuT, m31u5
~7!

uup11 . . . unuT,

m31ū 5
~27!

uūp11 . . . ūnuT

m3pA5UAp11,1 . . . Ap11,p

. . . U ,

~5! An,1 . . . An,p
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m3mA5
~5!
UAp11,p11 . . . Ap11,n

. . .

An,p11 . . . An,n

U
m3nA5

~5!

um3pAum3mAu, m31R 5
~11!

uRp11 . . . RnuT,

m31B 5
~27!

uBp11 . . . BnuT

p31F 5
~11!

uF11F1* . . . Fp1Fp* uT,

m31F 5
~11!

uFp111Fp11* . . . Fn1Fn* uT

m3mE 5
~28!
UEp11,p11 . . . Ep11,n

. . .

En,p11 . . . En,n

U ,

m3pC 5
~28!
UCp11,1 . . . Cp11,p

. . .

En,1 . . . En,p

U ,

where lower left indices play the double role of matrix identific
tion and dimension indication, and where numbers under eq
signs refer to equations numbered correspondingly. Then E
~27! can be written asm31ū1m3pAp31u1m3mAm31u1m31B
50 and, solved form31u, they yield

m31u52~m3mA!21~m3pAp31u1m31B!2~m3mA!21
m31ū.

(a)

The coefficients ofp31u andm31ū in Eqs.~28! are the entries of
m3pC andm3mE, respectively, hence by comparison with Eq.~a!

m3pC52~m3mA!21
m3pA, m3mE52~m3mA!21. (b)

The m last of Eqs.~11! can be cast in a matrix form, reading

m31F1~m3mA!T
m31R50. (c)

The left-hand side of Eq.~c! should replacem31F in Eqs. ~30!
when written in a matrix form, so as to include contributions
constraint forces, that is

~m3mE!T@m31F1~m3mA!T
m31R#50 (d)

or, in view of Eq.~b!,

~m3mA!2T
m31F1m31R50, (e)

a matrix form of Eqs.~32!. Also, the matrix form of Eqs.~29! is,
in view of Eqs.~b!,

p31F2~m3pA!T~m3mA!2T
m31F50. (f)

Defining the following matrices

n3mA8=um3pOu2~m3mA!2TuT,

n3pA9=up3pI u2~m3pA!T~m3mA!2TuT (g)

wherem3pO andp3pI are null and unit matrices, respectively, on
can replace Eqs.~e! and ~f! with

~n3mA8!T
n31F2m31R50, ~n3pA9!T

n31F50. (h)

These equations can equivalently be obtained by a p
multiplication of the equationn31F1(m3nA)T

m31R50, a matrix
form of Eqs.~11!, with (n3mA8)T and (n3pA9)T, respectively. The
columns of n3mA8 span the same space as do rows ofm3nA,
whereas (n3pA9)T is an orthogonal complement of (m3nA)T
JULY 2003, Vol. 70 Õ 573
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@(n3pA9)T(m3nA)T5p3mO#, hence its columns comprise a ba
for the null-space ofm3nA. Starting with Maggi’s equations, Kur
dila et al. @30# arrive at identically structured equations, and u
them as a basis for comparison of different ways, indicated in
Introduction, to obtain orthogonal complement matrices.
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A Dynamic Generalized
Self-Consistent Model for Wave
Propagation in Particulate
Composites
Wave propagations in an inhomogeneous medium (e.g., voids, particles, defects,
sions) undergo multiple scattering which results in a frequency-dependent velocity
attenuation of coherent wave. The aim of this study is to analyses multiple scatteri
plane compressional and shear waves in a composite containing randomly distrib
spherical inclusions in a homogenous isotropic medium. To calculate effective wave
bers of ultrasonic waves propagating in the heterogeneous material, a generalized
consistent multiple scattering model is used in this study. Numerical results for the e
tive phase velocity and attenuation of both P and SV waves are calculated for a
range of frequencies and concentrations. The proposed dynamic generalized
consistent model for particulate composites recovers both well-known static effe
moduli in the static limit and the results at higher frequencies and concentrations a
well with published experimental data.@DOI: 10.1115/1.1576806#
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1 Introduction
Ultrasonic waves are widely used in the field of nondestruct

evaluation~NDE! of composite materials. Advances towards t
development of new ultrasonic quantitative NDE techniques h
been made possible by the study of propagation and diffractio
elastic waves in such materials. Waves propagating in an inho
geneous medium undergo multiple scattering which results
frequency-dependent velocity and attenuation of the cohe
waves. The overall dynamic response of the medium may be
veniently modeled by means of the complex wave number,^k&,
describing the coherent wave propagating in an equivalent ho
geneous material given by

^k&5
v

V~v!
1 ia~v!, (1)

whereV(v) and a~v! denote the phase velocity and attenuati
of the average waves, respectively. This effective wave num
^k& is related to the overall elastodynamic constants which play
important role in ultrasonic nondestructive evaluation of comp
ite materials. For example, in order to determine the respons
the inhomogeneous medium that is subjected to transient load
incident ultrasonic waves, the information of the overall dynam
properties are considered indispensable.

The problem of the propagation of multiple scattered waves
a random distribution of three-dimensional inclusions has b
studied extensively in the literature. Foldy@1# and Waterman and
Truell @2# studied the multiple scattering of waves by point sc
terers and developed a statistical averaging procedure to esti
the phase velocity and attenuation of the coherent waves in te
of the microstructures and constituent material properties of
inhomogeneous mediums. Sayers and Smith@3#, Datta et al.@4#,
Shindo et al.@5#, and O’Neill et al. @6# have used the simila
multiple scattering approach to predict the ultrasonic wave spe

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, June 5, 20
final revision, Dec. 17, 2002. Associate Editor: A. K. Mal. Discussion on the pa
should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, Departme
Mechanics and Environmental Engineering, University of California–Santa Barb
Santa Barbara, CA 93106-5070, and will be accepted until four months after
publication in the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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and attenuation of particulate composites. In these methods
multiple scattering formulas yield the effective wave numbers
the average wave in terms of the forward and backward scatte
amplitudes of an isolated inclusion. The results are accurate
vided the correlations and interactions between individual inc
sions can be ignored. It seems to indicate that these results
valid at low frequencies and at low concentrations. However,
experimentally observed fact in the scattering of electromagn
waves by a dense distribution of discrete scatterers is that
assumption of independent scattering leads to overestimatio
scattering effects~@7#!. As it would be shown in this paper, th
zero-frequency limits of these estimates do not reduce to t
well-known static limits. Hence, it is not clear whether these p
dicted results are very accurate at low frequencies.

Mal and Bose@8# have studied analytically the scattering
plane waves by spherical elastic inclusions which are arbitra
distributed in an infinite matrix medium. The propagation char
teristics of the average wave were obtained by a statistical
proach through the introduction of a pair-correlation function a
the use of the quasicrystlline approximation. A similar approa
was used by Datta@9#, Willis @10,11#, and Varadan et al.@12#.
These multiple scattering models reduce to the same form of
long wavelength limits which are identical to the lower bound
Hashin and Shtrikman@13#. However, at higher concentration, th
correct pair-correlation function is difficult to obtain and the e
fective dynamic constants may be quite sensitive to the choic
the pair-correlation function. In general, multiple scattering the
ries can accurately predict the overall properties at low frequ
cies and concentrations.

To account for multiple scattering at high concentrations, a
namic self-consistent scheme was used by Sabina and Willis@14#
and Kim et al.@15# for the approximate analysis of elastic wav
in random particulate composites. The frequency-dependent e
tive phase velocity and coherent attenuation can be obtained b
iterative method. As indicated by Sabina and Willis@14#, the self-
consistent expression of dynamic effective properties is va
when the relevant elastic waves have wavelengths at least as
as 4a, where a is the radius of the spherical inclusions. Bo
aforementioned works based on the self-consistent scheme
duced to the static properties given by Hill@16# and Budiansky
@17# in the static limit.
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There are several micromechanical models~e.g., differential
method, composite spheres model, self-consistent method, g
alized self-consistent model, Mori-Tanaka method! that can be
used to estimate the overall static elastic moduli of the compo
materials. Although all models recover dilute behavior adequat
Christensen@18# have concluded that only the generalized se
consistent model gives physically reasonable results at high
centrations and covers the full range of volume fractions, 1<c
<1. Theoretical estimates of the effective dynamic moduli ba
on homogenization and other methods have been found to be
satisfactory at higher frequencies and particle concentrations
account for multiple scattering at high concentration, Yang a
Mal @19,20# have developed a generalized self-consistent mult
scattering model, which combines the generalized self-consis
model~GSCM! together with the Waterman and Truell’s statistic
approach to calculate the effective dynamic moduli of a fib
reinforced composite. The comparison of theoretical prediction
this model with measured wave velocity data by Huang et al.@21#
for a longitudinal wave in the SiC/Ti fiber/matrix composi
showed excellent agreement.

The aim of the present study is to analyses multiple scatte
of plane longitudinal or shear waves due to a random distribu
of elastic spherical inclusions in a homogenous elastic medi
We consider a particulate composite, which consists of a ho
geneous, isotropic matrix medium containing randomly distr
uted spherical particles of identical properties. The general
self-consistent multiple scattering model is studied for the sph
cal inclusion case. Unlike wave propagation in the fiber-reinforc
composites can be decoupled into antiplane~SH! and in-plane~P
and SV! cases, the study of multiple scattering of elastic waves
a particulate composite becomes relatively complicated by the
herent coupling of plane longitudinal and shear waves in the
namic GSCM. In this study, a similar mathematical treatment
wave diffraction by a single spherical inclusion developed
Shindo et al. @5# was adopted and modified to the dynam
GSCM. Numerical results are presented for silicon carbi
aluminum and lead/epoxy particulate composites. The effec
phase velocity and attenuation of the coherent waves are
calculated for a wide range of frequencies and concentrations.
theoretical results of dispersion and attenuation are compared
the experimental results of Kinra et al.@22,23# as well as the
theoretical results by Waterman and Truell@2# and Sabina and
Willis @14#. In the Raleigh limit, the proposed method recove
both well-known static effective moduli of particulate composit
by Hashin’s composite sphere model~@24#! and Christensen and
Lo’s GSCM ~@25#!, which have not been obtained by other mu
tiple scattering methods and formulations.

2 Scattering of P and S Waves in the Generalized Self
Consistent Model„GSCM…

We consider a random distribution of identical spherical inc
sions of radiusa embedded in an isotropic and infinite matrix. L
l1 , m1 , r1 be the Lame´ constants and mass density of the inc
sion andl2 , m2 , r2 those of the matrix. The geometry is depicte
in Fig. 1 where (x,y,z) is the Cartesian coordinate system a
(r ,u,w) is the spherical coordinate system. Let the component
the displacement vectoru in the r, u, w directions be labeled by
ur , uu , anduf . The displacement equation of motion is

~l12m!¹¹•u2m¹3¹3u5r
]2u

]t2
. (2)

The generalized self-consistent multiple scattering mode
also shown in Fig. 1. The spherical inclusion of radiusa is em-
bedded in a shell of the matrix material of outer radiusb, which in
turn is embedded in an infinite medium possessing the unkn
effective Lame´ constantŝ l&, ^m& and effective densitŷr&. The
material properties and the field variables in the inclusion a
matrix will be identified by the indices 1 and 2. The correspond
576 Õ Vol. 70, JULY 2003
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quantities in the effective medium will be identified by an angu
bracket^ &. The radius of the matrixb is related to the volume
fraction c of inclusions by

c5
a3

b3
. (3)

Although the effective density varied with frequency for compo
ites with a strong density contrast in the constituents, it is app
priate to assume that the effective density is the mean density
small density contrast and can be given by

^r&5cr11~12c!r2 . (4)

Suppose that a time-harmonic plane longitudinal~P! wave
propagating in the positivez-direction and a plane shear~S! wave
polarized in the x-direction and propagating in the positiv
z-direction. Thus,

ui5w0ei ^k&z2 ivtez1u0ei ^K&z2 ivtex , (5)

where a superscripti stands for the incident waves,v is the cir-
cular frequency andw0 , u0 are the amplitudes of the longitudina
and shear waves.^k& and ^K& are the average wave numbers
the P and S waves in the effective medium, respectively. Th
suppressing the time factore2 ivt and dropping the angular brack
ets in the effective properties, i.e., replacing^k& by k and^K& by
K, the total displacement fields in the effective medium, mat
and the spherical inclusion may be expressed in the forms:

u5ui1(
n50

`

(
m52n

n

@AmnLmn
~3!~kr !1BmnMmn

~3!~Kr !

1CmnNmn
~3!~Kr !#, r .b (6)

u5(
n50

`

(
m52n

n

@Amn8 Lmn
~3!~k2r !1Bmn8 Mmn

~3!~K2r !1Cmn8 Nmn
~3!~K2r !

1DmnLmn
~1!~k2r !1EmnMmn

~1!~K2r !1FmnNmn
~1!~K2r !#,

a,r ,b (7)

u5(
n50

`

(
m52n

n

@Amn
0 Lmn

~1!~k1r !1Bmn
0 Mmn

~1!~K1r !1Cmn
0 Nmn

~1!~K1r !#,

r ,a, (8)

Fig. 1 The generalized self-consistent multiple scattering
model
Transactions of the ASME
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where Amn, , Bmn , Cmn , Amn8 , Bmn8 , Cmn8 , Dmn , Emn , Fmn ,
Amn

0 , Bmn
0 , andCmn

0 are in general complex and must determin
from the interface conditions. Spherical vector wave functio
Lmn

(3) , Mmn
(3) , andNmn

(3) , are given by

Lmn
~3!~kr !5Fer

]

]r
hn~kr !Pn

m~cosu!1euhn~kr !
1

r

]

]u
Pn

m~cosu!

1ew

im

r sinu
hn~kr !Pn

m~cosu!Geimf (9)

Mmn
~3!~Kr !5Feu

im

sinu
hn~Kr !Pn

m~cosu!

2ewhn~Kr !
]

]u
Pn

m~cosu!Geimf (10)

Nmn
~3!~Kr !5H er

n~n11!

r
hn~Kr !Pn

m~cosu!

1eu

1

r

]

]r
@rhn~Kr !#

]

]u
Pn

m~cosu!

1ew

im

r sinu

]

]r
@rhn~Kr !#Pn

m~cosu!J eimf, (11)

wherehn is the nth-order spherical Hankel function of the firs
kind andPn

m is the associated Legendre function of the first kin
Lmn

(1) , Mmn
(1) , andNmn

(1) are obtained from Eqs.~9!–~11! by replac-
ing hn with thenth-order spherical Bessel function of the first kin
j n . The boundary conditions require the displacement and st
vector to vary continuously across the interfaces. The stress c
ponents may be found from the corresponding displacem
through the stress-displacement relations

s rr

m
5

l

m

1

r 2 sinu
F ]

]r
~r 2ur sinu!1

]

]u
~ruu sinu!1

]

]f
~ruf!G

12
]ur

]r
(12)

s ru

m
5

1

r

]ur

]u
1

]uu

]r
2

uu

r
(13)

s rf

m
5

1

r sinu

]ur

]f
1

]uf

]r
2

uf

r
. (14)

From the continuity conditions atr 5a andr 5b, the relationships
amongAmn, , Cmn , Amn8 , Cmn8 , Dmn , Fmn , Amn

0 , and Cmn
0 are

found to be

PH Amn

Cmn
J 1P̃HFmn

Xmn
J 5P~2!H Amn8

Cmn8 J 1P̃~2!HDmn

Fmn
J ,

at r 5b (15)

mQH Amn

Cmn
J 1mQ̃HFmn

Xmn
J 5m2Q~2!H Amn8

Cmn8 J 1m2Q̃~2!HDmn

Fmn
J ,

at r 5b (16)

P~1!H Amn8

Cmn8 J 1P̃~1!HDmn

Fmn
J 5P0H Amn

0

Cmn
0 J , at r 5a (17)

m2Q~1!H Amn8

Cmn8 J 1m2Q̃~1!HDmn

Fmn
J 5m1Q0H Amn

0

Cmn
0 J , at r 5a.

(18)

Here, we define the following matrices:
Journal of Applied Mechanics
d
ns

t
d.

d
ess
om-
nts

P5FP11 P12

P21 P22
G , Q5FQ11 Q12

Q21 Q22
G , (19)

where

P115nhn~kb!2kbhn11~kb! (20)

P125n~n11!hn~Kb!, P215hn~kb! (21)

P225~n11!hn~Kb!2Kbhn11~Kb! (22)

Q115~n22n2
1
2 K2b2!hn~kb!12kbhn11~kb! (23)

Q125n~n11!@~n21!hn~Kb!2Kbhn11~Kb!# (24)

Q215~n21!hn~kb!2kbhn11~kb! (25)

Q225~n2212
1
2 K2b2!hn~Kb!1Kbhn11~Kb!. (26)

The matricesP̃ andQ̃ are obtained fromP andQ by replacinghn
with j n . The other matrices in Eqs.~15!–~18! may be obtained by
the replacement as shown in Table 1. The 838 matrix equation for
the undetermined coefficients of the normal expansion soluti
for this problem is given by

F P 2P~2! 2P̃~2! 0

aQ 2Q~2! 2Q̃~2! 0

0 2P~1! 2P~1! 2P0

0 Q~1! Q̃~1! 2bQ0

G 5
Amn

Cmn

Amn8

Cmn8

Dmn

Fmn

Amn
0

Cmn
0

6 52F P̃

aQ̃
0
0
G HFmn

Xmn
J ,

(27)

wherea5m/m2 , b5m1 /m2 . Also, the relationship amongBmn ,
Bmn8 , Emn , andBmn

0 are

hn~Kb!Bmn1 j n~Kb!Ymn5hn~K2b!Bmn8 1 j n~K2b!Emn
(28)

m@~n21!hn~Kb!2Kbhn11~Kb!#Bmn

1m@~n21! j n~Kb!2Kb jn11~Kb!#Ymn

5m2@~n21!hn~K2b!2K2bhn11~K2b!#Bmn8

1m2@~n21! j n~K2b!2K2b jn11~K2b!#Emn

(29)

hn~K2a!Bmn8 1 j n~K2a!Emn5 j n~K1a!Bmn
0 (30)

m2@~n21!hn~K2a!2K2ahn11~K2a!#Bmn8

1m2@~n21! j n~K2a!2K2a jn11~K2a!#Emn

5m1@~n21! j n~K1a!2K1a jn11~K1a!#Bmn8 . (31)

In Eqs. ~15!–~16! and ~28!–~29!, Fmn , Xmn , and Ymn are ex-
pressed by

Table 1 Substitution table

Substitute For

P(2), Q(2) k, K k2 , K2

P̃(2), Q̃(2) hn
k, K

j n
k2 , K2

P(1), Q(1) kb, Kb k1a, K1a

P̃(1), Q̃(1) hn
kb, Kb

j n
k1a, K1a

P0, Q0 kb, Kb k2a, K2a
JULY 2003, Vol. 70 Õ 577
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Fmn5
i n21

k
~2n11!dm0 (32)

Xmn5
i n21

2K

2n11

n~n11!
@dm12n~n11!dm,21# (33)

Ymn5
i n21

2

2n11

n~n11!
@dm11n~n11!dm,21#, (34)

wheredm0 , dm1 , and dm,21 are the Kronecker delta. The 434
matrix equation for the undetermined coefficients of the norm
expansion solutions is

F j11 2j12 2j13 0

aj21 2j22 2j23 0

0 j32 j33 2j34

0 j42 j43 2bj44

G H Bmn

Bmn8

Emn

Bmn
0
J 52YmnF z1

az2

0
0
G ,

(35)

j115hn~Kb!, j125hn~K2b!, j135 j n~K2b! (36)

j215~n21!hn~Kb!2Kbhn11~Kb! (37)

j225~n21!hn~K2b!2K2bhn11~K2b! (38)

j235~n21! j n~K2b!2K2b jn11~K2b! (39)

j325hn~K2a!, j335 j n~K2a!, j345 j n~K1a! (40)

j425~n21!hn~K2a!2K2ahn11~K2a! (41)

j435~n21! j n~K2a!2K2a jn11~K2a! (42)

j445~n21! j n~K1a!2K1a jn11~K1a! (43)

z15 j n~Kb!, z25~n21! j n~Kb!2Kb jn11~Kb!. (44)

3 Multiple Scattering Formulas
The effective complex wave number^k& of the multiple scat-

tered waves can be obtained in terms of the frequency of
waves and the microstructure of the composite. The avera
technique developed by Waterman and Truell involves a confi
rational averaging technique using the joint probability distrib
tion for the occurrence of a given configuration of scatterers
average the resulting wave over all configurations. For multi
scattering by a random distribution of spherical scatters, Wa
man and Truell derived an expression for effective wave numb
in terms of the number of scatters per unit volumen0 and the
far-field amplitude for a single scatter.

For longitudinal waves, the effective wave number is

F ^k&
k2

G2

5F11
2pn0f ~0!

k2
2 G2

2F2pn0f ~p!

k2
2 G2

. (44)

For shear waves, the effective wave number is

F ^K&
K2

G2

5F11
2pn0g~0!

K2
2 G2

2F2pn0g~p!

K2
2 G2

. (45)

wherek2 , K2 denotes the wave numbers of the P waves an
waves in the matrix material, respectively. The number of scat
per unit volumen0 is related to concentrationc by

n05
3c

4pa3
. (46)

The scattered fieldus at a large distance from an isolated scatte
given by

us'uw0u f ~u!
eikr

r
er1uu0ug1~u,f!

eiKr

r
eu1uu0ug2~u,f!

eiKr

r
ef ,

(47)
578 Õ Vol. 70, JULY 2003
al

the
ing

gu-
u-
to
le

ter-
ers

S
ers

is

whereuw0u anduu0u are the incident displacement amplitudes. T
function f (u) denotes the scattering amplitude of the longitudin
waves in the far-field, and the functionsg1(u,f) andg2(u,f) are
far-field scattering amplitudes of the shear waves in the directi
of eu andef , respectively. The definitions of these equations
given in Appendix A. The forward and backward scattering a
plitudes of longitudinal waves are represented byf (0) and f (p)
which can be calculated from an isolated scatter contained in
infinite matrix. Also, the forward and backward scattering amp
tudes of shear waves are termed byg(0) and g(p) which are
given by

g~0!5cosfg1~0,f!2sinfg2~0,f! (48)

g~p!5cosfg1~p,f!2sinfg2~p,f!. (49)

It can be further shown thatg(0) andg(p) are independent off.
The scattering theory described above yields propagation c
stantŝ k& and^K& in terms of the far-field amplitude of the singl
scatter and is valid provided the effect of correlation in position
the scatterers can be neglected. The approximation is valid on
relatively low concentrations. If the inclusions are sufficien
dense and closely spaced and the wavelength is comparable t
size of spheres, the spherical inclusions cannot be considere
independent scatters and a modified multiple scattering the
must be used. In addition, the solution of Eqs.~44! and ~45! ex-
hibits low-frequency velocity limits different from those predicte
by the well-known static solution~for example, the generalized
self-consistent model~GSCM!!. To satisfy the low-frequency
limit and nondilute concentration, the Waterman-Truell model
modified by the implementation of GSCM.

3.1 Generalized Self-Consistent Multiple Scattering
Model. It is assumed that each inclusion is surrounded by
shell of matrix and the composite is embedded in an effec
medium. Then, in the scattering formulas,k2 must be replaced by
^k& andK2 must be replaced bŷK& leading to the equations

15F11
2pn0f ~0!

^k&2 G 2

2F2pn0f ~p!

^k&2 G 2

(50)

15F11
2pn0g~0!

^K&2 G 2

2F2pn0g~p!

^K&2 G 2

, (51)

where

f ~0!5(
n50

`

~2 i !nA0n , f ~p!5(
n50

`

~ i !nA0n (52)

g~0!5(
n51

`
~2 i !n

2 Fn~n11!C1n2C21n1
n~n11!

K
B1n

1
1

K
B21nG (53)

g~p!5(
n51

`
~ i !n

2 Fn~n11!C1n2C21n1
n~n11!

K
B1n1

1

K
B21nG .

(54)

The scattering coefficientsAmn , Bmn , Cmn given by Eqs.~27!
and~35! are functions of the unknown effective wave numbers
should be noted that sinceAmn , Bmn , Cmn are transcendenta
functions of the unknownŝk& and^K&, explicit solutions cannot
be obtained from Eqs.~50!–~51!. We use an iterative procedure t
solve them for^k& and ^K&. The iteration is started by taking
effective propertiesk, K, and r in the dynamic GSCM mode
equal to matrix valuesk2 , K2 , and r2 , respectively. Then, the
forward and backward scattered amplitudes are calculated an
homogenization is carried out by using Eqs.~44! and ~45!. Next,
we substitute the corrected effective wave numbers^k& and ^K&
Transactions of the ASME
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for k andK and these procedures are repeated until convergen
obtained. Numerical results for specific type of particulate co
posites will be presented by the effective wave speed and att
ation in a later section.

3.2 The Static Limit. The static limits of the effective dy-
namic constants obtained from Eqs.~50! and ~51! can be evalu-
ated by using the asymptotic expansions of the spherical Be
and Hankel functions forka→0. However, due to the complexit
of the system of equations, the closed-form expressions for
static limits are difficult to be obtained. Using the present theo
the numerical results in the low-frequency limit show that t
effective moduli of a particulate composite converge to the w
known static formulas, namely the effective bulk modulus o
tained by Hashin@24# and effective shear modulus derived b
Christensen and Lo@25#. The expressions for the static effectiv
elastic moduli of particulate composites in terms of their const
ent properties are given in Appendix B. To the author’s know
edge, this seems to be the first time in the literature to be abl
recover both well-known and rigorous static effective mod
which could cover a full range of volume fractions (0<c<1) of
the particulate composites through an effective plane wave pr
gation approach.

4 Numerical Results
Numerical calculations are performed for two random parti

late composite: SiC-Al~metal-matrix composites with ceramic re
inforcement! and lead-epoxy~polymer matrix!. We assume tha
both matrix and inclusion are elastic and isotropic. The proper
of the all the constituents taken from Shindo et al.@5# and Kinra
et al. @21# are given in Table 2.

For SiC-Al particulate composites, the density ratio contr
(r1 /r2) is not too high, it is appropriate to assume that the eff
tive density is the mean density. Figures 2 and 3 show the
malized phase velocity and attenuation of P and S waves ca
lated from the present theory and from the Waterman-Tru
method for concentrationsc50.05 andc50.15 in a SiC-Al par-
ticulate composite. For low concentration (c50.05), the phase
velocities obtained from both methods are close. As the conc
tration increases, the so-called condition of weak scattering d
sity is not satisfied and the discrepancies become significan
should be noted that only present theory converges the effec
bulk modulus obtained by Hashin@24# and effective shear modu
lus derived by Christensen and Lo@25# at the zero-frequency
limit. The attenuation predicted by the Waterman-Truell formu
appears to be significantly higher at lower frequency than
obtained from dynamic GSCM. Phase velocity and attenuatio
P and S waves calculated from the present theory for a conce
tion c50.3 in a SiC-Al particulate composite are shown in Fig.
Unlike the former case where phase velocities for P and S wa
decrease monotonously in the frequency range fromk2a50 to
k2a52.0, the phase velocity of P waves forc50.3 attains its local
minimum atk2a51.4. Figures 5 and 6 show the phase veloc
and attenuation versus concentration in SiC-Al composites
k2a51.0. It is seen that, at any frequency, attenuation increa
initially with concentration, attains a maximum and then declin
to zero as concentration increases to 1. The maximum attenu
for normalized frequenciesk2a51.0 occurs atc50.17 for P
waves and atc50.20 for S waves.

For composites with high-density contrast ratio, the influence
density variations on the dynamic properties of composites is

Table 2 Properties of constituents

Density „gÕcm3! l „GPa… m „GPa…

SiC 3.181 98 188.1
Al 2.706 57.5 26.5
Epoxy 1.202 4.916 1.731
Lead 11.3 38.46 8.357
Journal of Applied Mechanics
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nificant and the effective density becomes complex a
frequency-dependent~@26#!. Thus, in the case of lead-epoxy com
posites, the dynamic effective density derived by Sabina and W
lis @14# as shown in Appendix C is used instead of mean dens
The longitudinal wave speed obtained from the present the
using the dynamic GSCM is compared with the theoretical res
by Waterman and Truell, Sabina and Willis as well as with t
experimental results by Kinra et al.@22,23# as shown in Figs. 7–9
Although these models gives reasonable agreement with the
for 5% and 15% volume concentrations of lead spheres in ep
it shows only dynamic GSCM predicts the overall trend of t
effective wave speeds for high volume fractionc552%. Further-
more, it can be seen in Fig. 9 that the discrepancy among
zero-frequency limits of phase velocities predicted by differe
methods is significant at high volume fraction. This is due to
mutual interactions among inclusions become predominant
dense packing of scatterers. However, it can be shown that
the proposed theory converges to the well-known static soluti
~@25#!, which gives physically reasonable results at high conc
trations and covers the full range of volume fractions~@18#!.

5 Conclusions
We have modeled the coherent wave field propagating in

isotropic medium with randomly distributed spherical inclusio
by the dynamic generalized self-consistent model. The phase
locity and attenuation of compressional and shear waves
strongly dependent on the normalized frequency,k2a, i.e., they
are dependent both on frequency and inclusion size. In the p
theoretical predictions of the overall elastodynamic moduli ha
been shown to be in good agreement with experimental resul

Fig. 2 Plots of phase velocity „a… and attenuation „b… of P
waves with normalized frequency, calculated from the present
theory and from the Waterman-Truell method for concentra-
tions cÄ0.05 and cÄ0.15 in a SiC-Al particulate composite
JULY 2003, Vol. 70 Õ 579
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low volume concentration of the spherical inclusions. At the h
volume concentrations, the effect of multiple scattering by inc
sions becomes significant and the theoretical estimates are
satisfactory. In addition, the overall dynamic elastic moduli cal
lated by Waterman and Truell’s formulations do not reduce to th
independently estimated static values in the limit of zero f
quency. The proposed dynamic generalized self-consistent m
which covers a full range of volume fractions (1<c<1) can not
only reproduce both well-known effective moduli of the partic
late composites in the static but also appear to yield reason
results at higher concentrations and frequencies.
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Appendix A
The far-field scattering amplitude functions for both P and

waves are given by

f ~u,f!5(
n50

`

~2 i !nA0nPn
0~cosu! (A1)

g1~u,f!5(
n50

`

(
m52n

n

~2 i !nFCmn

]

]u
Pn

m~cosu!

1
mBmn

K2 sinu
Pn

m~cosu!Geimf (A2)

Fig. 3 Plots of phase velocity „a… and attenuation „b… of S
waves with normalized frequency, calculated from the present
theory and from the Waterman-Truell method for concentra-
tions cÄ0.05 and cÄ0.15 in a SiC-Al particulate composite
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g2~u,f!52(
n50

`

(
m52n

n

~2 i !n11FmCmn

sinu
Pn

m~cosu!

1
Bmn

K2

]

]u
Pn

m~cosu!Geimf. (A3)

Fig. 4 Phase velocity „a… and attenuation „b… of P and S waves
calculated from the present theory for concentrations cÄ0.3 in
a SiC-Al particulate composite

Fig. 5 Phase velocity versus concentration in SiC-Al compos-
ites for normalized frequency k 2aÄ1.0
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Appendix B
Christensen and Lo@18# used the GSCM to obtain the stati

effective shear and bulk modulus of a particulate composite. T
effective shear modulus is given by the solution of the quadra
equation

Fig. 6 Attenuation versus concentration in SiC-Al composites
for normalized frequency k 2aÄ1.0

Fig. 7 P-wave phase velocity of lead Õepoxy composites at a
concentration of cÄ0.05

Fig. 8 P-wave phase velocity of lead Õepoxy composites at a
concentration of cÄ0.15
Journal of Applied Mechanics
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A~m/m2!212B~m/m2!1C50, (B1)

where

A58M ~425n2!h1c10/322@63Mh212h1h3#c7/31252Mh2c5/3

250M ~7212n218n2
2!h2c14~7210n2!h2h3 , (B2)

B522M ~125n2!h1c10/312@63Mh212h1h3#c7/3

2252Mh2c5/3175M ~32n2!h2n2c1
3

2
~15n227!h2h3 ,

(B3)

C54M ~5n227!h1c10/322@63Mh212h1h3#c7/31252Mh2c5/3

125M ~n2
227!h2c2~715n2!h2h3 , (B4)

with

M5
m1

m2
21, (B5)

h15M ~7210n2!~715n1!1105~n12n2!, (B6)

h25M ~715n1!135~12n1!, (B7)

h35M ~8210n2!115~12n2!, (B8)

where n1 and n2 are the Poisson’s ratios of the inclusion an
matrix materials, respectively. The bulk modulus of the compo
was also obtained as

k5k21
c~k12k2!

11~12c!
~k12k2!

S k21
4

3
m2D

. (B9)

Appendix C
The effective properties derived by Sabina and Willis@14# can

be expressed as

k5k21
cg~h!g~2h!~k12k2!

113~k12k!«p /~3k14m!
(C1)

m5m21
cg~h!g~2h!~m12m2!

112~m12m!@2m«p1~3k14m!«s#/@5m~3k14m!#
(C2)

r5r21
cg~h!g~2h!~r12r2!

11~r12r!~32«p22«s!/~3r!
. (C3)

Fig. 9 P-wave phase velocity of lead Õepoxy composites at a
concentration of cÄ0.52
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The functiong(h) for the spherical inclusion is

g~h!53@sin~ha!2ha cos~ha!#/~ha!3, (C4)

where the wave numberh is replaced withk for P-wave incidence
and withK for S-wave incidence. The terms«p and«s are given
by

«p53~12 ika!@sin~ka!2ka cos~ka!#~eika!/~ka!3 (C5)

«s53~12 iKa !@sin~Ka!2Ka cos~Ka!#~eiKa!/~Ka!3.
(C6)

Equations~C1!–~C6! can be solved by iteration.
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The Analysis of Constrained
Impulsive Motion
Impulsive problems for mechanical systems subject to kinematic constraints are disc
in this paper. In addition to the applied impulses, there may exist suddenly cha
constraints, or termed impulsive constraints. To describe the states of the system
the impulsive motion, three different phases, i.e., prior motion, virtual motion, and
terior motion, are defined which are subject to different sets of constraints, and thus
different degrees-of-freedom. A fundamental principle, i.e., the principle of velocity v
tion, for the constrained impulsive motion is enunciated as a foundation to derive
privileged impulse-momentum equations. It is shown that for a system with no ap
impulse, a conservation law can be stated as the conservation of the virtual-privil
momenta. The proposed methodology provides a systematic scheme to deal with v
types of impulsive constraints, which is illustrated in the paper by solving the constra
impulsive problems for the motion of a sleigh.@DOI: 10.1115/1.1577599#
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1 Introduction
A mechanical system undergoes an impulsive motion if the m

tion, particularly the velocities, of the particles in the system
changed so rapidly that the duration of the process may be
garded to be instantaneous. Such phenomenon occurs whe
system is subject to applied impulses or the constraints on
system are suddenly changed, and the associated problem
termed theconstrained impulsive problems. In contrast to those
continuously imposed constraints, termed theregular constraints,
the suddenly varied constraints, called theimpulsive constraints,
may significantly affect the analysis of the impulsive motion,
which even the degree-of-freedom may be changed. How to
tematically perform the analysis of the constrained impulsive m
tion subject to various types of impulsive constraints is the m
theme of this paper.

Impulsive problems occur frequently in the motion of a m
chanical system, and have been treated in many classical
books, such as@1–6#, or in some recent literatures@7–12#, among
others. They also appear in the study of the motion subjec
one-sided constraints, cf.@13–15# and the references therein, i
which the continuous motion and jumps of kinematic variab
exist hybridly. Analysis of such hybrid system,@16,17#, requires
an effective tool to deal with both the regular constraints and
impulsive constraints. According to their durations, the latter
further divided in this paper into four types, i.e. live, inert, elast
and released. Similar classifications can be found in@1#, but in
which the live impulsive constraints are not mentioned and
released constraints have different characteristics. On the o
hand, while the live constraints, as well as the inert ones, w
discussed in@3,8,18,19#, the effects of released and elastic impu
sive constraints have not been extensively analyzed. Although
mathematical formulation for impulsive constraints has been
tempted in @12,15,20,21#, a synthesized approach to treat t
above-mentioned four categories of impulsive constraints is
in demand. To attain this goal, a fundamental principle for imp
sive motion needs to be invoked.

In 1903, Appell@1# enunciated a basic principle for percussi
or impulsive motion analogous to D’Alembert’s principle in d

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, May 2
2001; final revision, Dec. 3, 2002. Associate Editor: N. C. Perkins. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departme
Mechanical and Environmental Engineering University of California–Santa Barb
Santa Barbara, CA 93106-5070, and will be accepted until four mon
after final publication of the paper itself in the ASME JOURNAL OF APPLIED ME-
CHANICS.
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namics, which leads to a variational equation in terms of virt
displacements. However, due to the special character of the
pulsive motion that the position of each particle is held fixed,
variation on the position such as the virtual displacement seem
be a little unnatural. On the other hand, in 1909, Jourdain@22#
introduced the notion of variation on the velocity while keepi
the time and the position fixed. This concept leads to the so-ca
Jourdain’s variational equation,@22#, or the principle of virtual
power @23–26# for dynamical problems, and the correspondi
variational equation on the~finite or infinitesimal! velocity varia-
tions is termed the second form of fundamental equations in@3#.
Since the position is not changed for such variations, it is deem
that the fundamental equation in velocity variations is more
propriate to be used for dealing with constrained impulsive pr
lems, cf. @3,11#. However, in the application of the variationa
equation, it is required to clearly identify the associated conditio
on the velocity variations. For the aforementioned different typ
of impulsive constraints, we thus have to indicate their relatio
with the compatibility conditions on the velocity variations in th
basic principle.

In this paper, we shall separate the impulsive motion of
system into three phases. The prior motion and the posterior
tion refer to the motion immediately before and after the instan
which the impulsive motion occurs, respectively. In addition
the regular constraints, the system is subject to live and relea
constraints in the prior motion, while it is restricted by live an
inert constraints in the posterior motion. To accommodate
elastic constraints, which are imposed on the system during
impulsive motion, it is postulated that the system is in the state
the third phase, i.e., the so-calledvirtual motion, in which live,
inert, and elastic constraints are active. We note that the com
ibility conditions on the velocity variations induced from the k
nematic conditions in the virtual motion are those should be
cluded in the fundamental variational equation. According
analogous to the principle of virtual power for finite-force motio
we propose the principle of velocity variations for the constrain
impulsive motion of finite degree-of-freedom system as enun
ated in Section 4. This fundamental principle essentially says
the applied impulses can be divided into the effective impul
which generate the jumps of velocities, and the net applied
pulses, which cannot change the jumps. Hence the sum total o
product of the latter and the velocity variations compatible w
the constraints in the virtual motion must vanish.

From the fundamental principle, the basic variational equat
for impulsive motion can be immediately derived. The phase
virtual motion may be described by generalized velocities, wh
are obtained from the regular geometric constraints, and qu
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velocities, which may arise naturally for a given problem. T
holonomic or nonholonomic relationships between these vel
ties are solved to find a set of independent velocities, termed
virtual-privileged velocities, with total number being equal to t
degree-of-freedom of the virtual motion. The variation of the v
locity of each particle in the system can be then expresse
terms of the variations of the virtual-privileged velocities. Subs
tuting the expressions into the basic variational equation, the
calledprivileged impulse-momentum equations for impulsive m
tion are deduced, from which it is observed that the differen
between the prior virtual-privileged momenta and the poste
virtual-privileged momenta are balanced by the applied virtu
privileged impulses. The privileged impulse-momentum eq
tions, formulated in the virtual motion, can be then used to fi
the relation between the prior motion and the posterior motion
particular, the conservation law of the virtual-privileged mome
can be stated for the constrained impulsive problem if there is
applied impulse. However, if elastic constraints appear, the pr
leged impulse-momentum equations are insufficient to determ
the states in the posterior motion from the prior motion, and
ditional criteria, such as the law of impact, should be invoked

While the privileged impulse-momentum equations for imp
sive motion subject toregular constraints derived here are simila
to those obtained by using Kane’s approach,@7,27#, the impulsive
constraints and the notion of virtual motion were not discus
there. The basic variational equation introduced here provides
more suitable scenario to deal with the impulsive constraints,
paves the way for further synthesis with other methodologies
either continuous motion or for body with infinite degree-o
freedom. The privileged velocities mentioned before, called
generalized speedsin @7#, are systematically obtained here by u
ing the active kinematic constraints and the expressions of
quasi-velocities. For some problems associated with complex
chanical systems, Kane’s approach may be superior to the o
in deriving the equations of motion for finite-force problems,
@28#. The methodology proposed in this paper thus also have th
advantages due to the similarity.

On the other hand, from the geometric point of view, the pri
leged equations may be viewed as the balance of the projec
of the underlying quantities to some appropriate subspaces d
mined by the constraints, cf.@20,29–31#. In modern geometric
mechanics,@32,33#, the virtual displacement is regarded as t
tangent vectors to the configuration space and the geometric
mulation of Lagrangian mechanics,@34,35#, is mainly based on
the D’Alembert principle. Since the velocity variations are ess
tially the tangent vectors to the velocity space, it may be inter
ing to develop the geometric formulation for the principle of v
tual power or the principle of velocity variations. In particular, t
treatments of the force as a 1-form,@35#, a horizontal 1-form,
@34#, or a semibasic 1-form,@12#, in geometric Lagrangian me
chanics may not be appropriate in formulating the Jourdain va
tional equation in modern geometric terminologies.

The rest of this paper is organized as follows. The classifica
of impulsive constraints and the separation of different phase
motion are discussed in Section 2. The kinematic constraints
various phases of motion and the notion of the privileged velo
ties are described in Section 3. The fundamental principle
impulsive motion is then stated in Section 4, along with the de
vation of the privileged impulse-momentum equations for imp
sive motion. The application of the equations to solve the pr
value problems is discussed in Section 5. Section 6 describe
application of the fundamental principle and the privileged eq
tions to a system including rigid bodies. A physical example, i
the sleigh under impulsive motion, is then given in Section 7
illustrate the proposed methodology, in which Newton’s meth
and Lagrange’s method are also used to solve the same proble
manifest their differences. Some concluding remarks are fin
given in Section 8.
584 Õ Vol. 70, JULY 2003
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2 Classification of Impulsive Motions
The impulsive motion of a mechanical system refers to a s

den change of motion due to either applied impulses or sud
changes of constraints. The limiting case of a large force ac
for a short interval of time may be viewed as animpulsive force,
and animpulseis defined to be the limit of the integration of a
impulsive force over the short interval. If sudden changes of c
straints occur, each particle in the system may be treated as b
imposed by the impulsive constraint forces, or constraint i
pulses. Similar to the notion of constraint force for a nonimpuls
motion, or termedfinite-force motion, the constraint impulses only
appear when the constraints exist. During the impulsive mot
each particle in the system may be impressed by external impu
or the interactive impulses from the other particles. The total
pulses may be further grouped into the applied impulses and
constraint impulses. The problem associated with the impuls
motion of a constrained mechanical system exerted by app
impulses is termed theconstrained impulsive problem. The kine-
matic condition that restricts the motion in the whole process
the impulsive motion is called aregular constraint. On the other
hand, the constraint that appears or vanishes during the impu
motion is named theimpulsive constraint. Either regular con-
straints or impulsive constraints may exert constraint impul
during the impulsive motion.

To illustrate these notions, we consider a ball rolling on a rou
surface. The ball rolls without sliding and thus is subject to so
nonholonomic constraints. If there is an external impulse act
on the ball while the condition of pure rolling is not affected, the
nonholonomic constraints are regular. If the ball hits the wall su
that there are new constraints appearing, such constraints ar
impulsive constraints. According to the duration of their effectiv
ness, the impulsive constraints may be further classified into
following categories:

~a! Inert Impulsive Constraints

For an inelastic ball falling on the floor, the constraint occu
during the impulsive motion, and holds after the motion. Su
impulsive constraints that appear during the impulsive motion
are satisfied afterwards are called theinert impulsive constraints.

~b! Elastic Impulsive Constraints

If the ball is elastic and is dropped to the floor, the sudden c
straints imposed by the floor during the impulsive motion disa
pear afterwards. Such impulsive constraints are termed theelastic
impulsive constraints.

~c! Live Impulsive Constraints

If a ball rolls on a rough surface, and the surface is suddenly se
move, the form of the original constraints still holds, but som
terms may be changed due to the sudden motion of the surfac
an example, consider a vertical disk with radiusa rolling on a
plane moving with velocity (ẋp ,ẏp). The rolling-without-sliding
constraints can be expressed as

ẋc2aḟ cosu5 ẋp , (1)

ẏc2aḟ sinu5 ẏp , (2)

where (ẋc ,ẏc) denotes the velocity of the center of the disk, a
ḟ, u represent the spin rate, the heading angle of the disk, res
tively. If the plane is moved suddenly so thatẋp and ẏp have
abrupt changes, the set of constraints~1!, ~2! are varied accord-
ingly. Such impulsive constraints are grouped as thelive impulsive
constraints.

~d! Released Impulsive Constraints

In contrast to the inert impulsive constraints, there may
some constraints vanishing during the impulsive motion a
afterwards. Such impulsive constraints are termed thereleased
impulsive constraints.
Transactions of the ASME
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Fig. 1 A ball rolls across the boundary between two surfaces
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Although a live impulsive constraint may be divided into
combination of a released constraint and an inert constraint,
certain specific relationship, it is treated specially in one categ
due to its frequent appearance and the distinct structure,@3#.

A similar scheme for the classification of the constraints occ
ring in the impulsive motion was given by Appell@1#, in which
among the four types there the first one is essentially the af
mentioned regular constraints, the second type is the inert
straints, the fourth type corresponds to the elastic constra
while the live constraints defined above is not mentioned. In c
trast to the released constraint, Appell’s third type of constraint
regarded active during the impulsive motion. However, from so
observations, the notion of released constraints introduced
may be more appropriate to be adopted. Consider a ball b
grasped in hand, and suddenly released att̄ . It is obvious that the
velocity of the ball will not change during the short interval of th
impulsive motion and immediately after the instantt̄ . The con-
straint of grasping is suddenly released and is thus not ac
during the impulsive motion.

Although the system undergoing released constraints will
experience a sudden change of velocity, the degree-of-freedo
its motion varies significantly. In fact, released constraints of
occur simultaneously along with other kinds of impulsive co
straints or the imposition of applied impulses to result in imp
sive motion. Consider a ball rolling on a rough horizontal surfa
and suddenly bumping into an inclined rough surface such th
may start to ascend, cf. Fig. 1. At the instant of impact, the c
straint from the horizontal surface is released, which should
provide any action~constraint impulse! on the ball except that the
degree-of-freedom of the system is increased. The suddenly
peared constraint from the inclined surface, the inert constra
can then be imposed on the motion.

The difference between the released constraints and App
third type of constraints affects the analysis of impulsive moti
In fact, in @8#, the constrained impulsive problems associated w
the Appell’s first and the second types of constraints, termed
sistent constraints, are described to be determinant, while for
third and the fourth type, the problems are claimed to be inde
minant, for which additional laws are required. From the obser
tions made above, it is seen that the problems associated th
leased constraint are determinant, and only problems with ela
constraint need more special treatment. However, it is noted
in the above-mentioned examples, the normal relative velo
between bodies before the impulsive motion subject to the
leased constraints vanishes. If it is nonzero, the correspon
impulsive constraint should be treated as a combination of a
leased constraint and an elastic one.

From the above discussions, the analysis of impulsive mo
should take into account the occurrences of the impulsive c
straints. Different classes of constraints may be active in differ
stages during the impulsive motion. This observation matc
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with the discussion in@12#, where the analysis of motion subjec
to impulsive constraints based on modern geometric mechani
performed individually for different types, i.e., permanent no
holonomic~regular!, permanent impulsive~inert!, elastic, etc.

To specifically identify the action of various impulsive con
straints, we shall divide the impulsive motion into three phas
The motion immediately before the instantt̄ at which the impul-
sive motion occurs is called theprior motion, during which live
and released constraints are active. Immediately aftert̄ , the sys-
tem is in theposterior motionand is subject to inert and live
constraints. In between the prior motion and the posterior mot
the system is influenced by live, inert, and elastic constraints,
may be postulated in the so-calledvirtual motion. The classifica-
tion of the impulsive constraints and the separation of three ph
during the impulsive motion pave the way to systematically tr
the constrained impulsive problems in the following sections.

3 Kinematics of Impulsive Motions
Consider a systemS of particles, whose number may be finit

or infinite, indexed by an index setI. Each particlePi in S, i
PI , with massmi , is located at the positionr iPR3. Theconfigu-
ration of S is specified by the positions of all particles inS. The
system is assumed to be offinite degree-of-freedom, in the sense
that there is a set ofN particles inS such that the positions of al
particles can be determined from those of theN particles, i.e.,

r i5r i~x1 ,¯ ,x3N ,t !, i PI ,

where (x3 j 22 ,x3 j 21 ,x3 j ) are the three components ofr j , j
51,̄ ,N. A system consisting of particles of finite number
rigid continua is in such a category. Although the methodolo
developed in this paper may be extended formally to systems
infinite degree-of-freedom, the finite degree-of-freedom is
sumed here to avoid some technical difficulties and to enhance
clarity of later discussions.

If S is exerted by applied impulses or undergoes sudden cha
of constraints at instantt̄ , the system may experience a sudd
change of motion between (t̄ 2, t̄ 1), i.e., the interval immedi-
ately before and after the impulsive motion. Although it is mo
physically realistic to regard the duration of the motion in a ve
short interval@ t̄ 2t, t̄ 1t#, the analysis of motion ofS is usually
performed by taking the limit ast→0. For each particlePi in S,
its velocity, which is finite during the motion, may have a disco
tinuity at t̄ , with the correspondingjump of velocityDvi5vi

(1)

2vi
(2) , wherevi

(2) ~prior velocity! and vi
(1) ~posterior velocity!

denote the velocities ofPi at t̄ 2 and t̄ 1, respectively. The inte-
gration of the velocityṙ i(t) with respect to time over the interva
@ t̄ 2t, t̄ 1t# is seen to be zero ast→0, due to the fact that the
velocity is finite in the interval. Accordingly, the position of eac
particle inS is unchanged during the impulsive motion, denot
JULY 2003, Vol. 70 Õ 585
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by r̄ i , i PI , and only the jump of velocity may occur. The abo
reasoning can be formalized by using the Dirac theory of d
tributions as in@14# to show that the position is fixed during th
impulsive motion, which is essentially an a priori assumpti
in @9#.

Let the system be subject to independent regular constra
including K geometric constraints andL linear kinematic con-
straints. Due to the assumption of finite degree-of-freedom,
constraints on every particles inS can be transformed into th
constraints on the selectedN particles. The regular constraint
may be then expressed as

f s~x1 ,¯ ,x3N ,t !50, s51,̄ ,K, (3)

(
i 51

3N

Asi~x1 ,¯ ,x3N ,t !ẋi1as~x1 ,¯ ,x3N ,t !50, s51,̄ ,L,

(4)

respectively. By solving theK geometric constraints, the positio
of each particle can be expressed parametrically by introdu
n(53N2K) number of generalized coordinatesq1 ,¯ ,qn , as

r i5 r̂ i~q,t !, i PI ,

whereq denotes the ensemble (q1 ,¯ ,qn). Differentiatingr i with
respect to time, the velocities can be then written as

ṙ i5(
j 51

n
] r̂ i

]qj
q̇j1

] r̂ i

]t
, i PI , (5)

where q̇ j5dqj /dt, j 51,̄ ,n, are thegeneralized velocitiesof
the system. Substituting the components of the velocities of thN
particles in Eq.~5! into the linear kinematic constraints~4!, the
constraints on the generalized velocities can be expressed as

(
j 51

n

Bs j
R ~q,t !q̇ j1bs

R~q,t !50, s51,̄ ,L. (6)

For a constrained mechanical system, it is sometimes conven
to describe the motion in terms ofp quasi-velocitiesṗk , defined
by

ṗk,(
j 51

n

Ck j~q,t !q̇ j1ck~q,t !, k51,̄ ,p, (7)

in which the right-hand side is nonintegrable. Since the regu
constraints are imposed during the whole process, the mo
of the system in all three phases can be then characterize
the combined set ofn generalized velocities andp quasi-
velocities. The configuration att̄ is specified by the general
ized coordinatesq̄1 ,¯ ,q̄n , and the prior motion, the posterio
motion are described by the combined sets of velo
ties (q̇1

(2) ,¯ ,q̇n
(2) ,ṗ1

(2) ,¯ ,ṗp
(2)), and (q̇1

(1) ,¯ ,q̇n
(1) ,

ṗ1
(1) ,¯ ,ṗp

(1)), respectively.
Other than the regular constraints, additional constraints ma

imposed on or released fromS during the impulsive motion,
which may include geometric ones. For example, consider
motion of two rigid balls rolling on a plane and colliding wit
each other. At the instant of collision, there is an impulsive g
metric constraint that the distance between two centers equal
sum of their radii. However, unlike the regular geometric co
straints, the impulsive geometric constraints cannot be use
reduce the number of generalized coordinates, since they are
satisfied at the instant of impulsive motion. A configuration for t
constrained impulsive motion is said to bepossibleif these im-
pulsive geometric constraints are satisfied at the instantt̄ , which
may be described by (q̄1 ,¯ ,q̄n) that satisfies the impulsive geo
metric constraints. After determining the possible configuration
the instant of impulsive motion, these impulsive geometric c
straints should be transformed into linear kinematic forms. Co
586 Õ Vol. 70, JULY 2003
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bining with the others, it is assumed that there are totallyLI im-
pulsive linear kinematic constraints in the form of

(
j 51

n

Bs j
I ~q,t !q̇ j1bs

I ~q,t !50, s51,̄ ,LI . (8)

According to the classification in the previous section, the
impulsive constraints are further divided into four groups, i.
live, inert, elastic, and released, with numbers ofl L , l I , l E , l R ,
respectively. For each group, the corresponding terms in the f
of Eq. ~8! will be denoted by (Bs j

L ,bs
L), (Bs j

I ,bs
I), (Bs j

E ,bs
E), and

(Bs j
R ,bs

R), respectively, in which the inhomogeneous terms of
live constraints,bs

L , s51,̄ ,l L , are different before and aftert̄ .
As discussed before, the prior motion satisfies live and relea
constraints, the posterior motion satisfies live and inert c
straints, while live, inert, and elastic constraints are active in
virtual motion. For each phase of the impulsive motion, the i
pulsive constraints and the regular constraints~6! are combined
into a set of active kinematic conditions on the motion. The c
responding degrees-of-freedom of the system are thusmb5n2L
2 l L2 l R , ma5n2L2 l L2 l I , and m85n2L2 l L2 l I2 l E for
prior motion, posterior motion, and virtual motion, respective
Here, and in what follows, the superscripts ‘‘b,’’ ‘‘ a,’’ and ‘‘ 8’’ are
used to indicate the validation of the corresponding terms fot
, t̄ 2, t. t̄ 1, andtP( t̄ 2, t̄ 1), respectively.

Recall that the motion is described by the aggregate ofn gen-
eralized velocities andp quasi-velocities, which are related b
different sets of constraints for the three phases. In particular,
the virtual motion, the generalized velocities and the qua
velocities satisfy theL1 l L1 l I1 l E equations of kinematic con
straint andp equations of quasi-velocities~7!. By solving these
equations, which are linear in velocities, we may selectm8 num-
ber of independent velocities,ḟ18 ,¯ ,ḟm8

8 , called thevirtual-
privileged velocities, such that the generalized velocities and t
quasi-velocities compatible with the kinematic conditions can
expressed as

q̇ j5(
s51

m8

D j s8 ~q,t !ḟs81dj8~q,t !, j 51,̄ ,n, (9)

ṗk5(
s51

m8

Gks8 ~q,t !ḟs81gj8~q,t !, k51,̄ ,p. (10)

Furthermore, by substituting Eq.~9! into Eq.~5!, one may express
the possible velocity of each particle ofS in virtual motion as

ṙ i5(
s51

m8

b is8 ~q,t !ḟs81g i8~q,t !, i PI , (11)

where

b is8 5(
j 51

n
] r̂ i

]qj
D j s8 , g i85(

j 51

n
] r̂ i

]qj
dj81

] r̂ i

]t
,

are continuously differentiable functions of (q,t), but not of q̇,
since the kinematic constraints and the quasi-velocity equat
are all linear in velocity.

Analogous to the process of selecting the virtual-privileged
locities, the set ofprior-privileged velocities$ḟs

b%, and that of
posterior-privileged velocities$ḟs

a% can be obtained for the prio
motion and the posterior motion, respectively. Similar forms
Eqs.~9!, ~10!, ~11! are found for each phase to describe the m
tion, with the corresponding notations summarized in Table 1. I
noted that the selection of privileged velocities basically depe
on the coefficients of the velocity terms, i.e.,Bs j

I , Bs j
R , andCk j ,

and hence the discontinuity of the inhomogeneous terms ari
from the live constraints does not affect the selection process
Transactions of the ASME
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Table 1 Summary of the transformations

Prior Motion Virtual Motion Posterior Motion

Active Impulsive
Constraints

Released, Live Live, Elastic, Inert Live, Inert

Privileged
Coordinates

fs
b , s51, . . . ,mb fs8 , s51, . . . ,m8 fs

a , s51, . . . ,ma

ḟs to q̇ j ~9! (D j s
b ,dj

b) (D j s8 ,dj8) (D j s
a ,dj

a)
ḟs to ṗk ~10! (Gks

b ,gk
b) (Gks8 ,gk8) (Gks

a ,gk
a)

ḟs to ṙ i ~11! (b is
b ,g i

b) (b is8 ,g i8) (b is
a ,g i

a)
i
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If all the kinematic constraints are regular, i.e., there is no
pulsive constraint, the kinematic conditions for the three phase
motion are the same, with the same degree-of-freedomm85mb

5ma5m5n2L. The same set of privileged velocities may b
selected as well to describe the motion for three phases, i.e.ḟs8
5ḟs

b5ḟs
a5ḟs , s51,̄ ,m. The problem is then simplified to

the classical problem of impulsive motion, and the method p
sented in this paper is similar to the one used in@7#.

An impulsive problem that the prior motion is given and t
posterior motion is to be determined is called aprior-value prob-
lem ~analogous to the initial-value problem for differential equ
tions!. For such problems, the posterior velocity of each parti
Pi in S can be expressed in terms of the posterior-privileged
locities evaluated att̄ 1 as

vi
~1 !5(

s51

ma

b is
a ~ q̄, t̄ !ḟs

a~1 !1g i
a~ t̄ 1 !, i PI . (12)

From the previous equations, once the posterior-privileged vel
ties are determined, the posterior velocity of each particle inS can
be obtained subsequently.

To solve the prior-value problem, fundamental principles in m
chanics needs to be invoked. To deal with the systems subje
constraints for finite-force problems, many variational princip
have been developed, in which the concept of variations is in
duced to ‘‘test’’ the limitations from the constraints. These var
tions are essentially infinitesimal quantities imposed on the sys
variables. As reviewed in@25#, there are basically three types o
variations. In the principle of virtual work or D’Alembert’s prin
ciple in dynamics, the virtual displacement is an infinitesimal a
instantaneous displacement imposed on the configuration of
system. In the principle of least constraint or the Gauss princi
@36#, the variation is imposed on the acceleration of each part
while keeping the time, the position, and the velocity unchang
On the other hand, in Jourdain’s principle,@22,23#, or the principle
of virtual power,@24,26#, the variation is on the velocity, denote
by d1vi , which is instantaneous (d1t50) and stationary (d1r i
50).

In the literature, the term of virtual displacement and that
virtual velocity are sometimes used interchangeably. This may
due to the reason that in the original work of Bernoulli@37#, the
principle of virtual work is called the principle of virtual velocity
To tell the difference between the virtual displacement and
variation of velocity defined above, the latter shall be termed
velocity variation in this paper. In modern geometric mechan
the virtual displacement is viewed as a tangent vector to the c
figuration space,@38#, due to its infinitesimal character. Analo
gously, the velocity variation may be treated as a tangent vecto
the velocity space, and is thus intrinsically different from the n
tion of virtual displacement.

The velocity variation plays a central role in the fundamen
principle for impulsive motion presented in the next sectio
which requires that they must be compatible with the kinema
conditions of constraints in the virtual motion. From the abo
discussions, any possible velocity of each particle in virtual m
tion can be represented in terms of the virtual-privileged velo
ied Mechanics
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ties, Eq.~11!. By taking d1-variation on~11!, the velocity varia-
tion d1ṙ i can be then expressed in terms of the variations of
virtual-privileged velocitiesd1ḟs8 as

d1ṙ i5(
s51

m8

b is8 ~q,t !d1ḟs8 , i PI . (13)

Since the virtual-privileged velocitiesḟs8 are independent, there i
no constraint on the corresponding variationsd1ḟs8 . This fact
shall be used in the next section to establish the required equa
of jumps from the variational equation.

4 Kinetic Equations for Impulsive Motions
The dynamics of impulsive motion may be thought of as t

limiting case for a finite-force problem. In addition to th
D’Alembert-Lagrange equation and the Gauss-Gibbs equat
Jourdain in 1909,@22#, established a variational equation fo
systems subject to linear kinematic constraints in terms of
infinitesimal variation of velocities. Later, Pars@3# extended the
equations to accommodate the finite variations of velociti
and obtained the so-called second form of the fundamental e
tions as

(
i PI

~mi r̈ i2Fi
~A!!•D1ṙ i50, (14)

wherer̈ i is the actual acceleration of particlePi , Fi
(A) denotes the

resultant applied force acting onPi , andD1ṙ i is an arbitrary finite
or infinitesimal variation of possible velocity compatible with th
constraints.

To extend the previous variational equation to deal with
constrained impulsive problem, due to the appearance of the
pulsive constraints, the set of conditions from the constraints w
which the velocity variations must be compatible should be id
tified. It may be envisioned that during the impulsive motion, t
system undergoes the stage of virtual motion, during which
system satisfies the kinematic conditions from the regular c
straints and the impulsive constraints including the types of in
elastic, and live. As a result, the velocity variations for virtu
motion must be compatible with the conditions induced fro
these kinematic conditions. Substituting Eq.~13! into Eq. ~14!,
and noting the independency of$d1ḟs8 %s51,̄ ,m8 , we obtain

(
i PI

~mi r̈ i2Fi
~A!!•b is8 50, s51,̄ ,m8,

where the acceleration of each particlePi may be very large dur-
ing the impulsive motion, and leads to the jump of the correspo
ing velocity.

To obtain the relation between the prior motion and the pos
rior motion for the systemS, the previous equations are furthe
expressed as
JULY 2003, Vol. 70 Õ 587
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e is
d

dt S (i PI
mi ṙ i•b is8 D 2(

i PI
mi ṙ i•S (

j 51

n
]b is8

]qj
q̇j1

]b is8

]t D
2(

i PI
Fi

~A!
•b is8 50, s51,̄ ,m8. (15)

Since b is8 is continuous and the velocities,ṙ i , i PI , and q̇ j , j
51,̄ ,n are finite, the second term in the previous equation
finite for eachs51,̄ ,m8. Let the sth virtual-privileged mo-
mentumof S and thesth virtual-privileged applied forceacting on
S be defined as

Ls,(
i PI

mi ṙ i•b is8 ~q,t !, (16)

Fs
~A!,(

i PI
Fi

~A!
•b is8 ~q,t !, (17)

respectively. Integrating Eq.~15! from t̄ 2t to t̄ 1t, and letting
t→0, the second term vanishes, and theprivileged impulse-
momentum equationscan be established:

Ls
~1 !2Ls

~2 !5Ps
~A! , s51,̄ ,m8, (18)

where

Ls
~2 !,(

i PI
mivi

~2 !
•b is8 ~ q̄, t̄ !, (19)

Ls
~1 !,(

i PI
mivi

~1 !
•b is8 ~ q̄, t̄ !, (20)

denote thesth prior and posterior virtual-privileged momenta,
respectively, and

Ps
~A!,E

t̄ 2

t̄ 1
Fs

~A!dt5E
t̄ 2

t̄ 1

(
i PI

Fi
~A!

•b is8 ~q,t !dt (21)

is thesth virtual-privileged applied impulse.
Again, by the continuity ofb is8 and the negligible change o

configuration and interval of time during the impulsive motio
the virtual-privileged applied impulses can be further expresse

Ps
~A!5(

i PI
S E

t̄ 2

t̄ 1
Fi

~A!dtD •b is8 ~ q̄, t̄ !5(
i PI

Pi
~A!

•b̄ is8 ,

s51,̄ ,m8, (22)

wherePi
(A),*

t̄ 2

t̄ 1
Fi

(A)dt is the applied impulseacting on particle
Pi , i PI . Substituting the previous equation into~18!, the privi-
leged impulse-momentum equations are rewritten as

(
i PI

~mivi
~1 !2mivi

~2 !2Pi
~A!!•b is8 ~ q̄, t̄ !50, s51,̄ ,m8.

(23)

From Eq.~22!, given applied impulses acting onS, the virtual-
privileged applied impulses can be determined, and the jump
the m8 virtual-privileged momenta defined as

DLs,Ls
~1 !2Ls

~2 ! , s51,̄ ,m8, (24)

are then obtained from Eq.~23!.
The above derivation of the privileged impulse-momentu

equations is based on the framework for finite-force problems
gain more direct insight on the impulsive motion subject to co
straints, and to avoid the technicalities in the transition fro
finite-force problems to impulsive problems, one may follow t
principle of velocity variations for constrained impulsive motio
as stated below:

Consider a system of particles Pi , i PI , connected with one
another in any way. The system may be subjected to applied
588 Õ Vol. 70, JULY 2003
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pulsesPi
(A) on particle Pi . These applied impulses would impa

to the free particles certain determinate jumps on their velociti
However, due to the constraints, regular or impulsive, the act
jumps are different from those on the free motions. Conceive
the applied impulsePi

(A) be resolved into the effective impuls
Pi

(E)5mivi
(1)2mivi

(2) , and another component termed the n
applied impulse. Owing to the constraints, only the effective
pulses generate the actual jumps. The net applied impulses
incapable to change the jumps during the impulsive motion, a
the sum total of the product of the net applied impulses and
velocity variations compatible with the constraints during the v
tual motion must vanish.

This principle is an analog of the principle of virtual power fo
finite-force motion stated in@26#, and the statements are similar
the exposition of D’Alembert’s principle by Mach@37#. It is noted
that Appell in @1# enunciated a fundamental principle for impu
sive motion analogous to D’Alembert’s principle, and, based
which, established the general variational equation in terms
virtual displacements. However, as discussed before, a virtual
placement refers to a variation of the position of the partic
which is in fact not allowed during the impulsive motion. Whi
the variational equation corresponds to the previous principle
similar characteristics as that derived by Appell, the notion
velocity variation while keeping position fixed is more accepta
for the impulsive motion.

Based on this fundamental principle, the corresponding va
tional equation for impulsive motion can be immediately e
pressed as

(
i PI

~mivi
~1 !2mivi

~2 !2Pi
~A!!•d1ṙ i50, (25)

for all d1ṙ i compatible with the constraints specified during t
virtual motion at (q̄, t̄ ). Substituting~13! into the previous varia-
tional equation and noting the independency of the variations
the virtual-privileged velocities, the privileged impulse
momentum Eqs.~23! immediately follow. This process may b
viewed as the projection from the space ofd1ṙ i to that of d1ḟs8
through Eq.~13!, and is essentially the basic idea for the so-cal
projection method,@29,30#. Similar techniques were also used
@12,31# to derive jump conditions from a variational equatio
similar to ~25! in virtual displacement without applied impulse
There the projection is from the tangent bundle to the distribut
that annihilates the constraint submanifold. Since the velo
variations should reside in the second tangent bundle, or the
space of order 2, the projection throughb is8 should be regarded a
different from those in the tangent bundle.

Moreover, it is noted that the projection in Eq.~13! does not
depend on the velocity. This is due to the fact that only line
kinematic constraints are treated in this paper. If the system
subject to nonlinear ones in the form o
c(x1 ,¯ ,x3N ,ẋ1 ,¯ ,ẋ3N ,t)50, the projection or the transforma
tion may depend on the velocities. For impulsive problems,
discontinuity of the velocity then renders the transformation in
terminant. In@12#, the impulsive constraints are associated w
Chetaev bundle,@39#, of reaction forces from the constraints, lin
ear or nonlinear. However, if the kinematic constraint is nonline
it is not clear how to compute the corresponding impulse of th
Chetaev forces, which depends on the velocity in general. A
result, more understandings on the mechanism for the impul
motion subject to nonlinear kinematic constraints are desired.

5 Prior-Value Problems
We are now ready to apply the privileged impulse-moment

equations to study constrained impulsive problems. In the abse
of applied impulses, from~18!, we immediately have the follow-
ing conservation law for constrained impulsive motion: the
virtual-privileged momenta of the system are conserved if ther
no applied impulse.
Transactions of the ASME
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For the prior-value problem, the prior virtual-privileged m
mentum can be computed from the state of the prior mot
through Eq.~19!. The posterior virtual-privileged momentum
then determined from the privileged impulse-momentum Eq.~23!.
To find the posterior motion, the relation between them8 posterior
virtual-privileged momenta and thema posterior-privileged ve-
locities is constructed by substituting~12! into ~20!,

Ls8
~1 !

5(
s51

ma

S (
i PI

mi b̄ is8
8 •b̄ is

a D ḟs
a~ t̄ 1 !1(

i PI
mi b̄ is8

8 •g i
a~ t̄ 1 !

5(
s51

ma

Ms8sḟs
a~ t̄ 1 !1Ls80

~1 ! , s851,̄ ,m8, (26)

where

Ms8s,(
i PI

mi b̄ is8
8 •b̄ is

a , Ls80
~1 !,(

i PI
mi b̄ is8

8 •g i
a~ t̄ 1 !.

Here, and in what follows, the overbar of a continuous quan
denotes its value at (q̄, t̄ ), e.g.,b̄ is

a 5b is
a (q̄, t̄ ).

The previous set ofm8 Eqs. ~26! is to be solved for thema

(5n2L2 l L2 l I) unknowns,ḟs
a( t̄ 1), s51,̄ ,ma. The differ-

ence between the number of equations and that of unknowns il E ,
which is the number of elastic constraints. As a result, it is
possible to determine the posterior motion without additional E
conditions if elastic constraints exist. Such conditions may be
tained by invoking the law of impact, cf.@2,19#, or @27,40# for
more recent developments. For example, to determine the p
rior motion of a ball being dropped to the floor, the coefficient
restitutionk is needed to find the extend of rebound. The elas
constraint isṙ "n50, wheren is the normal vector correspondin
the floor, and the posterior velocity is related to the prior veloc
as

v~1 !
•n52kv~2 !

•n.

From the previous example, it may be conceived that for
elastic constraints,( j 51

n Bs j
E q̇ j1bs

E50, s51,̄ ,l E , there arel E
generalized coefficients of restitutionks to bear the relationship
between the ‘‘approaching’’ constraint functions and the ‘‘lea
ing’’ constraint functions as

(
j 51

n

B̄s j
E q̇ j

~1 !1b̄s
E52ksS (

j 51

n

B̄s j
E q̇ j

~2 !1b̄s
ED , s51,̄ ,l E ,

where the coefficients and the inhomogeneous terms are ass
to be continuous. From the formula of the posterior generali
velocities, with coefficients listed in Table 1, the previous eq
tions are further expressed as

(
s51

ma S (
j 51

n

B̄s j
E D̄ j s

a D ḟs
a~ t̄ 1 !

52(
j 51

n

B̄s j
E ~dj

a~ t̄ 1 !1ksq̇j
~2 !!2~11ks!b̄s

E , s51,̄ ,l E .

(27)

Equations~26!, ~27! can be then combined to obtain thema

posterior-privileged velocities, as illustrated by the followin
simple example.
Example 1. Consider a particle of massm being tossed to the floo
(z50) with prior velocity vx

(2)ex1vz
(2)ez . Assume that the sur

face of the floor is ideally smooth, and the coefficient of resti
tion of the contact isk. It is desired to determine the posterio
velocity of the particle.

The impulsive constraint provided by the floor isż50, which is
an elastic constraint. Hence, the virtual motion can be expre
as ṙ5 ẋex , whereẋ can be selected as the privileged velocity f
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the virtual motion, and the coefficient corresponding toẋ is b̄18
5ex . The prior and posterior virtual-privileged momentum can
found to be L1

(2)5(mvx
(2)ex1mvz

(2)ez)•ex5mvx
(2) , L1

(1)

5(mvx
(1)ex1mvz

(1)ez)•ex5mvx
(1) , respectively. The conserva

tion of the virtual-privileged momentum leads tovx
(2)5vx

(1) .
However, this equation is not sufficient to determine all the p
terior velocities. The additional condition from the law of impac
i.e., vz

(1)52kvz
(2) , is needed to obtain the posterior veloci

vx
(2)ex2kvz

(2)ez . h
In contrast to the previous case for an impulsive motion with

elastic constraint, we have the same number of unknowns
equations in~26!, and the coefficientsb̄ is

a 5b̄ is8 if the same set of
virtual-privileged velocities and posterior-privileged velocities
chosen. Accordingly, the matrixM formed by the components

Ms8s5(
i PI

mi b̄ is8
8 •b̄ is8 , s,s851,̄ ,m8, (28)

is positive definite and shall be termed theprivileged mass matrix.
Under this framework, the posterior-privileged velocities can
obtained from the following equations:

ḟs
a~1 !5 (

s851

m8

~M21!ss8~Ls8
~1 !

2Ls80
~1 ! !, s51,̄ ,m8, (29)

from which the posterior velocities can be determined from~12!.
For the treatment of released constraints, the above deduc

of determinacy is apparently different from that claimed in@8#,
which regards the third type of impulsive problem in@1# as inde-
terminant. To illustrate the difference, we consider again the pr
lem of releasing a ball from hand grasping. As described in S
tion 2, the constraint of grasping is treated as a released const
which is effective before but ineffective during and after the im
pulsive motion. Since there is no kinematic constraint imposed
the virtual motion, the virtual-privileged velocities of the ball ca
be selected to be the three components of the linear velocity o
ball, and the corresponding virtual-privileged momenta are no
ing but the three components of the linear momentumMv. If hand
does not provide additional applied impulse, from the conser
tion law of virtual-privileged momenta, we haveMv(2)5Mv(1)

50 if the ball is released from rest. The posterior motion is th
determined, and the motion of the ball bears no sudden cha
during the impulsive motion, only experiences sudden increas
the degree-of-freedom. From this simple example, it is seen
the notion of released constraint introduced in this paper is m
appropriate to be adopted to treat the released constraints
grasping.

Now we consider the special case that there is neither i
constraints nor released constraints existing, while some live c
straints appear. For such impulsive motion, as discussed in
previous section, the same set of privileged velocities may
chosen for the prior motion and the posterior motion,ḟs

b5ḟs
a ,

wheres51,̄ ,ma(5mb5n2L2 l L), and we have

vi
~2 !5(

s51

ma

b̄ is
a ḟs

a~2 !1g i
a~ t̄ 2 !, (30)

vi
~1 !5(

s51

ma

b̄ is
a ḟs

a~1 !1g i
a~ t̄ 1 !, i PI . (31)

The privileged impulse-momentum Eqs.~23! then implies that

(
s51

ma

Ms8sDḟs1DLs802Ps8
~A!

50, s851,̄ ,m8, (32)
JULY 2003, Vol. 70 Õ 589
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whereDḟs5ḟs
a(1)2ḟs

a(2) , andDLs805Ls80
(1)

2Ls80
(2) . Moreover,

if there is no elastic constraint, we havem85ma5mb5n2L
2 l L , and the jumps on the privileged velocities can be fou
from

Dḟs5 (
s851

m8

~M21!ss8~2DLs801Ps8
~A!!, s51,̄ ,m8.

(33)

With the prior quantitiesḟs
a(2) being determined from the prio

motion, the posterior quantitiesḟs
a(1) are then computed from th

previous equation, which, in turn, yield the posterior velocities
the system through Eq.~12!.

After systematically discussing the impulsive motion associa
with various impulsive constraints, the special case that the
tem is subject to applied impulses with only regular constra
being active is considered next. Since the kinematic conditions
the same for the prior, the virtual, and the posterior motion,
same set of privileged velocities can be chosen, denote
ḟ1 ,¯ ,ḟm , with the same degree-of-freedomm5n2L. The cor-
responding coefficients for the velocity of each particle in th
phases are thus the same, denoted by$b is ,g i% i PI ,s51,̄ ,m . Simi-
lar to the special treatment on the live constraints, the privile
impulse-momentum equations become, cf. Eq.~32!,

(
s51

m

Ms8sDḟs5Ps8
~A! , s851,̄ ,m, (34)

since DLs8050 due to the nonexistence of live constraints. B
computing the privileged applied impulses from the formula

Ps8
~A!

5(
i PI

Pi
~A!

•b̄ is8 , s851,̄ ,m, (35)

and the privileged mass matrix from

Mss85(
i PI

mi b̄ is•b̄ is8 , s,s851,̄ ,m, (36)

the jumps on the privileged velocities can be determined from
~34!, and the posterior velocities of the system can be found s
sequently from Eq.~12!.

6 Impulsive Motion for a System Containing Rigid
Bodies

A finite degree-of-freedom mechanical systemS may be com-
posed of many particles and rigid bodies. The physical quant
such as the virtual-privileged momenta and the virtual-privileg
applied impulses can be defined for each subsystem. Due to
superposition property of the Eq.~23! with respect to the sub
systems, a physical quantity for the systemS can be obtained by
taking the summation of the corresponding ones of all subsyste

The motion of a rigid bodyB in S may be described by the
translational motion of some reference pointQ in B and a rota-
tion aboutQ, represented by the rotation dyadicF. The rotation
dyadicF changes the attitude of the rigid body from a referen
~initial! configuration to the current configuration, and satisfi
the property

F•Fc51, detF51,

whereFc denotes the conjugate ofF, and1 is the identity dyadic.
It can be shown from the previous defining property that

Ḟ5v3F, (37)

in dyadic notation,@41#, wherev is the angular velocity of the
rigid body. The position vector of any pointPPB can be then
expressed as

r P~ t !5rQ~ t !1F~ t !•RPQ ,
590 Õ Vol. 70, JULY 2003
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whereRPQ denotes the vector fromP to Q at the reference con
figuration. Taking the time-derivative of the previous equation,
obtain

ṙ P5 ṙQ1v3F•RPQ5 ṙQ1v3~r P2rQ!. (38)

Now let (q1 ,¯ ,qn) be a set of generalized coordinates ofS. In
general, the rotation dyadicF may be written in terms of the
generalized coordinates asF5F(q1 ,¯ ,qn ,t), and its time-
derivative is

Ḟ5(
i 51

n
]F

]qi
q̇i1

]F

]t
.

From the previous equation and Eq.~37!, the expression of the
angular velocityv in terms of the generalized velocities can b
derived from the following identity:

13v5Ḟ•FC5(
i 51

n S ]F

]qi
•FCD q̇i1

]F

]t
•FC,

as

v5(
i 51

n

v̂i~q,t !q̇i1v̂0~q,t !. (39)

In general, the right-hand side in the previous equation is
integrable, and the components ofv with respect to certain frame
can be treated as quasi-velocities of the system, cf. Eq.~7!.

Consider the virtual motion ofS during a constrained impulsive
motion. With the appropriate selection of virtual-privileged v
locities, ḟs8 , the velocities of the reference pointQ and each
particleP in B can be expressed in the form of~11! with coeffi-
cients (gQ8 ,bQ08 ), (bPs8 ,gP8 ), s51,̄ ,m8, respectively, and the
angular velocity ofB is further written as

v5(
s51

m8

Ãs8 ḟs81Ã08 . (40)

Substituting these expressions into Eq.~38!, it follows that

(
s51

m8

~bPs8 2bQs8 !ḟs81~gP8 2gQ8 !

5(
s51

m8

Ãs83~r P2rQ!ḟs81Ã083~r P2rQ!,

which leads to

bPs8 2bQs8 5Ãs83~r P2rQ!, gP8 2gQ8 5Ã083~r P2rQ!,
(41)

for s51,̄ ,m8, by the independency and the arbitrariness of
virtual-privileged velocities.

These relations, which based on the kinematic properties
rigid body, are now applied to derive the prior and poster
virtual-privileged momenta, and virtual-privileged applied im
pulses for the rigid bodyB as follows. From Eqs.~19!, ~20!, with
the index setI being overPPB, we have

Ls
B~6 !,E

B
vP

~6 !
•b̄Ps8 dm~P!

5E
B
vP

~6 !
•@b̄Qs8 1Ã̄s83~r P2rQ!#dm~P!

5LB~6 !
•b̄Qs8 1HQ

B~6 !
•Ã̄s8 , s51,̄ ,m8, (42)

where
Transactions of the ASME
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LB~6 !5E
B
vP

~6 !dm~P! (43)

are the prior and posterior linear momenta ofB, respectively, and

HQ
B~6 !5E

B
~r P2rQ!3vP

~6 !dm~P! (44)

are the prior and posterior angular momenta ofB about the refer-
ence pointQ, respectively. LetC denote the center of mass of th
rigid body B, and M, I Q be the total mass and the moment
inertia dyadic of the rigid body aboutQ, respectively. The linear
momenta and the angular momenta defined in~43!, ~44! can be
further expressed as

LB~6 !5MvC
~6 ! , (45)

HQ
B~6 !5I Q•v~6 !1~rC2rQ!3~MvQ

~6 !!, (46)

respectively.
On the other hand, the virtual-privileged applied impulses c

responding toB can be found to be, using Eq.~41!,

Ps
B~A!,(

PPB
PP

~A!
•b̄Ps8 5 (

PPB
PP

~A!
•@b̄Qs8 1Ã̄s83~r P2rQ!#

5PB~A!
•b̄Qs8 1JQ

B~A!
•Ã̄s8 , s51,̄ ,m8, (47)

wherePB(A), JQ
B(A) are the resultant applied linear impulse, and t

applied angular impulse acting onB aboutQ, defined as

PB~A!5 (
PPB

PP
~A! , (48)

JQ
B~A!5 (

PPB
~r P2rQ!3PP

~A! , (49)

respectively.
After obtaining the formula for a single rigid body, the virtua

privileged momenta and applied impulses for the system con
ing many bodies can be constructed. Let the system be comp
of NB rigid bodies, which may be expressed as

S5 ø
i 51

NB

Bi .

For each bodyi ,i 51, . . .NB, we may choose a reference poi
Qi , and denote the attitude dyadic byF i . With the selection of
privileged velocities ofS in the virtual motion, the coefficients
(Ãs8 )Bi and bQis

8 for each body can be determined. The virtua
privileged momenta and the applied impulses of the system
then found from the following summation:
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Ls
~6 !5(

i 51

B

Ls
Bi ~6 ! , Ps

~A!5(
i 51

B

Ps
Bi ~A!, (50)

respectively. With these formulas, the privileged impuls
momentum equations developed in Section 4 can be invoke
solve the constrained impulsive problems associated with in
connected rigid bodies. An example is given in the next section
illustrate the process.

7 The Impulsive Motion of a Sleigh With a Knifeblade
The proposed methodology discussed in the previous sect

is now applied to study the impulsive motion of a sleigh wi
a knifeblade attached. Three possibilities of impulsive motio
due to applied impulse, inert constraint, and live constraint,
spectively, are discussed. Two alternative methods, namely, N
ton’s method and Lagrange’s method, are used to solve the s
problem for the case of inert constraint to describe the esse
differences.

Consider a sleighB with a knifeblade along its principle axis
as depicted in Fig. 2. Let its mass and moment of inertia abou
center of massC be denoted byM andI C , respectively. When the
sleigh moves on a horizontal ice surfaceS, it is assumed that the
knifeblade makes contact with the surface at pointA, and it is
possible for the sleigh to move freely in the direction along t
blade, and rotate freely aboutA. However, the motion of the sleigh
in the direction perpendicular to the blade is prohibited. Let$i, j %
be a fixed coordinate system, and$ex ,ey% be a coordinate system
moving with B, whereex is parallel to the direction of the blade
which makes an angleu with respect to the axisi. Due to the
physical condition of constraints, the velocity ofA satisfies

vA•ey50, (51)

and may be expressed as

vA5uex , (52)

whereu is termed thelongitudinal velocityof B. The sleigh may
rotate about the vertical axisez(5ex3ey) with angular velocity
u̇ez . The velocity ofC may be then expressed as

vC5uex1 l u̇ey , (53)

where l denotes the distance betweenC and A. For this prob-
lem, we may choose the coordinates ofC, i.e., (xC ,yC), and the
angleu as the generalized coordinates. The constraints~51! then
becomes

2sinu ẋC1cosu ẏC2 l u̇50, (54)

which is nonholonomic. The longitudinal velocityu can be ex-
pressed as

u5cosu ẋC1sinu ẏC ,
JULY 2003, Vol. 70 Õ 591
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in which the right-hand side is not integrable, and thus should
treated as a quasi-velocity.

We are now ready to consider three cases of impulsive mot
for this system, which occur at the instantt̄ and at the configura-
tion of u5u0 .
Case (i). As shown in Fig. 2~i!, the sleigh is suddenly exerted b
an impulseP acting at the pointD at the instantt̄ . The longitu-
dinal velocity ofB and the angular velocity ofB about the vertical
axis at the instantt̄ 2 areu(2) andu̇ (2), respectively. It is desired
to determine these two quantities at the instantt̄ 1.

For this case, the impulsive motion is due to the imposition
the applied impulseP, while the rigid bodyB is subject to the
regular nonholonomic constraint, Eq.~54!. One may choose the
longitudinal velocityu and the angular velocityu̇ as the privileged
velocities to represent the possible motion ofB. In fact, the ve-
locity of A andC can be written in terms of the privileged veloc
ties as in Eqs.~52! and~53!, respectively. Since the prior and th
posterior motions satisfy the same nonholonomic constraint,
prior and posterior velocities ofA and C, vA

(2) , vC
(2) , vA

(1) and
vC

(1) , can be also expressed in terms of the prior and poste
privileged velocities,u(2), u̇ (2), u(1), and u̇ (1), with the same
form, respectively.

Let C be selected as the reference point forB. The coefficients
of the velocity ofC and the angular velocity ofB corresponding to
the privileged velocities can be obtained as

b̄C15ex , b̄C25 ley ,
(55)

Ã̄150, Ã̄25ez ,

respectively. The linear momenta, and the angular momenta a
C given in ~43!, ~44!, are then

LB~6 !5Mu~6 !ex1Ml u̇ ~6 !ey ,

HC
B~6 !5I Cu̇ ~6 !ez ,

respectively. On the other hand, the applied linear impulse and
applied angular impulse are, respectively,

PB~A!5Pey , JC
B~A!5Paez .

Substituting these terms into the formula of the privileged m
menta and privileged applied impulses, the privileged impul
momentum Eq.~18! can be applied to derive, in matrix form,

@M#S Fu~1 !

u̇ ~1 !G2Fu~2 !

u̇ ~2 !G D 5F 0
P~a1 l !G ,

where the privileged mass matrix@M# is given by

@M#5FM 0

0 ~Ml 21I C!
G . (56)

Hence, the posterior longitudinal velocity and angular velocity
the sleighB can be determined as

Fu~1 !

u̇ ~1 !G5@M#21F 0
P~a1 l !G1Fu~2 !

u̇ ~2 !G5F u~2 !

a1 l

M l 21I C
P1 u̇ ~2 !G .

h
Case (ii). Consider the landing of the sleigh on the ice surface
the instantt̄ , with prior velocity of the center of mass beingvC

(2)

in the direction of anglec (2) with respect to the axisi, and the
prior angular velocity aboutez being u̇ (2), cf. Fig. 2~ii !. The ve-
locity of the landing pointA may have lateral component beforet̄ ,
but it immediately satisfies the constraint~51! after contact. This
impulsive constraint is thus characterized as an inert constr
The virtual motion and the posterior motion have the same c
acteristics as the motion in Case~i!. Similar to the discussion
592 Õ Vol. 70, JULY 2003
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there, the set of velocities (u,u̇) may be chosen as the virtua
privileged velocities,ḟ185u, ḟ285 u̇. However, they are not the
privileged velocities for the prior motion. Again, the pointC is
chosen as the reference point forB, and the coefficients for the
velocity of C and the angular velocity ofB corresponding to the
virtual-privileged velocities are the same as in~55!, with b̄, Ã̄
being replaced byb̄8, Ã̄8 respectively. The required quantitie
can be found to be

LB~2 !5MvC
~2 ! cos~c~2 !2u0!ex1MvC

~2 ! sin~c~2 !2u0!ey ,

LB~1 !5Mu~1 !ex1Ml u̇ ~1 !ey ,

HC
B~6 !5I Cu̇ ~6 !ez .

The prior and the posterior virtual-privileged momenta cor
sponding respectively tof18 , f28 are then

L1
~2 !5MvC

~2 ! cos~c~2 !2u0!,

L1
~1 !5Mu~1 !,

L2
~2 !5MlvC

~2 ! sin~c~2 !2u0!1I Cu̇ ~2 !,

L2
~1 !5~Ml 21I C!u̇~1 !.

Since there is no applied impulse, the conservation of virtu
privileged momenta can be then invoked to yield the poste
velocities as

u~1 !5vC
~2 ! cos~c~2 !2u0!,

u̇ ~1 !5
1

Ml 21I C
~MlvC

~2 ! sin~c~2 !2u0!1I Cu̇ ~2 !!. (57)

h

Case (iii). If the ice surface exhibits a sudden motion att̄ caused
by external agents, such as an earthquake, the sleigh moving
then experiences an impulsive constraint. Let the velocity of
surface be denoted byvS . Instead of~51!, the constraint become
now

~vA2vS!•ey50, (58)

or

vA•ey2vS•ey50, (59)

in which the inhomogeneous term makes it become a live imp
sive constraint. In particular, let the surface suddenly move w
velocity vS

(1) in the direction of anglecS
(1) with respect to the

axis i. The velocity ofA andC during the impulsive motion can be
then expressed as

vA5uex1vS~coscSi1sincSj !,

vC5uex1 l u̇ey1vS~coscSi1sincSj !,

respectively, in whichu is now the longitudinal velocity of the
sleigh relative to the surface, andvS , cS are the magnitude and
the direction ofvS , respectively. From the constraint, we have

vS~ t̄ 2 !50, vS~ t̄ 1 !5vS
~1 ! ,

cS~ t̄ 2 !50, cS~ t̄ 1 !5cS
~1 ! .

For this case, the prior motion, the virtual motion, and the pos
rior motion have the same degree-of-freedom, and the same s
privileged velocitiesḟ185u, ḟ285 u̇ may be chosen. Again, Eq
~55!, after replacingb̄, Ã̄ by b̄8, Ã̄8, is applicable, and the quan
tities of momenta for the body are found as

LB~2 !5M ~u~2 !ex1 l u̇ ~2 !ey!,

LB~1 !5M @u~1 !ex1 l u̇ ~1 !ey1vS
~1 !~coscS

~1 !i1sincS
~1 !j !#,
Transactions of the ASME
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B~6 !5I Cu̇ ~6 !ez .

These formulas in turn give rise to the prior and the poste
virtual-privileged momenta corresponding toḟ18 , ḟ28 as

L1
~2 !5Mu~2 !,

L1
~1 !5Mu~1 !1Mvs

~1 ! cos~cs
~1 !2u0!,

L2
~2 !5~Ml 21I C!u̇~2 !,

L2
~1 !5~Ml 21I C!u̇~1 !1Mlvs

~1 ! sin~cs
~1 !2u0!,

respectively. The conservation of the virtual-privileged mome
is then invoked to find the posterior longitudinal velocity relati
to the surface and the posterior angular velocity as

u~1 !5u~2 !2vs
~1 ! cos~cs

~1 !2u0!,

u̇ ~1 !5 u̇ ~2 !2
Ml

Ml 21I C
vs

~1 ! sin~cs
~1 !2u0!.

h
To show the distinct features of the proposed scheme, Newt

method and Lagrange’s method for impulsive motion are app
next to solve the same problem as in Case~ii !.

As discussed in@2#, the integration of Newton-Euler’s equa
tions gives rise to the law of impulse for impulsive motion. F
the problem of Case~ii !, the only impulsive force acting onB is
the one acting onA exerted by the ice surface, which has n
component in the direction perpendicular to the blade by the
ture of the constraint. Accordingly, we have the conservation
linear momentum in that direction,

L ~1 !
•ex5L ~2 !

•ex ,

or

Mu~1 !5MvC
~2 ! cos~c~2 !2u0!.

On the other hand, there is no impulsive torque aboutA either, and
the conservation of angular momentum is then

I Cu̇ ~1 !ez1~rC2rA!3~MvC
~1 !!5I Cu̇ ~2 !ez1~rC2rA!3~MvC

~2 !!.

From the relationvC
(1)5u(1)ex1 l u̇ (1)ey , the posterior longitudi-

nal velocity and posterior angular velocity can be obtained exa
the same as in Eq.~57!.

Although Newton’s method seems to be more intuitive for t
simple case, it is not straightforward to apply the method to m
sophisticated problems. For example, to handle the impul
problems for constrained multibody systems, it is rather com
cated to solve the problems by inspection.

On the other hand, in Lagrange’s method, cf.@3,5,18#, the equa-
tions of impulsive motion are written in terms of the kinetic e
ergy T of the system. The problem studied in Case~i! has been
solved by Lagrange’s method in@18#. Here, the same method i
applied to attack the impulsive problem for Case~ii !, and is sum-
marized as follows. Consider the system with kinetic energyT,
and subject tol I inert impulsive constraints att̄ . From the impul-
sive constraints,n2 l I generalized velocities,q̇1 ,¯ ,q̇n2 lI, can
be selected to represent the other ones such that

q̇ j5(
s51

n2 l I

D j sq̇s1dj , j 5n2 l I 11, . . . ,n. (60)

Then the prior motion and the posterior motion satisfy t
Lagrange’s equations for impulsive motion, i.e., fors51,̄ ,n
2 l I ,

S ]T

]q̇s
1 (

j 5n2 l x11

n
]T

]q̇ j
D j sD U

t̄ 1

5S ]T

]q̇s
1 (

j 5n2 l x11

n
]T

]q̇ j
D j sD U

t̄ 2

.

(61)
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For the previous example, with the generalized coordina
(xc ,yc ,u), the kinetic energy of the sleigh is simply

T5
1

2
M ~ ẋC

2 1 ẏC
2 !1

1

2
I Cu̇2.

The inert constraint~54! may be expressed as

u̇52
sinu

l
ẋC1

cosu

l
ẏC . (62)

Corresponding to the generalized coordinatesxc , yc , the equa-
tions of the impulsive motion can be derived from~61! as

MẋC
~1 !2

I C

l
u̇ ~1 ! sinu05MẋC

~2 !2
I C

l
u̇ ~2 ! sinu0 ,

(63)

MẏC
~1 !1

I C

l
u̇ ~1 ! cosu05MẏC

~2 !1
I C

l
u̇ ~2 ! cosu0 .

The prior velocity of C is (vC
(2) cosc(2),vC

(2) sinc(2)), and the
posterior velocity can be expressed in terms of the posterior
gitudinal velocity and angular velocity as

ẋC
~1 !5cosu0u~1 !2 l sinu0u̇ ~1 !,

ẏC
~1 !5sinu0u~1 !1 l cosu0u̇ ~1 !.

Substituting the above formulas into~63!, the posterior velocities
u(1), u̇ (1) can be then determined by exactly the same equat
as ~57!.

It is noted that in Lagrange’s method, the quasi-velocityu is not
introduced directly, which reflects the fact that the treatment
quasi-velocity is a little awkward in Lagrange’s formulatio
Moreover, the computation of kinetic energy can only accomm
date the regular constraints. If the impulsive constraints oc
additional terms have to be included in the equations. Since
proposed methodology somewhat has similar characters as
Kane’s approach for the finite-force problem, the comparison
different methods in@28# can be partly transported here. In pa
ticular, it has been shown in@27,42# that Kane’s approach is very
effective in generating equations of motion for multibody syste
through symbolic computations. The same advantage of appl
the proposed method to deal with impulsive motion of multibo
systems subject to impulsive constraints is conceivable acc
ingly. Using the method to tackle the impulsive constraints, it
not necessary to include the impulsive constraint forces in
equations, which may contain some parameters, e.g., Lagran
multipliers, to be determined in the process.

8 Conclusions
Although there are many approaches dealing with the c

strained impulsive problems for mechanical systems, the princ
of velocity variation for impulsive motions lays down the found
tion of the methodology discussed in this paper. The class
principles for finite-force problems may not be suitable to be
plied directly to the impulsive problems, due to the irregularity
the occurrences of the impulsive constraints. From the fundam
tal principle, it was shown that, instead of the classical notion
conservation of momenta for systems without applied impuls
the more appropriate law should be the conservation of virtu
privileged momenta, respecting the behavior of the system in
virtual motion. With the inclusion of quasi-velocities, such as t
angular velocity of a rigid body, or the longitudinal velocity of
vehicle, the selection of independent privileged velocities see
to be more natural. The methodology discussed in this paper
vides a systematic tool in dealing with various types of impuls
constraints, and can be applied to solve a variety of constra
impulsive problems for mechanical systems.
JULY 2003, Vol. 70 Õ 593
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Dynamic Response of Kirchhoff
Plate on a Viscoelastic
Foundation to Harmonic Circular
Loads
In this paper Fourier transform is used to derive the analytical solution of a Kirchh
plate on a viscoelastic foundation subjected to harmonic circular loads. The solutio
first given as a convolution of the Green’s function of the plate. Poles of the integran
the integral representation of the solution are identified for different cases of the fou
tion damping and the load frequency. The theorem of residue is then utilized to eva
the generalized integral of the frequency response function. A closed-form soluti
obtained in terms of the Bessel and Hankel functions corresponding to the frequ
response function of the plate under a harmonic circular load. The result is parti
verified by comparing the static solution of a point source obtained in this paper
well-known result. This analytical representation permits one to construct fast algorit
for parameter identification in pavement nondestructive test.@DOI: 10.1115/1.1577598#
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1 Introduction
Nondestructive testing~NDT! has been extensively used

pavement engineering since the 1980s,@1–4#, to evaluate pave-
ment structural parameters. The most commonly used NDT de
for pavement structural evaluation are falling weight deflectom
ter and Dynaflect. Falling weight deflectometer applies an impu
load to pavement surfaces, while Dynaflect applies a steady-
vibrating harmonic load,@3#. Given that a typical physical mode
for rigid pavements~e.g., cement concrete pavements! is a Kirch-
hoff plate resting on an elastic Winkler foundation,@5,6#, the
mathematical problem involved here thus becomes to estimate
parameters of governing equation of the plate provided that
applied load is known~i.e., the inverse problem!. The structural
evaluation is then achieved by identifying structural parame
based on pavement response to applied dynamic loads.

Because of the complexity involved in the inverse problem,
current practice a widely used technique is to use the forw
analysis of a plate under a static load. By comparing measu
dynamic response and calculated static response using optim
tion techniques, pavement structural parameters are eventuall
termined while selecting a pavement structure whose calcul
response is most closely to the measured maximum respon
terms of certain objective functions,@7#. Clearly, pavement re-
sponse under dynamic loads such as applied by Dynaflect is
nificantly different from pavement response under static loads

Finite element procedures have been developed to calculate
merically the response of a plate to dynamic loads,@8–10#. How-
ever, in terms of efficiency, the computation using finite elem
methods is time-consuming. Computational efficiency can be
proved if analytical solutions are available and used for numer
calculation. Achenbach et al.@11# investigated the response of a
infinite plate to harmonic plane waves. Freund and Achenb
@12# and Oien@13# investigated the response of a semi-infin
plate on an elastic half-space. In their study the displacemen

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, Jan. 25, 20
final revision, Sept. 15, 2002. Associate Editor: V. K. Kinra. Discussion on the pa
should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, Departme
Mechanics and Environmental Engineering, University of California–Santa Barb
Santa Barbara, CA 93106–5070, and will be accepted until four months after
publication in the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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the plate is assumed to be harmonic. As a result, the time
spatial coordinates become separated and the governing p
differential equation turns out to be an ordinary differential equ
tion. The solution is then obtained using the Bubnov-Gale
method and series expansion of the vibrational modes of the p
Arnold et al. @14# and Warburton@15# conducted similar studies
by means of integral transform methods. Using integral repres
tation of the general solution of the plate provided by Bycr
@16#, Krenk and Schmidt@17# studied the steady-state response
finite plate on an elastic half-space.

In our previous work,@18–20#, dynamic response of Bernoulli
Eular beam~one-dimensional situation! to specific loading condi-
tion has been studied. However, the analysis of a Kirchhoff p
on a viscoelastic foundation to a circular harmonic load applied
a Dynaflect has not been available in the literature. To this end
a continuous effort in this paper the author extends previous w
to deal with cases and the dynamic response of a ridge pave
structure~two-dimensional situation! under a circular harmonic
load. The availability of such analytical solutions will enable o
to construct fast algorithm for parameter identification problem
core issue in pavement NDT.

This paper is organized as follows. In Section 2, the govern
equation is established with the exploration of associated foun
tion models. In Section 3, the Green’s function of a Kirchho
plate is derived analytically using integral transform method.
Section 4, by integrating the Green’s function with respect
time-spatial dimensions, we obtain the frequency response fu
tion corresponding to a harmonic circular load and concentra
load. In Section 5 we address several special cases such a
static solution and Winkler foundation, which is also used
verify the correctness of our result.

2 The Governing Equation of the Plate
Figure 1 depicts the coordinate system and significant dim

sions. Three assumptions are commonly made to simplify
mathematical model of a Kirchhoff plate. These assumptions
~1! the strain component«z in the perpendicular direction of the
plate is sufficiently small such that it can be ignored;~2! the stress
componentstzx , tzy , and sz are far less than the other stre

0;
per
t of

ara,
nal
003 by ASME JULY 2003, Vol. 70 Õ 595
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Fig. 1 A plate on a viscoelastic foundation subjected to a circular load
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components, therefore, the deformation caused bytzx , tzy , and
sz can be negligible; and~3! the displacement parallel to th
horizontal direction of the plate is zero,@6#.

Denote the displacement of the plate in thez-direction by
W(x,y,t). Based on these assumptions and the fundamental e
tions of elastodynamics, the governing equation for the deflec
of the Kirchhoff plate can be derived by considering the bala
of all the forces acting on the element (x,x1dx;y,y1dy). These
forces are the impressed force distributionF(x,y,t), the shearing
force, the restoring force from the foundationq(x,y,t), and the
inertial forcerh]2W/]t2. The well-known result is

D¹2¹2W~x,y,t !1rh
]2

]t2 W~x,y,t !5F~x,y,t !2q~x,y,t !

(1)

where the Laplace operator ¹25]2/]x21]2/]y2, D
5Eh3/@12(12m2)# is stiffness of the plate,h is thickness of the
plate,r is density of the plate, andE and m are Young’s elastic
modulus and Poisson ratio of the plate, respectively.

The most widely used foundation model in rigid pavement
sign is Winkler foundation,@6,20,21#, which assumes the reactiv
pressure to be proportional to the deflection of the plate, i.eq
5KW whereK is the modulus of subgrade reaction. A constanK
implies a linear elasticity of the subgrade. When the damp
effect of the subgrade is considered, the restoring force beco
q5KW1C]W/]t. This is a viscoelastic foundation consisting
a spring of strengthK and a dashpot of strength,C, placed paral-
lel, as shown in Fig. 1. Substitution of the restoring force into E
~1! gives

D¹2¹2W~x,y,t !1KW~x,y,t !1C
]

]t
W~x,y,t !

1rh
]2

]t2 W~x,y,t !5F~x,y,t !. (2)

3 The Green’s Function
According to the mathematical physics theory, the Gree

function is a fundamental solution of a partial differential equ
tion, @22,23# For the present problem, the Green’s function is d
fined as the solution of Eq.~1! given that the external excitatio
F(x,y,t) is characterized by

F~x!5d~x2x0! (3)

in which x5(x,y,t), x05(x0 ,y0 ,t0), d(x2x0)5d(x2x0)d(y
2y0)d(t2t0), andd~•! is the Dirac-delta function, defined by

E
2`

`

d~x2x0! f ~x!dx5 f ~x0!. (4)

Define the three-dimensional Fourier transform and its inv
sion, @24#,
03
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f̃ ~j!5F@ f ~x!#5E
2`

` E
2`

` E
2`

`

f ~x!exp~2 i jx!dx (5a)

f ~x!5F21@ f̃ ~j!#5~2p!23E
2`

` E
2`

` E
2`

`

f̃ ~j!exp~ i jx!dj

(5b)

where j5(j,h,v), F@•# and F21@•# are the Fourier transform
and its inversion, respectively. To solve the Green’s function,
apply three-dimensional Fourier transform to both sides of Eq.~2!

D~j21h2!2G̃~j;x0!1KG̃~j;x0!1 iCvG̃~j;x0!2rhv2G̃~j;x0!

5F̃~j! (6)

in which F̃(j) is the Fourier transform ofF(x), and the displace-
ment responseW(x) has been replaced by the symbolG(x;x0) to
indicate the Green’s function. In the derivation of Eq.~6! the
following property of Fourier transform is used:

F@ f ~n!~ t !#5~ iv!nF@ f ~ t !#. (7)

SinceF̃(j) is the representation ofF(x) in the frequency do-
main,F̃(j) needs to be evaluated as well. This can be achieved
applying three-dimensional Fourier transform on both sides of~3!

F̃~j!5E
2`

` E
2`

` E
2`

`

d~x2x0!exp~2 i jx!dx5exp~2 i jx!

(8)

in which the property of the Dirac-delta function, i.e., Eq.~4!, is
utilized while evaluating the above integral. Substituting this
sult ~8! into Eq. ~6! gives

G̃~j;x0!5exp~2 i jx0!@D~j21h2!21K1 iCv2rhv2#21.
(9)

The Green’s function given by~9! is in the frequency domain and
needs to be converted back to the time domain. To this end,
the inverse Fourier transform of Eq.~9!

G~x;x0!5~2p!23E
2`

` E
2`

` E
2`

`

exp@ i j~x2x0!#@D~j21h2!2

1K1 iCv2rhv2#21dj. (10)

Equation ~10! is the Green’s function of a plate on the vis
coelastic foundation. The Green’s function serves as a fundam
tal solution of a partial differential equation. It can be very use
when dealing with circular loads.

4 The Frequency Response Function

4.1 Integral Representation. We use the Green’s function
obtained in the previous section to construct the frequency
sponse function~FRF!. DenoteW(x) as the solution of Eq.~1! in
Transactions of the ASME
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which the external load is a harmonic circular load with its cen
located at the origin of the coordinate system, i.e.,

FFRF~x!5~pr 0
2!21H~r 0

22x22y2!exp~ iVt ! (11)

in which V is frequency of the harmonic load. The steady-st
response can be expressed as

W~x!5HCircle~x,V!exp~ iVt !. (12)

DenoteHCircle(x,V) the frequency response function~FRF! of the
plate. Expression~12! simply says that both the response a
external excitation possess identical frequencyV, though response
of the plate may have a phase difference with the external ex
tion reflected in theHCircle(x,V). The solution of Eqs.~1! and
~11! can be constructed by integrating the Green’s function o
all dimensions, i.e.,

W~x!5E
2`

t E
2`

` E
2`

`

F~x0!G~x;x0!dx0 . (13)

Take~10! and~11! into ~13! and apply the property of the Dirac
delta function twice.

W~r ,V!

5
1

2pE2`

` E
2`

` E
0

` J1~zr 0!J0~zr !exp~ ivt !exp@ i ~v2V!t0#

pr 0~Dz41K1 iCv2rhv2!

3dzdvdt0 (14)

Here,J0(•) and J1(•) are the Bessel functions of the first kind
@25#. Since

E
2`

`

exp@ i ~V2v!t0#dt052pd~V2v!, (15)

substituting~15! into formula ~14! gives

W~r ,V!5exp~ iVt !E
0

` J1~zr 0!J0~zr !

pr 0~Dz41K1 iCV2rhV2!
dzdv.

(16)

Comparing~16! to ~12! it is straightforward that

HCircle~r ,V!5E
0

` J1~zr 0!J0~zr !

pr 0~Dz41K1 iCV2rhV2!
dz. (17)

The frequency response function of the plate to a concentr
harmonic loadFPoint(x)5d(x)d(y)exp(iVt) can be obtained by
simply taking the limitr 0→0 on both sides of~17!, i.e.,

HPoint~r ,V!5
1

2p E
0

` J0~zr !

Dz41K1 iCV2rhV2 zdz. (18)

Now we have obtained the frequency response func
HCircle(x,V) and HPoint(r ,V) in the rectangular and cylindrica
coordinate systems, respectively. In general, the frequency
sponse function given by~17! and ~18! are complex functions.
The Bessel function of the first kindJ0(z) can be given in inte-
gration representation,@25#,

J0~z!5
i

p E
0

`

@exp~2 iz coshg!2exp~ iz coshg!#dg. (19)

Realizing the property of even function, we can also rewrite id
tity ~19! as

J0~z!5
i

pE2`

`

exp~2 iz coshg!dg. (20)

Substituting this expression into Eq.~18! gives
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HCircle~r ,V!5
i

p2r 0D E
0

`E
2`

` J1~zr 0!exp~2 i zr coshg!

z41~K2rhV21 iCV!/D
dzdg.

(21)

4.2 Roots of the Characteristic Equation. Before the inte-
gration~21! can be further evaluated, it is necessary to investig
the roots of the characteristic equation of type

z41~K2rhV21 iCV!/D50. (22)

Characteristic Eq.~22! is a fourth-order algebraic equation, roo
of which are dependent upon parameters related to plate struc
foundation, and loading condition. We separate our discussion
two categories: no damping effect~Winkler foundation! and with
damping effect~viscoelastic foundation!. Within each individual
category three cases are separately addressed because the re
ship between load frequency and eigenfrequencies may resu
different scenarios.

4.2.1 No damping(C50). This case corresponds to a pla
on a Winkler foundation. Define equivalent stiffness asK̄5u(K
2rhV2)/Du and resonance frequency asV05AK/rh.

a. V,V0 . Equation ~22! becomesz41K̄50. All the four
roots of this equation possess complex values and can
given byz j5A4 K̄ exp@i(112j)p/4# with j 50,1,2,3.

b. V5V0 . Equation~22! becomesz450 and all four roots
degrade and becomesz50.

c. V.V0 . Equation~22! becomesz42K̄50. Two of the four
roots are imaginary and the other two are real valued, wh
are given byz j5A4 K̄ exp@i(jp/2)# with j 50,1,2,3, respec-
tively.

4.2.2 With Damping(CÞ0). Define the equivalent damping
coefficientC̄5CV/D. Three cases are discussed as follows:

a. V,V0 . Equation ~22! becomesz41K̄1 iC̄50. All four
roots possess complex values and can be given byz j

5A8 K̄21C̄2 exp@i(q1p12jp)/4# with j 50,1,2,3 in which
tanq5C̄/K̄.0.

b. V5V0 . Equation~22! becomesz41 iC̄50. In this case all
four roots possess complex values and can be given bz j

5A4 C̄ exp@i(3p14jp)/8# with j 50,1,2,3, respectively.
c. V.V0 . Equation ~22! becomesz42K̄1 iC̄50. All four

roots possess complex values and can be given byz j

5A8 K̄21C̄2 exp@i(q12jp)/4# with j 50,1,2,3 in which
tanq52C̄/K̄,0.

4.3 Closed-Form Representation. According to the resi-
due theorem~Saff and Snider,@26#! the residues of the integran
of ~32! in the upper half-plane contribute to the following integr
tion:

E
2`

` J1~zr 0!exp~2 i zr coshg!

z46K̄1 iC̄
dz

52p i(
j 51

J

ResF J1~zr 0!exp~2 i zr coshg!

z46K̄1 iC̄
GU

z5z j

5
p i

2
(
j 51

J
J1~zr 0!exp~2 i zr coshg!

z3 U
z5z j ,Im~z!.0

(23)

in which J is the number of poles whose imaginary parts a
positive, andz j represents the poles of the integrand of Eq.~23!.

Based on the previous analysis, it is clear that two comp
JULY 2003, Vol. 70 Õ 597
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roots exist in the upper half-plane of the complexz-plane for all
the cases ofCÞ0 and the caseV,V0 of C50. ForV.V0 and
C50 two poles are located on the real axis, while forV5V0 and
V5V0 only one pole is located on the real axis. Since the resi
theorem cannot be directly applied in the sense of Riemann i
gral, the concept of Cauchy principal value~p.v.! of the integra-
tion ~23! has to be introduced for these two cases,@26#. In Fig.
2~a! and ~b! two integral contours are respectively provided f
V5V0 of C50 andV.V0 of C50.

As shown in Fig. 2~a!, the contour consists of three portion
for the caseV5V0 andC50. The integral of the left-hand sid
of Eq. ~23! now becomes*2`

` J1(zr 0)exp(2izr coshg)/z4 dz.
b
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Since no pole is embraced by the closed contour, the theorem
residue says that the integral along this closed contour beco
zero, i.e.,

R 5p.v.E
2R

R

1E
C1

1E
C2

50 (24)

in which the abbreviation p.v. means the Cauchy principal va
of the integration. For thosez values onC1 , they can be ex-
pressed byz5« exp(ib) and dz5 i« exp(ib)db. The integration
*C1

as«→0 is then given by
lim
«→0

E
p

0 J1@« exp~ ib!r 0#exp@2 i«r exp~ ib!coshg#

«4 exp~ i4b!
i« exp~ ib!db5 lim

«→0
i E

p

0 J1@« exp~ ib!r 0#exp@2 i«r exp~ ib!coshg#

«3 exp~ i3b!
db.

(25)

By applying the Maclaurin expansion and the L’Hospital rule to the limit~25!, it is found that a singularity with an orderO(«21) exists.
For thosez values onC2 , they can be expressed byz5R exp(ib) anddz5 iR exp(ib)db. The integration*C2

asR→` is then given
by

lim
R→`

E
p

0 J1@R exp~ ib!r 0#exp@2 iRr exp~ ib!coshg#

R4 exp~ i4b!
iR exp~ ib!db5 lim

R→`

i E
p

0 J1@R exp~ ib!r 0#exp@2 iRr exp~ ib!coshg#

R3 exp~ i3b!
db50.

(26)
is-

as«1→0 is then given by
Comparison among~24!, ~25!, and~26! shows

p.v.E
2`

`

5 lim
R→`

E
2R

R

52 lim
«→0

E
C1

;O~«21!. (27)

For the caseV.V0 and C50, as shown in Fig. 2~b!, the
contour consists of four portions. One pole is within the ran
of the closed contour. Suppose that a tiny amount of damp
is present, which is the case in reality, the pole that is curre
ly exactly located on the positive part of the real axis will
actually pushed down into the fourth quadrant of the comp
plane. Hence, its contribution to the integral vanishes. So we n
have
ge
ing
nt-
e

lex
ow

R 5p.v.E
2R

R

1E
C1

1E
C2

1E
C3

52p iResF J1~zr 0!exp~2 i zr coshg!

z42K̄
GU

z5 iA4 K̄

5
p iJ1~zr 0!exp~2 i zr coshg!

2z3 U
z5 iA4 K̄

. (28)

For thosez values onC2 andC3 , one can prove limR→0 *C2
50

and lim«3→0 *C3
50 in the same manner as in the previous d

cussion. For thosez values onC1 , they can be expressed byz
52A4 K̄1«1 exp(ib) anddz5 i«1 exp(ib)db. The integration*C1
Fig. 2 The integral contours for evaluating the Cauchy principal value in Eq. „23…
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E
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0 J1$r 0@2A4 K̄1«1 exp~ ib!#%exp$2 ir @2A4 K̄1«1 exp~ ib!#coshg%

@2A4 K̄1«1 exp~ ib!#42K̄
i«1 exp~ ib!db

52p iResFJ1~zr 0!exp~2 i zr coshg!

z42K̄
GU

z52A4 K̄

5
2p iJ1~zr 0!exp~2 i zr coshg!

4z3 U
z52A4 K̄

. (29)
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Comparison among~28! and ~29! gives

p.v.E
2`

`

5 lim
R→`

E
2R

R

5
p iJ1~zr 0!exp~2 i zr coshg!

2z3 U
z5 iA4 K̄

1
p iJ1~zr 0!exp~2 i zr coshg!

4z3 U
z52A4 K̄

. (30)

So far, all cases have been analyzed and the left-hand sid
Eq. ~23! has been represented in closed-form expressions for
ferent cases. With the help of these closed-form expressions
frequency response function given by~21! is now ready to be
further evaluated. Realize that an integral representation of H
kel function is,@25#,

2i

p E
0

`

exp~2 izrchg!dg5H0
~2!~zr! (31)

whereH0
(2)(•) is the Hankel function of the second kind~i.e., the

Bessel function of the third kind!. Applying this expression and
the closed-form representation of the inner integral of Eq.~21!, we
are eventually able to write the integration~21! in a closed-form
expression, as illustrated by~32!:

HCircle~r ,V!5
i

4r 0D (
n5a,b

J1~znr 0!H0
~2!~znr !

zn
3 (32)

where polesza andzb are provided in Table 1.

5 Verification Through Special Cases
It is of interest to examine the static solution through apply

the results~17! and~18!. The derivation of static solution can als
be of great value in terms of verifying if the general result giv
by Eq. ~32! is correct. For a static load,FCircle–sta(x)

5(pr 0
2)21H(r 0

22x22y2) andFPoint–sta(x)5d(x)d(y). The static

solution of Eq. ~1! corresponding to the static load can b
achieved by lettingV50 in ~17! and ~18!

HCircle–sta~r !5E
0

` J1~zr 0!J0~zr !

pr 0~Dz41K !
dz (33)

HPoint–sta~r !5
1

2p E
0

` J0~r z!

Dz41K
zdz (34)
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This expression~34! is exactly identical to a known result,@27–
29#.

If damping is ignored in Eqs.~17! and ~18!, the frequency re-
sponse functions become

HCircle~r ,V!5E
0

` J1~zr 0!J0~zr !

pr 0~Dz41K2rhV2!
dz (35)

HPoint~r ,V!5
1

2p E
0

` J0~zr !

Dz41K2rhV2 zdz. (36)

Clearly, HCircle(r ,V) andHPoint(r ,V) given by ~35! and ~36! are
real functions. It implies that no phase difference exists betw
the response and the external excitation.

If the radius of the circular load approaches zero, the freque
response functions given by~32! becomes

HPoint~r ,V!5
i

8D (
n5a,b

H0
~2!~znr !

zn
2 (37)

where the following limit is used:

lim
r 0→0

J1~znr 0!

znr 0
51/2. (38)

In practice, the vibratory devices used for pavement nondest
tive test generate harmonic loads with frequency 5;60 Hz, @3#.
These frequencies usually fall into the low frequency range
V,V0 . Under such condition, it is appropriate to write~37! as

HPoint~r ,V!5~64K̄D !21/2$H0
~2!@A4 K̄ exp~ ip/4!r #

1H0
~2!@A4 K̄ exp~ i3p/4!r #%. (39)

6 Conclusion
In this paper we derived a closed-form solution of dynam

response of a Kirchhoff plate on a viscoelastic foundation s
jected to impulse and harmonic circular loads. The solution
lizes the Bessel and Hankel functions. The result has been
tially verified by comparing the static solution of a point sour
obtained in this paper to a well-known result. This analytical e
pression permits one to construct fast algorithms for param
identification in pavement nondestructive test.
Table 1 Poles that contribute to the harmonic response of the plate

Damping Frequency Polesza and zb

C50 V,V0 za5K̄1/4eip/4 andzb5K̄1/4ei3p/4

C50 V5V0 O(«21)
C50 V.V0 za5 iK̄ 1/4 andzb52K̄1/4

CÞ0 V.V0 za5(K̄21C̄2)1/8ei (q1p)/4, zb5(K̄21C̄2)1/8ei (q13p)/4

and tanq5C̄/K̄
CÞ0 V5V0 za5C̄1/4ei3p/8 andzb5C̄1/4ei7p/8

CÞ0 V.V0 za5(K̄21C̄2)1/8ei (q12p)/4, zb5(K̄21C̄2)1/8ei (q14p)/4

and tanq52C̄/K̄
JULY 2003, Vol. 70 Õ 599



t

a

-

A
.
.

o
E

a

i

e
id

,’’

s

,’’

i-
on-

an

s-

ving

ing

tion

s to

I

r

Acknowledgments
The author is grateful to Prof. Vikram Kinra, the Associa

Editor, for his constructive comments and suggestions, which
hance the content and the presentation of the original manusc

References
@1# Bush, A. J., 1980, ‘‘Nondestructive Testing for Light Aircraft Pavemen

Phase II. Development of the Nondestructive Evaluation Methodology,’’ R
port NO. FAA RD-80-9, Final Report, Federal Aviation Administration.

@2# Uzan, J., and Lytton, R., 1990, ‘‘Analysis of Pressure Distribution Under F
ing Weight Deflectometer Loading,’’ J. Transport. Eng., ASCE,116, No. 2.

@3# Haas, R., Hudson, W. R., and Zaniewski, J., 1994,Modern Pavement Manage
ment, Krieger, Malabar, FL.

@4# Hudson, W. R., Haas, R., and Uddin, W., 1997,Infrastructure Management:
Integrating Design, Construction, Maintenance, Rehabilitation, and Reno
tion, McGraw-Hill, New York.

@5# Westergaard, H. M. S., 1926, ‘‘Stresses in Concrete Pavements Compute
Theoretical Analysis,’’ Public Roads,7~2!, Apr.

@6# Yoder, E. J., and Witczak, M. W., 1975,Principles of Pavement Design, John
Wiley and Sons, New York.

@7# Scullion, T., Uzan, J., and Paredes, M., 1990, ‘‘MODULUS:
Microcomputer-Based Backcalculation System,’’ Transp. Res. Rec., 1260

@8# Taheri, M. R., 1986, ‘‘Dynamic Response of Plates to Moving Loads,’’ Ph
thesis, Purdue University, West Lafayette, IN.

@9# Kukreti, A. R., Taheri, M., and Ledesma, R. H., 1992, ‘‘Dynamic Analysis
Rigid Airport Pavements With Discontinuities,’’ J. Transport. Eng., ASC
118~3!, pp. 341–360.

@10# Zaghloul, S. M., White, T. D., Drnevich, V. P., and Coree, B., 1994, ‘‘Dynam
Analysis of FWD Loading and Pavement Response Using a Three Dim
sional Dynamic Finite Element Program,’’ Transportation Resource Bo
Washington, D.C.

@11# Achenbach, J. D., Keshava, S. P., and Herrman, G., 1966, ‘‘Waves
Smoothly Jointed Plate and Half Space,’’ J. Eng. Mech.,92~2!, pp. 113–129.

@12# Freund, L. B., and Achenbach, J. D., 1968, ‘‘Waves in a Semi-Infinite Plat
Smooth Contact With a Harmonically Distributed Half Space,’’ Int. J. Sol
Struct.,4, pp. 605–621.
600 Õ Vol. 70, JULY 2003
te
en-
ript.

s,
e-

ll-

va-

d by

D.

f
,

ic
en-
rd,

n a

in
s

@13# Oien, M. A., 1973, ‘‘Steady Motion of a Plate on an Elastic Half Space
ASME J. Appl. Mech.,40~2!, pp. 478–484.

@14# Arnold, R. N., Bycroft, G. N., and Warburton, G. B., 1955, ‘‘Force Vibration
of a Body on an Infinite Elastic Solid,’’ ASME J. Appl. Mech.,77, pp. 391–
400.

@15# Warburton, G. B., 1957, ‘‘Forced Vibration of a Body on an Elastic Stratum
ASME J. Appl. Mech.,79, pp. 55–57.

@16# Bycroft, G. N., 1956, ‘‘Force Vibrations of a Rigid Circular Plate on a Sem
Infinite Elastic Space and on an Elastic Stratum,’’ Philos. Trans. R. Soc. L
don, Ser. A,248, pp. 327–368.

@17# Krenk, S., and Schmidt, H., 1981, ‘‘Vibration of an Elastic Circular Plate on
Elastic Half-Space—A Direct Approach,’’ ASME J. Appl. Mech.,48, pp. 161–
168.

@18# Sun, L., 2001, ‘‘A Closed-Form Solution of Bernoulli-Euler Beam on Vi
coelastic Foundation Under Harmonic Line Loads,’’ J. Sound Vib.,242~4!, pp.
619–627.

@19# Sun, L., 2001, ‘‘Closed-Form Representation of Beam Response to Mo
Line Loads,’’ ASME J. Appl. Mech.,68, pp. 348–350.

@20# Sun, L., and Deng, X., 1997, ‘‘Random Response of Beam Under a Mov
Random Load in the Line Source Form,’’ Acta Mech. Sin.,29~3!, pp. 365–
368.

@21# Kenney, J. T., 1954, ‘‘Steady-State Vibrations of Beam on Elastic Founda
for Moving Load,’’ ASME J. Appl. Mech.,21, p. 359.

@22# Sun, L., and Greenberg, B., 2000, ‘‘Dynamic Response of Linear System
Moving Stochastic Sources,’’ J. Sound Vib.,229„4…, pp. 957–972.

@23# Morse, P. M., and Feshbach, H., 1953,Methods of Theoretical Physics: Part
and II, McGraw-Hill, New York.

@24# Eringen, A. C., and Suhubi, E. S., 1975,Elastodynamics, Vol. I and II, Aca-
demic Press, New York.

@25# Watson, G. N., 1966,A Treatise on the Theory of Bessel functions, 2nd Ed.,
Cambridge University Press, London.

@26# Saff, E. B., and Snider, A. D., 1993,Fundamentals of Complex Analysis fo
Mathematics, Science, and Engineering, 2nd Ed., Prentice-Hall, New York.

@27# Zhu, Z., Wang, B., and Guo, D., 1985,Pavement Mechanics, People’s Trans-
port Publishing, Beijing, China.

@28# Timoshenko, S., and Woinowsky-Krieger, S., 1968,Theory of Plates and
Shells, 2nd Ed., McGraw-Hill, New York.

@29# Ugural, A. C., 1981,Stresses in Plates and Shells, McGraw-Hill, New York.
Transactions of the ASME



s, for
ical
nitial
ncy
and

s be-
full
g the

onary
T. Y. Ng
Institute of High Performance Computing,

National University of Singapore,
1 Science Park Road,
01-01 The Capricorn,

Singapore Science Park II,
Singapore 117528

and
School of Mechanical and Production

Engineering,
Nanyang Technological University,

50 Nanyang Avenue,
Singapore 639798

H. Li

K. Y. Lam

C. F. Chua

Institute of High Performance Computing,
National University of Singapore,

1 Science Park Road,
01-01 The Capricorn,

Singapore Science Park II,
Singapore 117528

Frequency Analysis of Rotating
Conical Panels: A Generalized
Differential Quadrature Approach
Based on the generalized differential quadrature (GDQ) method, this paper present
the first instance, the free-vibration behavior of a rotating thin truncated open con
shell panel. The present governing equations of free vibration include the effects of i
hoop tension and the centrifugal and Coriolis accelerations due to rotation. Freque
characteristics are obtained to study in detail the influence of panel parameters
boundary conditions on the frequency characteristics. Further, qualitative difference
tween the vibration characteristics of rotating conical panels and that of rotating
conical shells are investigated. To ensure the accuracy of the present results usin
GDQ method, comparisons and verifications are made for the special case of a stati
panel. @DOI: 10.1115/1.1577600#
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1 Introduction
A comprehensive literature search will reveal that the amo

of research work conducted with regard to the vibration
rotating/nonrotating cylindrical shells and panels are indeed
tensive. Comparatively, the number of research articles avail
on the vibration of either rotating or stationary full-circular con
cal shell as well as stationary open conical shell panels rem
few. Further, it is noted here that there is presently no techn
paper available in the open literature on the vibration analysi
rotating open conical shell panels. This paper aims to addres
void of information on this problem.

By employing the generalized differential quadrature~GDQ!
method,@1#, this paper solves the free vibration problem of ge
eral rotating thin truncated open conical shell panels. The gov
ing partial differential equations of motion derived include t
effects of initial hoop tension as well as the centrifugal and Co
olis accelerations. Employing the GDQ method and imposing
boundary conditions, these equations are transformed to a s
numerical eigenvalue equations, which are then solved for
natural frequencies.

2 Theoretical Formulation
Figure 1 shows an isotropic truncated open thin conical s

panel rotating about its rotational axis of symmetry at a cons
angular velocityV. The half vertex angle is denoted bya, the
subtended angle byb, the thickness byh and the slant length o
the shell byL. The symbolsa and b are the mean radii for the
smaller and larger ends of the shell, respectively. The middle
face of the shell is taken as the reference surface for our gro

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Dec.
2001; final revision, Nov. 26, 2002. Associate Editor: O. O’ Reilly. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departme
Mechanical and Environmental Engineering University of California–Santa Barb
Santa Barbara, CA 93106-5070, and will be accepted until four months after
publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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based orthogonal coordinate system (x,u,z). The components of
displacement in the meridionalx, circumferentialu, and normalz
directions, are given byu, v, andw, respectively.

The governing equations of motion in terms of forces, mome
and displacements for the resultants of free vibration of a rota
conical shell can be written as follows~see Lam and Li@2#!:

Nx,x1r 21Nxu,u1r 22Nu
0~u,uu2rw ,x cosa!1r 21~Nx2Nu!sina

12rhVv ,t sina2rhu,tt50 (1)

Nxu,x1r 21Nu,u1r 21Mxu,x cosa1r 22M u,u cosa

1r 22Nu
0~ru ,xu1u,u sina1rv ,x sina!12r 21Nxu sina

22rhV~u,t sina1w,t cosa!2rhv ,tt50 (2)

Mx,xx12r 21Mxu,ux1r 22M u,uu12r 21Mx,x sina2r 21M0,x sina

1r 22Nu
0~w,uu2ru ,x cosa!1r22Nu

0~w cos2 a1u sina cosa!

2r 21Nu cosa12rhVv ,t cosa2rhw,tt50 (3)

where the subscript variable after a comma indicates partial
ferentiation with respect to that variable, and

r5r~x,u!5h21E
2h/2

h/2

r* ~x,u,z!dz (4)

Nu
05rhV2r 25rhV2~a1x sina!2, r 5r ~x!5~a1x sina!

(5)

with r* (x,u,z) being the mass density of the conical shell, a
r(x,u) the average density in the normalz direction.Nu

0 is defined
as the initial hoop tension due to the centrifugal force effect. T
three terms,u,tt , v ,tt , andw,tt , on the left-hand side of the Eqs
~1! to ~3! are the relative accelerations. The four term
2Vv ,t sina, 2Vu,t sina, 2Vw,t cosa, and 2Vv ,t cosa, are the
Coriolis accelerations. The implicit terms related toNu

0, uV2,
vV2, and wV2, are the centrifugal accelerations.NT

5$Nx ,Nu ,Nxu% and MT5$Mx ,M u ,Mxu% are the internal force
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and moment vectors which can be expressed by a linear-el
constitutive relationship,@1#. The strains and curvatures follow
those of Love thin shell theory. Substituting the constitutive re
tions into the governing Eqs.~1! to ~3!, a set of partial differential
governing equations with variable coefficients expressed by
displacements is derived and written in the matrix form as

LU50 (6)

where UT5$u(x,u,t),v(x,u,t),w(x,u,t)% is the displacemen
vector.L5@Li j # ( i , j 51,2,3) is a 333 differential operator ma-
trix of U, see@1# for details.

The governing Eq.~6! can be used for a rotating conical she
with arbitrary boundary conditions. In this paper, the simply su
ported boundary condition (u50,w50,Nu50,M u50) is applied
on both the straight edges~at u50, b!. For both the curve edge
~at x50, L!, four boundary condition types are considered, wh
are namely: clamped (u50,v50,w50,w,x50) at both edges~Cs-
Cl!; simply-supported (v50,w50,Nx50,Mx50) at both edges
~Ss-Sl!; simply supported at small edge and clamped at large e
~Ss-Cl!; and clamped at small edge and simply supported at la
edge~Cs-Sl!.

Fig. 1 Geometry of a thin rotating conical panel
602 Õ Vol. 70, JULY 2003
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3 Generalized Differential Quadrature „GDQ… Imple-
mentation

Unlike traditional numerical techniques such as the finite e
ment method, which may require a large number of nodes
elements for accurate results at points of interest, the genera
differential quadrature~GDQ! method is a global numerical ap
proximate technique,@1#, requiring only a sparse grid point distri
bution to achieve similar accuracy. The basic concept is that
derivative of a sufficiently smooth function with respect to a c
ordinate direction at a discrete point can be approximated b
weighted linear sum of the functional values at all the discr
points in that direction. Details of the GDQ implementation c
be found in@1#.

In this paper, a cosine distribution of discrete grid points in t
meridionalx direction is used. Also, in satisfying the simply su
ported boundary conditions on the straight edges (u50,b), the
displacement field can be written as follows:

U5H u~x,u,t !
v~x,u,t !
w~x,u,t !

J 5H U~x!sin~lu!e~ i ~lu1vt !!

V~x!cos~lu!e~ i ~lu1vt !!

W~x!sin~lu!e~ i ~lu1vt !!
J (7)

wherel5(np/b), v~rad/s! is the natural circular frequency o
the rotating conical panels, andn is an integer representing th
circumferential wave number of the panel. Substituting Eq.~7!
into the set of partial differential governing Eqs.~6! in temporal-
spatial domain, a set of ordinary differential equations with spa
variable coefficients in the meridionalx direction is derived as

L* U* 50 (8)

where U* T5$U(x),V(x),W(x)% is the unknown modal spatia
function vector describing the distribution of vibrational amp
tude in thex direction.L* 5@Li j* # ( i , j 51,2,3) is a 333 differen-
tial operator matrix. By the GDQ procedure, the approximate g
erning equations in the discrete form is

L* U* ux5xi
5R3311U1131** ux5xi

50 ~ i 51,2,3, . . .N! (9)

whereN is the number of total discrete grid points including th
points at both edges in the meridionalx direction. R is the 3
311 complex-coefficient matrix that is function of discrete gr
point x5xi . U** is an 11-order column vector consisting of th
eigenmodes inx.
Table 1 Comparison of frequency parameter, fÄvbArh ÕA 11, with results generated from MSC ÕNASTRAN for a conical panel.
Numbers in parenthesis denote discrepancies against finite element method results.
Transactions of the ASME



Fig. 2 Variation of frequency parameter fÄvbArh ÕA 11 for a rotating conical panel with different boundary conditions against
revolution speed „rps …, for different n †nÄ1 „top … and nÄ5 „bottom …‡, with panel parameters aÄ30°, bÄ15°, h ÕaÄ0.015, L Õa
Ä5, and mÄ1
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By imposing Eq. ~9! on every discrete grid pointx5xi ( i
51,2, . . .N), and then rewriting resulting equation in terms
yields an equation in the following matrix form:

@v2H11vH21H3#d50 (10)

where H1 , H2 , and H3 are theN* 3N* numerical complex-
coefficient system matrices (N* 533N28), and d is the
N* -order eigenmode column vector. Equation~10! is a nonstand-
ard eigenvalue equation. For a given frequency, it can be tr
formed into a standard form of eigenvalue equation as

S F 0 I

2H3 2H2
G2vF I 0

0 H1
G D H d

vdJ 50 (11)

where I is an N* 3N* identity matrix. From the eigenvalue Eq
~11!, a total of 2N* real and complex eigenvaluesv i( i
Journal of Applied Mechanics
f

ns-

.

51,2, . . . 2N* ) can be obtained. We select the two real egenv
ues with the lowest absolute values, one positive and the o
negative, and these correspond, respectively, to the backward
forward traveling waves.

4 Numerical Results and Discussions
To facilitate comparison of data, all frequency parameters p

sented in this section are in the dimensionless form,f
5vbArh/A115vbA(12n2)r/E. Comparisons studies again
results generated by the commercial finite element solver M
NASTRAN using eight-noded shell elements are first conduct
For these finite element results, well converged results were
tained using a 200340 grid size or 8000 elements. The tabulat
results of these comparison studies are presented in Table 1
range of parametric cases. For all four bounda
JULY 2003, Vol. 70 Õ 603



Fig. 3 Variation of frequency parameter fÄvbArh ÕA 11 for a rotating conical panel with different boundary conditions against
revolution speed „rps …, for different n †nÄ1 „top … and nÄ5 „bottom …‡, with panel parameters aÄ60°, bÄ120°, h ÕaÄ0.015, L Õa
Ä5 and mÄ1
e the
en-
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tive
condition cases considered here, there is monotonic converg
as the number of grid points were increased. It is found that
use of 15 grid points produced sufficiently converged results w
generally less than 1% difference when compared with res
using 13 grid points. It is also observed that present GDQ res
agree very well the finite element results for all four bounda
condition cases with less than 4% difference between the two
of results.

Figures 2 and 3 are two sets of graphical plots showing
changes in the vibration characteristics of the rotating conical p
604 Õ Vol. 70, JULY 2003
nce
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ults
ults
ry
sets
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an-

els when the boundary condition varies. Each figure shows
frequency behavior of the rotating conical panels at circumfer
tial wave numbern51 and 5. Figure 2 shows the effects of th
boundary conditions when both the subtended angleb and the half
vertex anglea are low at values of 15° and 30°, respective
Figure 3 shows the effects of the boundary conditions when b
the subtended angleb and the half vertex anglea are high at
values of 120°, and 60°, respectively.

In Figs. 2 and 3, the present results reveal a major qualita
difference from that of rotating complete~or full! truncated coni-
Transactions of the ASME
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cal shells. For full conical shells, bifurcation of the natural fr
quencies into the forward and backward waves occur immedia
upon the presence of rotation, see Lam and Li@1–3#. For the
present conical panels, however, it is observed that this bifurca
does not occur until a certain rotating speed is reached. O
bifurcation occurs, the forward wave is observed to decrease
idly to the critical speed value. This phenomenon is again dist
from that observed in the vibration of rotating full conical shel
see Lam and Li@1–3#, where if critical speeds exist, it is general
as a result of the forward waves decreasing monotonically
wards zero, see Ng and Lam@4# for detailed discussion on critica
speed analysis. The boundary conditions, in the order which
duces the highest to the lowest frequency parametersf, are
(Cs-Cl).(Ss-Cl).(Cs-Sl).(Ss-Sl). This is intuitively correct as
the stiffer structures possess the higher frequencies. Further, i
same order, a rightward shift of the frequencies is observed,
the stiffer cases presenting more pronounced shifts.

In Fig. 3, it can be observed that, at low rotating speeds,
initial frequency parametersf are different for different boundary
conditions. However, the same conclusions cannot be drawn f
Fig. 2, in which the difference in the initial frequency paramet
f are small for the different boundary conditions. It can thus
concluded that the effects of boundary conditions on the
quency behavior is small for relatively low speed rotating coni
panels with relatively low values of both the subtended anglb
and the half vertex anglea.
Journal of Applied Mechanics
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5 Conclusions
The free vibration study of thin rotating truncated conical pa

els has been carried out, the present results represent the first
published for this class of problem. The generalized differen
quadrature~GDQ! method was formulated for this analysis whe
the effects of initial hoop tension and the centrifugal and Corio
accelerations due to rotation were all considered. A major qu
tative difference, from that of rotating complete~or full! truncated
conical shells, in that bifurcation of the forward and backwa
waves in rotating shell panels does not occur until a certain ro
ing speed is reached, was discovered as a result of this work.
effects of panel parameters and boundary conditions on the
quency characteristics of these rotating conical panels have
been examined.
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Comparison of Stresses in Center-
Wound Rolls From Two Linear
Elastic Models

W. R. Debesis and S. J. Burns
Department of Mechanical Engineering, Materials Scien
Program, University of Rochester, Rochester,
NY 14627-0133

Two linear elastic models for describing stresses in center-wo
rolls have been compared. One model includes wound on resi
strains from the web while the other uses a clamped on st
boundary condition. The stress and displacement solutions
these two models, in the linear elastic limit, are shown to ha
analytical differences, and similarities.
@DOI: 10.1115/1.1571855#

Introduction
Web materials are wound onto rolls for storage, distributi

processing, and operations. A tension is applied to the web as
roll is being wound which produces stresses inside the roll. Th
stresses can cause defects and damage to the material in th
@1#. It is important to know these stresses as a function of wind
tension so roll stresses can be predicted and defects ca
avoided. The wound-on-strain~WOS! model and the clamped-on
stress~COS! models are both intended to describe stresses
center-wound rolls.

Linear elastic solutions for shrink-fitting reinforcing hoops on
gun cylinders were explored in the early part of the 20th cent
Shrink-fitting was a common method used to strengthen large
barrels. A close tolerance, thin outer cylinder is made to exp
by heating and is then shrunk over an existing barrel when
allowed to cool. The thermal shrinkage creates residual stre
between the thin cylinders that make up the gun barrel. Th
stresses are formed because neither cylinder can relax to its s
free shape.

Burns, Meehan, and Lambropoulos@2# and Altmann@3# formu-
lated analytic elastic solutions for describing stresses in cen

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Aug. 1
2001; final revision, Dec. 16, 2002. Associate Editor: V. K. Kinra.
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wound rolls. Burns et al. WOS solution for roll stresses was
cently developed; the analysis converted the accreted resid
wound on strains from the web into an elastic boundary va
problem which yielded the stresses in the roll. Altmann develop
his displacement based intralayer accretion solution by balan
forces for a thin cylindrical shell clamped onto a roll as a stres
layer in the roll. His COS model has been the basis for most lin
and nonlinear analyses on this topic,@4–10#. The WOS and COS
analyses are formulated in stress and strain, respectively.
WOS and COS solutions were thought to be compatible si
both analyses are based on the same deformation formulas
adaptations of Hooke’s law. The stresses in center-wound rolls
assumed linear elastic media should be the same since both
els describe the same problem. In the linear elastic limit, th
were initially thought to be identical, i.e., elastic solutions. W
show here in the linear elastic limit, differences between the m
els. Moreover, stresses in center-wound rolls are well known to
more complex as the media is both nonlinear and nonelastic. C
and WOS differences should be clarified before undertaking
complications of a realistic constitutive law for nonlinear, no
elastic stacked sheets.

Hakiel @5# and Benson@6# have nonlinear, nonanalytic solution
for the wound roll problem. Hakiel uses the same boundary c
ditions as the COS model while Benson utilizes a method wh
allows the outer lap to relax. The linear elastic differences
tween the COS and WOS models are as large as the nonli
media effects are on accreting layers. If the COS model does
provide a good description of roll stresses then subsequent
linear work based on this model are suspect. This paper discu
how the inclusion of residual strains into the elastic solution co
pares with the inclusion of a clamped on stress bound
condition.

Stress Analysis
Boutaghou and Chase@4# by using Maxwell’s reciprocal theo-

rem, simplified Altmann’s equations for the COS model. Here
are restricted to plane stress solutions that are assumed to be
elastic. Equation~1! is the COS model’s formula for radia
stresses and Eq.~2! is the formula for circumferential stresses.

s r52
r 2b1a

r b11 3E
r

R sw~ t !tb

t2b1a
dt (1)

su5sw~r !2bS r 2b2a

r b11 D3E
r

R sw~ t !tb

t2b1a
dt (2)

The symbolr is defined as the radius ratio, i.e., the actual rad
divided by the outer radius of the core, andR is the outer radius
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03 by ASME Transactions of the ASME



n

,

v

h

n

e

c

f
w

u
d

ree
nd

web

the
dels

eb

roll
del’s
cir-

em at

on
ss.
ue is
ratio of the roll. The stress of the web as it is being wound o
the roll is a function of the radius ratio for profiled rolls, and
is represented bysw(r ). The symbolt is an integration variable
and the constanta is used to simplify the formula after the firs
boundary condition is applied.b is a material property defined
by Eq. ~3!.

b25
Eu

Er
(3)

Er is the radial modulus of elasticity in the roll andEu is the
circumferential modulus of elasticity in the roll.

The WOS model’s formulas, as done by Burns et al., are gi
by Eq. ~4! for radial stress and by Eq.~5! for circumferential
stress.

s r5
1

r H FBS r b2
R2b

r b D G1
1

2b F r 2bE
r

R

tbs* ~ t !dt

2r bE
r

R

t2bs* ~ t !dtG J (4)

su5
1

r H FbBS r b1
R2b

r b D G2
1

2 F r 2bE
r

R

tbs* ~ t !dt

1r bE
r

R

t2bs* ~ t !dtG J (5)

The symbolsr, R, andt are the same in the WOS model and t
COS model, andB is a constant found by applying the inne
boundary condition to the WOS solution.

The web stress in the WOS model is given by Eq.~6!, which is
an expression for the strains caused by the tension put on the
during the winding process.

s* ~r !5S d

dr
@rsw~r !#1nsw~r ! D (6)

The symboln is Poisson’s ratio of the web, andEu is as defined
before.sw(r ) is as defined previously.

Both solutions must be in equilibrium, which can be check
by Eq. ~7!.

su5r
ds r

dr
1s r (7)

Both models use Eq.~7! to help form second-order differentia
equations that are solved to formulate the equations for ra
stresses; Eq.~7! is applicable to all linear and nonlinear solution
Notice that according to Eq.~7! if the slope of the radial stress i
the radial direction is zero, then the circumferential stress m
equal the radial stress. This does not occur in any of the exam
in this paper, but is good way to check all linear and nonlin
solutions graphically.

Both the COS and WOS models used here are based on se
order differential equations formulated from the plane stress fo
of Hooke’s law and radial displacements. The COS model u
Hooke’s law first then Eq.~7! to formulate a second-order differ
ential equation for displacement. In the WOS model Eq.~7! is put
into Hooke’s law to form a second-order differential equation
radial stress. Another difference in these models is how the
stress is modeled. The WOS solution models the web stres
residual strains, which leads to the development of a partic
solution. The COS model does not include the web stress resi
strains in the development of its differential equation, instead
web stress is modeled in one of the boundary conditions. Ra
stresses at the inside and outside of the roll are used as boun
conditions therefore the arbitrary constants are found using
formulas for radial stresses only. Circumferential stresses are
tained from Hooke’s law and are checked by applying Eq.~7!.
Journal of Applied Mechanics
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Both models use similar methods of solution, yet they don’t ag
analytically nor do they give similar results for stresses in wou
rolls as explained below.

Examples
The first example shows stresses for both models when the

is being held at a constant stress as the roll is wound.

sw~r !5so (8)

so is the initial web stress. The material properties applied to
solutions are found in Table 1. The radial stresses for both mo
divided by the initial web stress are shown in Fig. 1~a!. The cir-
cumferential stresses for both models divided by the initial w
stress are shown in Fig. 1~b!.

By looking at Figs. 1~a! and 1~b! it can be seen that the two
models do not agree. The COS model’s radial stresses in the
are larger than the WOS model’s radial stresses. The COS mo
circumferential stresses are smaller than the WOS model’s
cumferential stresses at the core and become greater than th
the outside of the roll.

The next example is for constant torque. A moment placed
the core of the roll is kept constant during the winding proce
The web stress decreases as the roll is wound. Constant torq

Fig. 1 „a… Radial stress ratio versus radius ratio for constant
web tension, „b… circumferential stress ratio versus radius ratio
for constant web tension

Table 1 Physical properties

Property Value

Modulus of elasticity in radial
direction (Er)

690 MPa

Modulus of elasticity in
circumferential direction (Eu) (E22)

4.14 GPa

Poisson’s ratio of the web~n! 0.28
Modulus of Elasticity of the core (Ec) 6.14 GPa
Outer radius ratio~R! 4
Initial web stress (so) 2.30 MPa
JULY 2003, Vol. 70 Õ 607
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often how many machines are designed to wind rolls making
a very practical example. The web stress used in this examp
stated in Eq.~9!.

sw~r !5
so

r
(9)

Figures 2~a! and 2~b! show that the radial and circumferenti
stresses, respectively, both solutions are divided by the initial
stress. Again, the COS model’s radial stresses are greater tha
WOS model’s radial stresses. In this example the COS model
only positive values for circumferential stresses. This shows
these two models have major differences and they are affe
differently by changes in web stresses.

Comparing Figs. 1~a!, 1~b!, 2~a!, and 2~b! it is evident that
these solutions are very different even though they are base
the same equations. Timoshenko and Goodier@11# present a solu-
tion for residual thermal strains in a disk, as does Case. When
thermal strains in these solutions are replaced by residual st
of a web stress~see the Appendix!, the solution equals the WOS
models solution. In Fig. 1~b!, the COS model’s circumferentia
stress has a negative value in the roll close to the core while
WOS model’s does not. This is an important difference becaus
the circumferential stress is in compression defects are m
likely to occur in the roll. Reasons why the two solutions diff
will be discussed in the next section.

Figures 3~a! and 3~b! show the WOS model’s differential equa
tion in radial stress without the residual strains from the particu
solution and the COS model’s differential equation in displa
ment solved using the boundary conditions of the COS mo
The models use different differential equations yet come to
same stresses, when the web stress is modeled the same in
solution. Thus, the difference between the two analytical soluti
is how the web stress is modeled and which boundary condit

Fig. 2 „a… Radial stress ratio versus radius ratio for constant
torque, „b… circumferential stress ratio versus radius ratio for
constant torque
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onsare used. Figures 3~a! and 3~b! show that both models have com
mon parts as would be expected since they arise from the s
equations and assumptions.

Inner Boundary Condition
Both models use Eq.~10! as a boundary condition, but it can b

seen in Figs. 1~a! and 2~a! that the radial stresses of the tw
models are not equal at the core.

s r~r 51!5Ec3u~r 51! (10)

Equation ~10! is used to find one arbitrary constant in bo
solutions. The symbolEc is the modulus of elasticity of the cor
as already mentioned. The WOS model’s solution for radial str
includes the residual strains caused by the web stress when
boundary condition is applied, while in the COS model’s soluti
the web stress has not been factored into the equation. The in
sion of the web stress in this boundary condition causes
stresses of the two models to have different values at the cor
Fig. 3~a! and 3~b! it can be seen that the WOS and COS solutio
equal each other at the core when the residual strains are
modeled in the WOS solution. Modeling the web stress as resid
strains allows the material to relax once it is on the roll. Th
decreases the radial stress and increases the circumferential
at the core. Why the web material is allowed to relax in the WO
model and not in the COS model will be discussed in the n
section.

Outer Boundary Condition
The radial stress at the outside of any roll must be zero.

forces are applied externally to the roll so the radial stress m

Fig. 3 „a… Radial stress ratio versus radius ratio of two solu-
tions without residual strains, „b… circumferential stress ratio
versus radius ratio of two solutions without residual strains
Transactions of the ASME
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equal zero. The outer boundary condition used in the WOS mo
and by Timoshenko and Goodier is

s r~R!50. (11)

Both models show that the radial stress is zero at the outer su
of the roll. The COS model’s arbitrary constants are zero at
outside of the roll because they are integrated fromr to the outer
radius which causes the radial stress to be zero at the out
When Eq.~11! is used as a boundary condition in the COS mo
el’s solution both arbitrary constants are zero and the solutio
trivial.

Equation ~12! is the boundary condition used by the CO
model to find the second arbitrary constant.

s r~s!52Q (12)

The web stress in the COS model is applied as the second bo
ary condition. WhereQ is defined as the incremental load chan
of pressure applied to the outside of the roll atr 5s

Q5
sw~s!

s
Ds. (13)

Equation~13! is definingQ as the radial pressure caused by t
circumferential stress of the lap (Ds) on the outside of the roll a
r 5s. Equation~13! also states this circumferential stress is eq
to the web stress. This is shown in Fig. 1~b! where the COS
model’s circumferential stress approaches the web stress a
outside of the roll. In the COS model the web material is n
allowed to relax once it is on the roll. If the roll is rigid then th
stress placed on it from the winding process holds constant. E
tion ~13! states that the roll and the outermost lap do not inter
with each other.

The outer layer’s circumferential stress would equal the w
stress if the roll acts as a rigid body. This can only occur if t
modulus of elasticity in the radial direction is much larger than
modulus of elasticity in the circumferential direction. By lookin
at Table 1 it can be seen that the modulus of elasticity in the ra
direction is much less than the modulus of elasticity in the c
cumferential direction. Thus, it is elastically difficult to envisio
the outer lap’s circumferential stress to equal the web stress.

If the roll is not rigid then for Eq.~13! to be true the web
material must be inelastic. Both models have the web mate
modeled elastically in the roll. If the web material is elastic it w
relax on the roll. The WOS model allows for this, as does B
son’s model,@6#. For an accurate model the material in the win
ing process won’t be elastic in the roll and inelastic in the we

The difference in the models is not only different bounda
conditions but also how the web stress is modeled in each s
tion. The WOS model includes the web stress as residual str
which results in forming a particular solution. Modeling the w
stress as residual strains allows the material to have the s
constitutive behavior inside and outside the roll. In the CO
model the web stress is applied though a boundary condition.
boundary condition gives the radial pressure caused by the
cumferential stress in the outer most lap and this circumferen
stress is always equal to the web stress. If this is true then e
the roll is rigid or the outer most lap of the material is not allow
to relax and there is no friction between the web and the roll.

Conclusion
The tension that is put on the web while the roll is being wou

creates strains in the material. The WOS model and the C
Journal of Applied Mechanics
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model are the same except for how they model the web str
Modeling the web stress as residual strains allows the materia
have the same constitutive behavior through out the wind
process.

Reference@1# includes thermal residual strains in the solutio
for a disk, as do the solutions for the shrink fitting of gun barre
@12#. The thermal strains can be thought of as web stresses fo
wound roll problem with the winding process at constant tempe
ture. The material in the winding process should have the sa
constitutive behavior through out the whole process. Model
residual strains is an easy method to accomplish this.

It is unlikely that the outer lap of the roll is unable to relax.
Benson’s nonlinear solution,@6,7#, the outer lap is allowed to
relax. Timoshenko’s solution allows the thermal strains to conv
to mechanical stresses as they cool. The outside lap of the roll
not relax if the roll is rigid, or the web material is perfectly com
pliant. This assumption is only present in one of the bound
conditions of the COS model. Modeling the web stress as resid
strains precludes the WOS model to the have a particular solu
which makes it possible to use two exact and consistent boun
conditions.

In the nonlinear problem the material will have different co
stitutive behavior in the roll and in the web. The constitutive la
of the roll is typically very complaint for early laps. Thus it doe
not act like a rigid body while the web is elastic. In the line
problem the web and the roll have the same elastic propertie

All strains present in the winding process should be included
the inner boundary condition in the wound roll analysis for
realistic solution. Utilizing the method of residual strains to mod
the stresses brings continuity to the problem. If the roll is to
considered rigid this must be represented in forming the differ
tial equation and not just in one boundary condition. The WO
model is a more accurate method for modeling the stresse
wound rolls in the elastic limit because the web stress is mode
as a residual strain.

Appendix
Timoshenko and Goodier@11# analyze stresses from therm

strains in a disk. This method can be converted to the wound
problem, which will result in a differential equation in displac
ment that models the web stress as residual strains.

Timoshenko and Goodier sets up Hook’s law in the followi
form, as does the WOS model:

« rr 1« rs5
s r

Er
2

n3su

Eu
(14)

«uu1«us5
su

Eu
2

n3s r

Eu
. (15)

Er is the radial modulus of elasticity,Eu is the circumferential
modulus of elasticity, andn is Poisson’s ratio in the circumferen
tial direction.s r andsu are the radial stress and the circumfere
tial stress, respectively.e rr is the mechanical strain in the radia
direction ande rs is the residual~formerly the thermal! parts of the
strain in the radial direction. The mechanical strain in the circu
ferential direction is represented byeuu and eus represents the
residual strain in the circumferential direction. All parts of th
strains must be added together to get the total strain. In Eq.~14!
then r /Er term has been replaced with an/Eu term which accord-
ing to Maxwell’s reciprocal theorem are equal.

Solving Eqs.~14! and~15! simultaneously for radial stress an
circumferential stress, and then putting these equations into e
JULY 2003, Vol. 70 Õ 609
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librium by using Eq.~7! form a differential equation. The strain
can then be defined and placed into this equation.e rr andeuu are
the parts of the mechanical radial and circumferential stra
caused by displacements in the roll and are given as function
radial displacements only~Eqs.~16! and ~17!!.

« rr 5
du~r !

dr
(16)

«uu5
u~r !

r
(17)

Timoshenko and Goodier use Eqs.~18! and~19! for their thermal
strains. Here thermal strains are replaced by the strains prod
by the web stress, Eqs.~20! and ~21!.

« rs5aT (18)

«us5aT (19)

« rs52
n

Eu
sw~r ! (20)

«us5
sw~r !

Eu
(21)

The moduli of elasticity and Poisson’s ratio are assumed to
equal in the web and in the roll.

The differential equation of the displacementu(r ) formed after
the strains are substituted in is shown in Eq.~22!.

d

dr Fd@u~r !#

dr G1
1

r

d@u~r !#

dr
2b2

u~r !

r 2 5
sw~r !

r S b22n2

Eu
D ,

(22)

whereb is defined the same as before in Eq.~3!.
a

a
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Equation~26! is the resulting solution foru(r ) that includes the
homogeneous and the particular solution

u~r !5Arb1Br2b1
b22n2

2Eub S r 2bE
r

R

tbsw~r !dt

2r bE
r

R

t2bsw~ t !dtD . (23)

Equation~23! is then substituted back into Eqs.~14! and~15! to
get the equations for the stresses. The equations for circumfe
tial stress and radial stress are given in Eqs.~24! and~25! after Eq.
~11! has been used as a boundary condition to solve forA.

s r~r !52
1

r S BEu~r 2b2r bR22b!

b1n
1

1

2b S r b~b1n!

3E
r

R

t2bsw~ t !dt1r 2b~b2n!E
r

R

tbsw~ t !dtD D
(24)

su~r !5
1

r S BEub~r 2b2r bR22b!

b1n
1

1

2 S 2r b~b1n!

3E
r

R

t2bsw~ t !dt1r 2b~b2n!E
r

R

tbsw~ t !dtD D 1sw~r !

(25)

Equation ~26! shows the solution forB when Eq. ~10! is
used as the second boundary. Recall that Eq.~10! is used as a
boundary condition in both models. In Timoshenko’s a
Goodier’s example the disk has no inner radius thus the boun
condition he uses is the stresses equal zero at the center o
disk.
B5

S R2b~b1n!S ~b1n!~Eu1Ec~2b1n!!E
1

R

t2bsw~r !dt1~b2n!~Eu1Ec~b1n!!E
1

R

tbsw~ t !dtD D
~2Eub~Eu~211R2b!1Ec~~11R2b!b1~211R2b!n!!!

(26)
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Equations~24! and ~25! don’t look exactly like Eqs.~4! and ~5!,
but if the web stress is defined in symbolic form and after so
algebraic manipulation Eq.~24! will be equal to Eq.~4! as will
Eq. ~25! be equal to Eq.~5!. The equations look different becaus
the latter solves a differential equation foru(r ) and the former
solves a differential equation ins r(r ). The COS models use
differential equation in displacement as does this Appendix. T
shows that the differences in the two models are not in the a
lytic formalism but rather how the web stress is modeled.
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Rate-Dependent Transition From
Thermal Softening to Hardening in
Elastomers

Z. Chen1

Department of Civil and Environmental Engineering,
University of Missouri-Columbia, Columbia, MO 65211
Mem. ASME
e-mail: chenzh@missouri.edu

J. L. Atwood
Department of Chemistry, University of Missouri-
Columbia, Columbia, MO 65211

Y.-W. Mai
Center for Advanced Materials Technology~CAMT!,
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The thermal-mechanical properties of the materials currently u
in packaging are being reexamined as the electronic packag
industry moves towards chip scale packages and wafer s
packages. The rate-dependent transition of elastic modulus
viscosity from thermal softening to thermal hardening with risi
temperature, which does not involve any phase change, has
observed in certain elastomers. An explanation about this in
esting phenomenon is given based on thermodynamic cons
ations. A theoretical analysis is performed to show the limitat
of existing viscoelastic models in predicting the transition. It a
pears that macroscopic material properties should be reexami
based on the physics behind the interaction between ordin
elasticity and entropic elasticity.@DOI: 10.1115/1.1571860#

The effects of strain rate and temperature on the deformatio
polymers are the challenging research topics of current inter
due to the increasing use of polymers in extreme environment
spring in series with a dashpot, and a spring and dashpot in
allel have been commonly employed to describe the deforma
of a liquid with elasticity, and that of a viscous solid, respective
To the authors’ knowledge, however, the effects of tempera
and strain rate on elastic modulus and viscosity have not b
investigated in a comparative and systematic manner in s
and/or large deformation cases, as can be seen from the repr
tative references@1,2#. Especially, there exists a lack of unde
standing of the interaction between the ordinary elasticity, wh
is almost entirely due to internal energy and decreases with
increase of temperature, and the entropic elasticity that rises
the increase of temperature.

In recent experiments to benchmark commercial die attach
hesives, it was found that the elastic modulus and complex

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Apr. 2
2002; final revision, Nov. 10, 2002. Associate Editor: M.-J. Pindera.
Copyright © 2Journal of Applied Mechanics
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cosity ~dynamic loss modulus! of certain kinds of silicone elasto
meric adhesives would experience a rate-dependent trans
from thermal softening to thermal hardening with rising tempe
ture. The observed rate-dependent thermomechanical proce
reversible without any phase change. This kind of physical p
nomenon has not been documented in the open literature. He
a phenomenological experimental study is performed here to
plore the effects of temperature and loading rate on the ela
modulus and viscosity of a selected silicone elastomer, DA65
the inherent properties of which have already been investigate
several researchers,@3,4#.

Silicone elastomer is the best candidate for the compliant lay
in the new electronic packages due to its low modulus and sm
moisture absorption. The low rotational energy of silicone-oxyg
bond in silicone attributes to the highly flexible inorganic bac
bone, which yields a low modulus and a low glass transition te
perature for silicone elastomeric adhesives,@3#. DA6501, made by
Dow Corning toray silicone~DCTS!, is a kind of one-part adhe
sives packaged in a syringe, which can be cured fast at low t
perature without voids. The specimens used in this study w
cured at 150°C for three minutes, following the procedure reco
mended by DCTS. The cure mechanism of DA6501 is a hydro
lyration reaction in crosslink formation. Silicones have a gla
transition point (Tg) of 2120°C and a melt transition point (Tm)
of 243°C. There are no additional phase transitions aboveTm .
Normally, the weight loss of silicone only occurs at a temperat
above 200°C. The relationship between the dimensional chang
silicones and temperature is linear aboveTm so that a very stable
profile can be found for the thermal expansion coefficient ove
broad temperature range of240°C to 300°C,@4#.

Based on the above properties of DA6501, the effects of te
perature and loading rate on the elastic modulus and visco
were measured over a temperature range of250°C to 150°C and
by means of cyclic deformations at three different frequencies
Hz, 10 Hz, and 100 Hz. A dynamic mechanical analyzer, TA
struments DMA 2980, was employed to measure the change
the elastic ~storage! modulus and complex viscosity of cure
DA6501 samples with rising temperature and frequency. T
length, width and thickness of the samples were 15 mm, 5
and 2 mm, respectively, and the multifrequency–tension m
was selected based on the test procedure recommended in the
manual of DMA 2980. As can be seen in Fig. 1, the elastic mo
lus experiences a transition from thermal softening to therm
hardening over a temperature range of250°C to 150°C. The
range of change in the elastic modulus is about 5%. The co
sponding transition in the complex viscosity is shown in Fig.
with the rate effect on the viscosity being different from that
the elastic modulus. Note that the same sample was used for
conducted at three different frequencies. The transition is rep
able. To verify the experimental data, three DA6501 samples w
tested under the same conditions, with the result that
rate-dependent thermomechanical responses of these sampl
similar.

Another kind of die attach adhesives, DA7920, was also tes
by using the above test procedure. A similar transition from th
mal softening to thermal hardening could be found with t
change of elastic modulus being in the scale of 10 MPa instea
1 MPa as shown for DA6501 in Fig. 1. Thus, the transition fro
thermal softening to thermal hardening appears to be common
silicone elastomers. Based on the physics of rubber elasticity,
internal-energy-based elasticity~the ordinary elasticity!, which
softens with the increase of temperature, could be offset by
entropic elasticity that hardens with rising temperature. As d
cussed by Treloar in detail,@1#, the elastic modulus is insensitiv
to the change in frequency while the viscosity is inversely prop
tional to the frequency. To the authors’ knowledge, however,
rate-dependent transition from thermal softening to thermal ha
ening as observed here has not been documented in the

3,
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c

n

s
d

be

to
e of

l
to

.
as
ls.
to
the

char-
f the
he
out

rves
ties
eri-
to
ary

t of
f
of
. R.
ity

t
ex-

thors
this
Sci-

The
for-

N.
y

ing,’’

ion,
literature. Especially, there exists a lack of quantitative und
standing of the interaction between the ordinary elasticity a
entropic elasticity. As demonstrated in the following theoreti
analysis, the conventional constitutive models can not predict
observed rate-dependent transition.

For a viscoelastic solid as measured by the dynamic mecha
analyzer, the Kelvin-Voigt model takes the form of

s5h
de

dt
1Ee (1)

wheres denotes stress,e strain, andt time. The material constant
E andh correspond, respectively, to a modulus of elasticity an
viscosity. For a cosinusoidal stress defined by

s5s0 cosvt (2)

the general solution of Eq.~1! can be found to be

e5e0 cos~vt2a!1c (3)

Fig. 1 Transition from thermal softening to thermal hardening
of elastic modulus

Fig. 2 Transition of complex viscosity corresponding to Fig. 1
612 Õ Vol. 70, JULY 2003
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with c being an integration constant. The amplitudee0 and phase
anglea are given by

e05
s0

E F11v2S h

ED 2G21/2

(4)

and

a5tan21S v
h

ED . (5)

If t5h/E is used to represent the time of relaxation, it can
found from Eq.~4! that the amplitude ratio of stress to strain is

s0

e0
5E~11v2t2!1/2. (6)

With the assumption that the time required for the molecules
change their configurations is governed by the rate of passag
chain segments across potential barriers,t would exponentially
decay with rising temperature,@1#. Based on the conventiona
constitutive models, therefore, the amplitude ratio of stress
strain would increase with the increase of loading frequencyv,
but decrease with rising temperature, as can be seen from Eq~6!.
However, the transition from thermal softening to hardening,
shown in Figs. 1 and 2, indicates the limitation of existing mode

Although the observed transition form thermal softening
hardening in the elastic modulus is small as can be seen from
experimental data, there exists an urgent need to accurately
acterize the rate-dependent thermal-mechanical responses o
materials currently used in electronic packaging. In view of t
recent claim that silicones maintain consistent properties with
any transition throughout the temperature range of240°C to
300°C, @3#, the rate-dependent transition reported here dese
another look at the physics of the thermal-mechanical proper
of silicon elastomers. Especially, a combined analytical, exp
mental and numerical effort is required in the further study
quantitatively understand the interaction between the ordin
elasticity and entropic elasticity.

Acknowledgments
The authors are grateful to Prof. F. Hsieh in the Departmen

Biological and Agricultural Engineering at the University o
Missouri-Columbia, Prof. G. Kanel at the Institute of Problems
Chemical Physics of the Russian Academy of Sciences, Prof
Li in the Department of Physics and Materials Science at the C
University of Hong Kong, and Dr. M. Kent and Dr. D. Adolf a
Sandia National Laboratories for valuable discussions. The
perimental assistance by Miss P. Chou is appreciated. The au
are also grateful to the reviewers for discerning comments on
paper. This research was sponsored in part by the National
ence Foundation, and by the City University of Hong Kong.

References
@1# Treloar, L. R. G., 1975,The Physics of Rubber Elasticity, 3rd Ed., Clarendon

Press, Oxford, UK.
@2# Hillmansen, S., Hobeika, S., Haward, R. N., and Leevers, P. S., 2000, ‘‘

Effect of Strain Rate, Temperature, and Molecular Mass on the Tensile De
mation of Polyethylene,’’ Polym. Eng. Sci.,40, p. 481.

@3# Lee, Y. J., 2000, ‘‘Silicone, Chip Scale Package and Its Reliability,’’Proceed-
ings of the Fifth Pan Pacific Microelectronics Symposium, G. Chai and B. J.
Han, eds., Maui, HI, Jan., Surface Mount Technology Association, Edina, M

@4# Wilson, S. W., Norris, A., Benson, E., Watson, M., and Mine, K., 2000, ‘‘Ke
Properties and Requirements for Materials Used in Chip Scale Packag
Proceedings of the Fifth Pan Pacific Microelectronics Symposium, G. Chai
and B. J. Han, eds., Maui, HI, Jan., Surface Mount Technology Associat
Edina, MN.
Transactions of the ASME



i

m

e
f

n

c
a

t
a

a

r
-
t

f

a

d
e
o

ries
om-

ant
lved
n to

is

lf-
ur-

ce

e

per-

and
that

by,
Elastic Waves Induced by Surface
Heating in a Half-Space

J. P. Blanchard
University of Wisconsin–Madison, 1500 Engineering
Drive, Madison WI 53706-1609
e-mail: blanchard@engr.wisc.edu

Rapid surface heating will induce waves in an elastic mater
Closed-form solutions for the resulting longitudinal and tran
verse thermal stresses are derived using Laplace Transforms.
model is one-dimensional, consisting of a half-space subjecte
a step change in the surface heating. The transverse stress a
wave peak is found to exceed the surface stress for short ti
while for long times the surface stress far exceeds either of
stresses at the wave peak. Both the longitudinal and transv
stresses at the peak of the wave reach steady-state values a
few dimensionless times.@DOI: 10.1115/1.1571861#

Introduction
Rapid surface heating, such as that created by a laser, ca

duce numerous phenomena in solids. Some of these include m
ing, vaporization, thermal waves,@1#, and plastic deformation. In
many applications, such as mirrors, such phenomena mus
avoided in order to ensure a long life. In this paper, I derive
closed-form solution for one-dimensional elastic waves indu
by a step change in surface heating. This creates a temper
field in which the surface temperature increases as the square
of the pulse time. It is assumed that the heat is deposited a
surface, there is no cooling, the heat transport is diffusional,
that the elastic and thermal equations are uncoupled.

Several previous works have analyzed thermoelastic wave
solids. Sternberg and Chakravorty@2# solved the problem for both
a step and ramp change in surface temperature. Gladysz@3# solved
the problem for a surface temperature changing ast2 exp(2at)
while White @4# solved it for surface heating which varied ha
monically and Boley and Weiner@5# solve the problem for con-
vection boundary conditions. Gladysz obtains a series solut
while the others are provided in closed form. Other studies h
included the effects of coupling of the elastic and thermal eq
tions, as well as heat deposition below the surface and the
waves. Bushnell and McCloskey@6# obtained a closed-form solu
tion for elastic waves due to volumetric heating, modeling
deposition using a nonzero attenuation coefficient for the h
incident on the surface of the solid. However, they ignored dif
sion, assuming that the temperature profile matched the depos
profile. Similarly, Mozina and Dovc@7# and Galka and Wojnar@8#
each assumed a volumetric heating given in the formQ-
5am exp(2mx) wherem is the attenuation coefficient of the he
incident on the surface, but they included diffusion. All of the
papers provide closed-form solutions. Boley and Tolins@9# mod-
eled the case with a step change in temperature, but include
coupling of the thermal and elastic equations by adding in a h
ing term which depended on the local strain rate. The soluti
were obtained in terms of an integral and approximations w
given in closed form for short and long times. Kao@10# solves the
problem analytically for the non-Fourier case, in which the tim
scales of the heating are such that thermal waves are indu
Wang and Xu@11# included thermal waves, as well as volumetr

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Apr. 2
2002; final revision, Dec. 19, 2002. Associate Editor: R. C. Benson.
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heating and coupling of the thermal and elastic equations. Se
solutions are obtained. These latter papers introduce undue c
plications for cases in which non-Fourier effects are insignific
and are of questionable value since the hyperbolic equation so
has not been validated experimentally and has been show
yield nonphysical results for three-dimensional problems,@12#.
The time scales for which the solution derived in this paper
valid are discussed in the Results section of this paper.

Modeling
I begin by considering thermoelastic deformation of a ha

space, withx denoting the perpendicular distance from the s
face. Following Sternberg and Chakravorty@2#, I define the fol-
lowing dimensionless variables:

j5
x

a

t5
kt

a2

f5
kT

qa

ŝx5
~122n!

2~11n!

ksx

aqam
(1)

whereŝ is the dimensionless axial stress,f is the dimensionless
temperature,j andt are the dimensionless coordinates for spa
and time, respectively,k is the thermal diffusivity,q is the surface
heat load,a is the thermal expansion coefficient,m is the shear
modulus,n is Poisson’s ratio, and

a5
k

c

c25
2~12n!m

~122n!r
. (2)

Herec is the wave speed andr is the density of the solid.
With these definitions, the governing equations then becom

]2f

]j2 5
]f

]t

]2ŝx

]j2 5
]2ŝx

]t2 1
]2f

]t2 . (3)

It is assumed here that the only nonzero displacement is
pendicular to the surface of the half-space. That is,uy5uz50.
The initial conditions are such that all temperatures, stresses,
time derivatives are nonexistent. The boundary conditions are
the temperatures and stresses vanish atx equals infinity, while at
the surface

q52k
]T

]x

sx50 (4)

which implies

]f

]j
521

ŝx50. (5)

The solution for the dimensionless temperature is given
@13#,

8,
003 by ASME JULY 2003, Vol. 70 Õ 613



n
i

,

o

a
e

r
tion
f52SAt

p
expF2j2

4t G2
j

2
erfcF j

2At
G D (6)

and its second derivative can thus be found to be

]2f

]t2 5expF2j2

4t G ~j222t!

4Apt5/2
. (7)

The Laplace transform of this function is~@14#, p. 246, #15!

f̄5As exp~2jAs! (8)

wheres is the Laplace parameter and the bar over the functio
meant to denote the transformed instance of the time funct
Taking the transform of Eq.~3! and using the fact that all the
initial values of the stress and its time derivatives are 0 gives

d2s̄x

dj2 2s2s̄x5As exp~2jAs!. (9)

Solving this equation and using the stress free boundary co
tions yields

s̄x5
exp~2jAs!

~12s!As
2

exp~2js!

~12s!As
5s̄11s̄2 . (10)

Inverting the first term in this function requires some manipu
tion. I begin by lettingp5As, giving us

f̄ 5
exp~2jp!

p~12p2!
. (11)

The inverse of this function is~@14# p. 183, #22 and p. 170
#15!

f ~t!5@12cosh~t2j!#H~t2j! (12)

whereH(z) is the Heaviside step function. Given this result f
f (t), one can then find the time dependence of the original fu
tion using~@14#, p. 171, #29!

ŝ15
1

2Apt3/2E
j

`

u expS 2u2

4t D @12cosh~u2j!#du (13)

where the lower limit on the integral has been changed to refl
the step function inf (t). Carrying out this integral and inverting
the second term~@14#, p. 221, #1 and p. 170, #15! gives

ŝx52
1

2
exp~t2j!H 12exp~2j!erfcS 2t1j

2At
D 1erfS 2t2j

2At
D

22 erf~At2j!H~t2j!J . (14)

Having obtained this stress, we can obtain the remaining stre
by taking advantage of the assumption that there is no displ
ment parallel to the surface. Defining two more dimensionl
stresses as
614 Õ Vol. 70, JULY 2003
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ŝy5
~122n!~12n!

2~11n!

ksy

aqam

ŝz5
~122n!~12n!

2~11n!

ksz

aqam
(15)

we obtain

ŝy5ŝz5nŝx2~122n!f. (16)

Substituting Eq.~14! into this expression gives us a solution fo
the two remaining normal stresses. This completes our solu
for the stresses induced by surface heating on a half-space.

Since the longitudinal stress (ŝx) is zero at the surface, the
transverse stress (ŝy) at the surface is given by

ŝy5ŝz52~122n!f (17)

Fig. 1 Shape of stress fields at three different times. Trans-
verse stresses assume nÄ0.3.

Fig. 2 Time dependence of stresses at two different locations
relative to the surface. Transverse stresses assume nÄ0.3.
Transactions of the ASME
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ŝy5ŝz522~122n!SAt

p D . (18)

The peak stress in the wave occurs atj5t. Substituting this
into Eq. ~14! gives

ŝx52
1

2 H 12exp~2t!erfcS 3At

2 D 1erfSAt

2 D J
ŝy52

n

2 H 12exp~2t!erfcS 3At

2 D 1erfSAt

2 D J 22~122n!

3SAt

p
expF2t

4 G2
t

2
erfcFAt

2 G D . (19)

For long times the longitudinal stress approaches21 while the
transverse stress approachesn. For short times, the leading term
for the longitudinal and transverse stresses are

ŝx'2At

p

ŝy'2~12n!At

p
. (20)

Results
Typical wave shapes are shown in Fig. 1, which plots the t

dimensionless stresses as a function of distance from the sur
These results are given for dimensionless times of 0.5, 1, and
As one would expect, the stresses are all compressive, and
peak stress in the wave occurs atj5t. Except at early times, the

Fig. 3 Stresses versus time at the surface and at the peak of
the wave. Transverse stresses assume nÄ0.3.
Journal of Applied Mechanics
s

wo
ace.
10.
the

transverse stress peaks at the surface because that’s wher
temperature peaks. At early times, there is a local peak in
transverse stress where the wave front lies, and at this point
transverse stress is less than the longitudinal stress.

Figure 2 displays the time dependence of the stresses at va
depths from the surface. Each of the pairs of the curves is give
dimensionless times of 1 and 5. It is clear from this figure that
long-term behavior is dominated by the quasi-static stress w
the short-term behavior is dominated by inertial effects.

The peak in the longitudinal stress occurs atj5t while the
peak transverse stress occurs at the surface~except at short times!.
These peaks are plotted in Fig. 3, which gives both stressesj
5t along with the surface stress at the same dimensionless tim
can be seen that beyond a dimensionless time of approximate
the surface stress exceeds the stress at the wave peak. The
where the two are equal can be found more precisely by num
cally solving Eqs.~18! and ~19!, giving a value of 3.81 for a
Poisson’s ratio of 0.3.

By comparing the surface stress to the peak stress in the w
the results presented here are of interest for dimensionless t
less than about 10. This corresponds to approximately 5 ps
aluminum and 25 ps for iron at room temperature. The pulse tim
of interest can also be much longer, because the stress wave
propagate much faster than the heat diffuses, and can cause
lation at a free surface at the back of a solid. In this case it will
the absolute magnitude of the peak stress in the wave, rather
its relation to the surface stress, that is of interest. On the o
hand, the results are only valid for times long compared to
relaxation time associated with non-Fourier conduction. In m
metals this relaxation time is less than 0.01 picoseconds at r
temperature and even smaller at higher temperatures. Hence,
is a pulse length window from tens of fs to tens of ps~or greater!
for which this solution is valid and meaningful.
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Thermal Stresses in an Infinite Elastic
Pipe Weakened by a Finite
Cylindrical Crack
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Axially symmetric thermal stresses in the vicinity of a finite cyl
drical crack in an elastic pipe are calculated. The surfaces of
crack are assumed to be insulated. The outer surface of the pi
heated so as to maintain a constant temperature Td , and the inner
surface of the pipe is cooled so as to maintain a constant t
perature Tb . Expressions developed by Sharma are used to s
the problem. Stress intensity factors are defined and calcula
numerically for several configurations of the pipe.
@DOI: 10.1115/1.1598475#

1 Introduction
A pipe is one type of mechanical part used in plant constr

tion. If a low-temperature liquid flows in a metallic pipe in
high-temperature environment in order to remove heat, ten
stress may be produced in the pipe, possibly leading to deve
ment of a finite cylindrical crack. To the author’s knowledge, th
mal stresses resulting from a cylindrical crack have not been
sented. Therefore, in the present paper, axially symmetric the
stresses are solved for an elastic pipe weakened by a finite c
drical crack, by use of the expressions provided by Sharma@1#.

In a first step, the boundary conditions relating to the tempe
ture field are reduced to dual integral equations by the Fou
transform technique. To satisfy the boundary conditions outs
the crack, the temperature difference at the crack surfaces is
panded to a series of functions that diminish to zero outside
cracks. The unknown coefficients in the series are determine
the Schmidt method@2#. Next, the boundary conditions relating t
the stress field are reduced to dual integral equations. To solve
equations, the differences in the displacements at the crack
faces are newly expanded in a series of functions that diminis
zero outside the crack. The Schmidt method@3# is also used to
solve the unknown coefficients in the series.

2 Fundamental Equation
With respect to the cylindrical coordinates (r ,u,z) shown in

Fig. 1, consider a cylindrical crack located onr 5c and extending
from z52a to z51a. The inner surface and the outer surface
the hollow cylinder are denoted byr 5b and r 5d, respectively.
For the sake of convenience, the hollow cylinder is divided into
inner layer~1! denoted by (b<r<c) and an outer layer~2! de-
noted by (c<r<d).

If displacementsur and uz are defined by the potential func
tions f1 , f2 , andT* , in a manner similar to that developed b
Sharma@1#,

ur5]~f11f21T* !/]r , uz5]~b1f11b2f21m]T* !/]z,
(1)

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July
2002; final revision, Apr. 2, 2003. Associate Editor: J. R. Barber.
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the axially symmetric stresses can be expressed by

t rr 5~c11]
2/]r 21c1231/r 3]/]r !~f11f21T* !

1c13]
2/]z2~b1f11b2f21mT* !2b1T,

tuu5~c12]
2/]r 21c1131/r 3]/]r !~f11f21T* !

1c13]
2/]z2~b1f11b2f21mT* !2b1T,

(2)

tzz5c13~]2/]r 211/r 3]/]r !~f11f21T* !

1c13]
2/]z2~b1f11b2f21mT* !2b2T,

t rz5c44]
2/]r ]z@~11b1!f11~11b2!f21~11m!T* #,

with

b15~c111c12!a11c13a2 , b252c13a11c33a2 , (3)

whereur anduz are r andz components of displacement,ci j are
elastic moduli, anda1 anda2 are the coefficients of linear expan
sion along ther axis and thez axis, respectively. In Eq.~2!, tem-
peratureT satisfies

~]2/]r 211/r 3]/]r 1k2]2/]z2!T50 (4)

with

k25k2 /k1 , (5)

wherek1 , k2 are the thermal conductivities along ther axis and
thez axis, respectively. Potential functionsf1 andf2 must satisfy
the equation

~]2f/]r 211/r 3]f/]r !1n2]2f/]z250, (6)

wheren j
2 ( j 51,2) are the roots of the equation

c11c44n
41~2c13c442c11c331c13

2 !n21c33c4450. (7)

In Eqs.~1! and ~2!, b j
2 ( j 51, 2! are given by the equation

b j5~c11n j
22c44!/~c131c44!. (8)

FunctionsT* andm can be calculated by use of the equations

c11~]2T* /]r 211/r 3]T* /]r !1@c441m~c131c44!#]
2T* /]z2

2b1T50,
(9)

~c131c441mc44!~1/r 3]T* /]r 1]2T* /]r 2!1mc33]
2T* /]z2

2b2T50.

1,
Fig. 1 Geometry and coordinate system
03 by ASME Transactions of the ASME
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3 Boundary Conditions
Consider the case where the outer surface of the pipe is he

so as to maintain a constant temperatureTd , and the inner surface
of the pipe is cooled so as to maintain a constant temperatureTb .
If the crack surfaces are assumed to be thermally insulated
boundary conditions for the temperature field are given by
equations

T15Tb , for r 5b, uzu,`, (10)

T25Td , for r 5d, uzu,`, (11)

]T1 /]r 5]T2 /]r , for r 5c, uzu,`, (12)

]T1 /]r 50, for r 5c, uzu,a, (13)

T15T2 , for r 5c, a,uzu, (14)

where the variables denoted by subscripts 1, 2 are those for la
~1! and~2!, respectively. When the crack faces are assumed to
come into contact, the boundary conditions for the stress field
given by the equations

t rr 1
b 50, t rz1

b 50, for r 5b, uzu,`, (15)

t rr 2
d 50, t rz2

d 50, for r 5d, uzu,`, (16)

t rr 1
c 5t rr 2

c , t rz1
c 5t rz2

c , for r 5c, uzu,`, (17)

ur1
c 5ur2

c , uz1
c 5uz2

c , for c50, a,uzu, (18)

t rr 1
c 50, t rz1

c 50, for r 5c, uzu,a, (19)

where superscriptsb, c, andd denote variables atr 5b, r 5c, and
r 5d, respectively.

4 Analysis
To obtain the solutions, we introduce the Fourier transform

f̄ ~j!5E
2`

`

f ~z!exp~ i jz!dz, (20)

f ~z!51/~2p!E
2`

`

f̄ ~j!exp~2 i jz!dj. (21)

In order to satisfy Eq.~14!, the temperature difference atr 5c
is expanded by the series

p~T1
c2T2

c!5(
n51

`

cn cos@~2n21!sin21~z/a!# for uzu,a,

(22)
p~T1

c2T2
c!50 for a,uzu,

wherecn are unknown coefficients and the superscriptc denotes
the values atr 5c. Then, as is easily shown, the boundary con
tions with respect to the temperature field can be reduced to
form

(
n51

`

cnFn~z!52u~z!, for 0<z,a, (23)

Table 1 Material constants of steel

E (GPa) 205.9
n8 0.3

a(31025/°C) 1.14
k @W/m °C)] 48.6
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where the expressions of the known functionsFn(z) andu(z) are
omitted. Equation~23! can be solved for coefficientscn by means
of the Schmidt method@2#, whereby the entire temperature fie
can be obtained.

Next, the stress field is obtained. Equation~18! shows that the
displacements are continuous outside the crack. To satisfy t
conditions, the differences in the displacements are expande
the series

p~uz1
c 2uz2

c !5(
n51

`

dn sin@2n sin21~z/a!#, for r 5c, uzu,a,

50 for r 5c, a,uzu,
(24)

p~ur1
c 2ur2

c !5(
n51

`

en cos@~2n21!sin21~z/a!#,

for r 5c, uzu,a,

50 for r 5c, a,uzu,

Fig. 2 Stress intensity factors K 1 and K 2 for b ÕaÄ1.0, d Õa
Ä2.0 versus c Õa

Fig. 3 Stress intensity factors K 1 and K 2 for b ÕaÄ2.0, d Õa
Ä3.0 versus c Õa
JULY 2003, Vol. 70 Õ 617
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where dn , en are the unknown coefficients to be determine
Then, as is also easily shown, the boundary conditions with
spect to the stress field can be reduced to the form

(
n51

`

dnGn~z!1(
n51

`

enHn~z!52U~z!,

(25)

(
n51

`

dnKn~z!1(
n51

`

enLn~z!52V~x! for 0<z,a,

where the expressions of the known functionsGn(z), Hn(z),
Kn(z), Ln(z), U(z), andV(z) are omitted. Equation~25! can be
solved for coefficientsdn , en by means of the Schmidt metho
@3#, whereby the entire stress field can be obtained.

5 Stress Intensity Factors
Since coefficientscn , dn , en are now known, the entire tem

perature and stress fields can be obtained. In fracture mecha
determining the stresses just ahead of the crack end is impor
The stress singularities around the crack tip derive from the
havior of the integrand when the integration variable assume
infinite value. Therefore the stress intensity factors can be de
mined as follows:

K15@2p~z2a!#1/2t rr 1
c uz→a1

5(
n51

`

en~2n21!~21!n21Q2
L/~pa!1/2,

(26)

K25@2p~z2a!#1/2t rz1
c uz→a15(

n51

`

dn~2n!~21!nQ4
L/~pa!1/2,

where the expressions of the known constantsQ2
L and Q4

L are
omitted.

6 Numerical Examples and Results
Numerical calculations are carried out for a steel pipe. Tab

lists the material constants of the steel, whereE is Young’s modu-
lus, n8 is Poisson’s ratio,a is the coefficient of linear expansion
and k is the thermal conductivity. In the isotropic case, the co
stants in orthotropic elasticity can be expressed in terms ofE, n8,
a, andk as follows:

Fig. 4 Stress intensity factors K 1 and K 2 for b ÕaÄ3.0, d Õa
Ä4.0 versus c Õa
618 Õ Vol. 70, JULY 2003
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c115c335~12n8!E/@~11n8!~122n8!#,

c125c135n8E/@~11n8!~122n8!#,
(27)

c445E/~11n8!, k15k25k, a15a25a.

The present analysis is based on orthotropic elasticity. This
sents no problem in solving the temperature field for an isotro
material; however, Eq.~7! has two kinds of multiple roots, and th
analysis is invalid for this case. However, if the values ofc33 and
c13 are replaced by values slightly larger than those ofc11 and
c12, the solutions presented in this paper are still effective. T
can be verified in the solution for a transversely isotropic mate
@4–7#. Here, the following values are assigned toc33 andc13:

c3351.013c11, c1351.013c12. (28)

The semi-infinite integrals which appear inFn(z) in Eq. ~23! and
those which appear inGn(z), Hn(z), Kn(z), Ln(z), U(z), and
V(z) in Eq. ~25! can be easily evaluated numerically by means
Filon’s method, because the integrands decay rapidly as the
gration variablej increases.

The Schmidt method has been applied to solve coefficientscn
in Eq. ~23! anddn , en in Eq. ~25!, truncating the infinite series to
15 terms. The left-hand side of Eq.~23! has been confirmed to
coincide with the right-hand side of Eq.~23!. The same applies to
Eq. ~25!. Namely, the boundary conditions inside the crack a
seen to have been completely satisfied.

(d2b)/a51.0 is assumed. The results of the stress inten
factors (K1 ,K2)/@EaApa1.5(Td2Tb)/(d2b)# are plotted in
Figs. 2–4 for (b/a51, d/a52), (b/a52, d/a53), (b/a53,
d/a54), respectively.

One the basis of the numerical calculations outlined above,
can draw the following conclusions:

~1! K1 has a large value nearr 5(d2b)/2, and becomes
smaller as the crack approaches the outer surface or the i
surface. The value ofK2 is considerably smaller than that ofK1 ,
and its sign changes nearr 5(d2b)/2. The value ofK2 has two
peaks, which are located near the inner and outer surfaces o
pipe, respectively. The predominant value of the stress inten
factor isK2 in the two-dimensional problem, whereas it isK1 for
a cylindrical crack in the axially symmetric problem.

~2! The peak value ofK1 nearr 5(d2b)/2 decreases slightly
with increasing diameter of the pipe, whereas the absolute va
of the two peaks ofK2 increase slightly.

References
@1# Sharma, B., 1958, ‘‘Thermal Stresses in Transversely Isotropic Semi-Infi

Elastic Solid,’’ ASME J. Appl. Mech.,25, pp. 86–88.
@2# Morse, P. M., and Feshbach, H., 1958,Methods of Theoretical Physics 1,

McGraw-Hill, New York, p. 926.
@3# Yau, W. F., 1967, ‘‘Axisymmetric Slipless Indentation of an Infinite Elast

Cylinder,’’ SIAM ~Soc. Ind. Appl. Math.! J. Appl. Math.,15, pp. 219–227.
@4# Atsumi, A., and Itou, S., 1973, ‘‘Stresses in a Transversely Isotropic S

Having a Spherical Cavity,’’ ASME J. Appl. Mech.,40, pp. 752–758.
@5# Atsumi, A., and Itou, S., 1974, ‘‘Stresses in a Transversely Isotropic Circu

Cylinder Having a Spherical Cavity,’’ ASME J. Appl. Mech.,41, pp. 507–511.
@6# Atsumi, A., and Itou, S., 1974, ‘‘Stresses in a Transversely Isotropic H

Space Having a Spherical Cavity,’’ ASME J. Appl. Mech.,41, pp. 708–711.
@7# Atsumi, A., and Itou, S., 1976, ‘‘Axisymmetric Thermal Stresses in a Tra

versely Isotropic Circular Cylinder Having a Spherical Cavity,’’ ASME
Appl. Mech.,43, pp. 431–433.
Transactions of the ASME



s

h

a

N
1

o
d

f

c

i

t
i

r

e
e

i

are
ond

are
u-

ide
all

fer
with
and
,

the
ted
the

the

th-
re
ob-

ized
e

lts
,

two
r all

rms
the

s of
yno-
sion
are
em.

eries
the

a-
ese
ely
the

se

h
ine
15

ef.
00

for
the

For
e-
s

Benchmark Results for the Problem
of Interaction Between a Crack
and a Circular Inclusion

J. Wang, S. G. Mogilevskaya, and
S. L. Crouch
Department of Civil Engineering, University of
Minnesota, 500 Pillsbury Drive S.E., Minneapolis,
MN 55455, USA

This paper is a reply to the challenge by Helsing and Jons
(2002, ASME J. Appl. Mech.,69, pp. 88–90) for other investiga-
tors to confirm or disprove their new numerical results for t
stress intensity factors for a crack in the neighborhood of a c
cular inclusion. We examined the same problem as Helsing
Jonsson using two different approaches—a Galerkin boundary
tegral method (Wang et al., 2001, in Rock Mechanics in the
tional Interest, pp. 1453–1460) (Mogilevskaya and Crouch, 200
Int. J. Numer. Meth. Eng.,52, pp. 1069–1106) and a complex
variables boundary element method (Mogilevskaya, 1996, C
put. Mech.,18, pp. 127–138). Our results agree with Helsing an
Jonsson’s in all cases considered.@DOI: 10.1115/1.1598473#

1 Introduction
Helsing and Jonsson@1# recently initiated a discussion on th

accuracy of benchmark tables and graphical results presente
the applied mechanics literature. They considered the problem
a matrix crack interacting with an elastic inclusion~Fig. 1!. Their
converged results for the normalized stress intensity factors o
crack differed from those presented in papers by Erdogan, Gu
and Ratwani@5#, and by Cheeseman and Santare@6#. In view of
this discrepancy, the authors challenged other investigators to
firm or disprove their new results. As a response, we would like
participate in this discussion and present our numerical solut
to the same problems.

2 Methods of Solution
We used two methods to solve the problem depicted in F

1—a Galerkin boundary integral~GBI! method@2,3# and a com-
plex variables boundary element method~CVBEM! @4#. These
two methods are independent, although both of them are base
a complex hypersingular integral equation@7# written in terms of
the tractions on the boundary of the inclusion and the displa
ment discontinuities along the crack. In the GBI method,
boundaries of the inclusion and the crack are not subdivided
elements; instead, global approximations are used for the
known boundary parameters. The tractions along the bounda
the circular inclusion are represented by truncated complex F
rier series and the distributions of displacement discontinu
along the straight crack are approximated by a series of Ch
shev polynomials multiplied by a weight function, which tak
into account the crack tip asymptotics. A Galerkin~weighted re-
sidual! procedure is used to construct a system of linear algeb
equations. In the CVBEM, the boundaries are discretized
small straight or circular arc elements, on each of which a lo

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Apr. 1
2002; final revision, Feb. 22, 2003. Associate Editor: B. M. Moran.
Copyright © 2Journal of Applied Mechanics
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approximation is used. The unknown boundary parameters
approximated by complex Lagrange polynomials of the sec
degree. For the crack tip elements, square-root asymptotes
used. The linear system is obtained by using a collocation form
lation, in which three collocation points on each element coinc
with the nodes of the Lagrange polynomials. In both methods,
of the integrations are performed analytically.

3 Results and Discussion
The problems under investigation are shown in Fig. 1. We re

to the problem with the straight crack as case 1 and the one
the curved crack as case 2. The elastic properties of the matrix
the inclusion arem1 , v1 andm2 , v2 , respectively. In both cases
following Helsing and Jonsson@1#, we takem151, v150.35, and
m2523, v250.30.

For case 1, we recompute the results in Table 1 in Ref.@1# by
using both methods mentioned above. In the GBI method,
unknowns are the complex coefficients involved in the trunca
series. The number of terms of the complex Fourier series for
inclusion is 2n ~n negative terms plusn positive terms! and the
number of terms of the series of Chebyshev polynomials for
straight crack ism. In the CVBEM, the number of collocation
points isk. The numbers of degrees of freedom for the two me
ods are 4n12m and 2k, respectively. The degrees of freedom a
chosen such that convergence to a fixed numerical result is
tained. The stress intensity factors at the crack tips are normal
by dividing them bys0Apa. Our results for the normalized mod
1 and mode 2 stress intensity factorsF1 and F2 at the left and
right crack tips from the above two methods~denoted by GBI and
CVBE! are shown in Tables 1 and 2, together with the resu
obtained by Helsing and Jonsson@1# ~HJ! and Erdogan, Gupta
and Ratwani@5# ~EGR!.

It can be seen from Tables 1 and 2 that our results from
different methods agree closely with Helsing and Jonsson’s fo
values ofc/a considered except for the casec/a53, where we
believe that the difference may be due to a misprint~i.e., we
believe that their result should be20.0035 rather than20.035!.
The results from the GBI method depend on the number of te
of the truncated series. When the crack is not very close to
inclusion, the method converges very fast and only a few term
the complex Fourier series and the series of Chebyshev pol
mials give accurate solutions. For the cases where the inclu
and crack are very close to one another, many more terms
needed to take into account the strong interaction between th
For example, 80 and 100 terms are needed in the Fourier s
and 20 terms in the series of Chebyshev polynomials to get
asymptotic solution for the two most extreme cases wherec/a
50.5 and 0.3, respectively. In the CVBEM, 696 and 870 colloc
tion points were required to get the converged results for th
two cases. We find that the GBI method involves approximat
one-sixth as many degrees of freedom as the CVBEM. For
GBI method the convergence of our results forF1 andF2 at the
left tip of the crack with the increase of the numbern is shown in
Fig. 2 for the casesc/a51.0 and 0.5. It can be seen from the
figures that the convergence is much faster forc/a51.0 than for
c/a50.5. Forc/a52.0, Helsing and Jonsson@1# gave a 16-digit
reference value ofF1 at the right tip of the crack computed wit
approximately 600 discretization points. We obtained the first n
digits of that value with 20 terms in the Fourier series and
terms in the series of Chebyshev polynomials.

For case 2, we recomputed the results shown in Fig. 2 in R
@1# by using the CVBEM. For the circular inclusion, we used 1
circular arc elements forRc /R51.1 and 1.2 and 50 forRc /R
.1.2. For the circular arc crack, the numbers of elements
different cases were chosen such that all of the elements on
inclusion and the crack have approximately the same length.
example, forRc /R51.1, we had 48, 28, and 20 circular arc el
ments for u575°, u545°, andu530°, respectively. The stres

2,
003 by ASME JULY 2003, Vol. 70 Õ 619
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Fig. 1 A straight „left … or circular arc „right … crack outside an inclusion under uniaxial or biaxial
tension. This figure corresponds to Fig. 1 in Ref. †1‡.
Table 1 Normalized stress intensity factors at the left tip of the
straight crack

c/a

F1 F2

GBI CVBE HJ EGR GBI CVBE HJ EGR

0.3 0.236 0.234 0.235 0.225 0.074 0.073 0.073 0.0
0.5 0.347 0.347 0.347 0.341 0.102 0.102 0.102 0.1
1.0 0.613 0.614 0.613 0.613 0.061 0.061 0.061 0.0
1.5 0.755 0.755 0.755 0.763 0.012 0.012 0.01220.007
2.0 0.830 0.830 0.830 0.845 0.018 0.018 0.01820.021
3.0 0.936 0.936 0.936 0.953 0.067 0.067 0.06720.001
4.0 1.003 1.003 1.003 1.014 0.079 0.079 0.079 0.0
8.0 1.043 1.043 1.043 1.043 0.032 0.032 0.03220.026

Table 2 Normalized stress intensity factors at the right tip of
the straight crack

c/a

F1 F2

GBI CVBE HJ EGR GBI CVBE HJ EGR

0.3 0.790 0.790 0.790 0.78420.023 20.023 20.023 20.004
0.5 0.797 0.797 0.797 0.79220.037 20.037 20.037 20.006
1.0 0.817 0.817 0.817 0.81720.067 20.067 20.067 20.005
1.5 0.833 0.833 0.833 0.83920.074 20.074 20.074 0.008
2.0 0.850 0.850 0.850 0.86020.058 20.058 20.058 0.034
3.0 0.897 0.897 0.897 0.90520.004 20.004 20.035 0.089
4.0 0.947 0.947 0.947 0.951 0.032 0.032 0.032 0.1
8.0 1.022 1.022 1.022 1.020 0.032 0.032 0.032 0.0
70, JULY 2003
Fig. 2 Convergence of F1 and F2 at the left tip of the straight
crack with increase of the number of terms of the Fourier series
„the dotted lines denote Helsing and Jonsson’s results for
c ÕaÄ0.5 and 1.0 …
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intensity factors are normalized by the corresponding values
the stress intensity factors in the absence of the inclusion.
results for the normalized stress intensity factorsF1 andF2 at the
left tip of the crack were plotted and found to be in good agr
ment with Helsing and Jonsson’s. We have tabulated our res
~Table 3! to make it easier for others to make comparisons.

In this paper, we presented our numerical results for two pr
lems involving interaction between a crack and a circular inc
sion. Our two independent calculations confirmed the result

Table 3 Normalized stress intensity factors at the tips of the
circular crack

Rc /R

u530° u545° u575°

F1 F2 F1 F2 F1 F2

1.1 0.919 1.494 0.928 1.393 0.955 1.363
1.2 0.944 1.353 0.962 1.285 1.009 1.281
1.5 0.961 1.202 0.990 1.159 1.056 1.160
2.0 0.972 1.104 0.992 1.092 1.059 1.084
3.0 0.986 1.040 0.992 1.043 1.039 1.037
4.0 0.992 1.021 0.994 1.024 1.025 1.021
5.0 0.995 1.013 0.996 1.016 1.017 1.014
6.0 0.997 1.009 0.997 1.011 1.012 1.010
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Table 1 in Ref.@1#. The comparison between the two metho
used in this investigation showed that the Galerkin boundary
tegral method is much more efficient than the collocation bou
ary element method.
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